WIND ENERGY

RESEARCH ARTICLE

Reliability based design of fluid power pitch systems for wind turbines

Jesper Liniger¹, Mohsen Soltani¹, Henrik C. Pedersen², James Carroll³ and Nariman Sepehri⁴

¹ Department of Energy Technology, Aalborg University, Esbjerg, Denmark

² Department of Energy Technology, Aalborg University, Aalborg East, Denmark

³ Centre for Doctoral Training in Wind Energy Systems, University of Strathclyde, Glasgow, Scotland, UK

⁴ Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada

ABSTRACT

This paper presents a qualitative design tool for evaluation of the risk for fluid power pitch systems. The design tool is developed with special attention to industry standard failure analysis methods and is aimed at the early phase of system design. Firstly, the concept of Fault Tree Analysis is used for systematic description of fault propagation linking failure modes to system effects. The methodology is conducted solely on a circuit diagram and functional behavior. The Failure Mode and Effects Criticality Analysis is subsequently employed to determine the failure mode risk via the Risk Priority Number. The Failure Mode and Effect Criticality Analysis is based on past research concerning failure analysis of wind turbine drive trains. Guidelines are given to select the severity, occurrence and detection score that make up the risk priority number. The usability of the method is shown in a case study of a fluid power pitch system applied to wind turbines. The results show a good agreement to recent field failure data for offshore turbines where the dominating failure modes are related to valves, accumulators and leakage. The results are further used for making design improvements to lower the overall risk of the pitch system. Copyright © 2017 John Wiley & Sons, Ltd.

KEYWORDS

failure mode and effects analysis; fault tree analysis; fluid power; pitch system; reliability

Correspondence

Jesper Liniger, Department of Energy Technology, Aalborg University, Esbjerg, Denmark. E-mail: jel@et.aau.dk

Received 24 May 2016; Revised 24 November 2016; Accepted 24 December 2016

1. INTRODUCTION

Wind turbines play a significant role in the present utilization of renewable energy sources, and an increase in investment of new installations is expected.¹ The cost of energy produced by wind turbines must decrease, to meet future expectations. The key factors for decreasing the cost of energy are low cost, high efficiency and high availability. Because wind turbines are designed to operate as autonomous energy converters, high availability depends on efficient maintenance and high reliability. However, in real life, turbines suffer from unpredicted failures causing significant downtime, which reduce availability.^{2–6} The European ReliaWind study conducted on approximately . 350 turbines larger than 1 MW, shows that the pitch system contributes over 20% to both the overall turbine failure rate and downtime. This makes it the most unreliable subassembly of the turbine.⁴ The study includes wind turbines using either electrical or fluid power pitch systems with unknown distribution. However, indications are that half of the erected variable pitch turbines employ fluid power pitch systems.⁷ This paper focuses on the fluid power pitch systems. A recent study by Carroll *et al.* presents subassembly failure rate for approximately 350 offshore multi-megawatt turbines equipped with fluid power pitch systems.⁶ These results confirm that pitch systems are the largest contributors to total turbine failure rate. The associated downtime is not directly evident, but a similar indicator is found by combining the average repair time and average failure rate. Comparing turbine subsystems by this indicator shows the pitch system faults rank in the top four together with faults related to blades, generators and the gearboxes. A Dutch study on 36 Vestas V90 3 MW offshore turbines equipped with fluid power pitch systems shows that the pitch system accounts for over 20% of the production stops, only exceeded by the control system.³ The related total downtime is fourth longest outnumbered only by the gearbox, generator and control system.

Failure	Failure	Failure	Failure	Failure
mode 1	mode 2	mode 3	mode 4	mode 5
Internal	Internal	Hydraulic	Position	Control
leakage	leakage	cylinder	sensor	valve
of pro-	of	leakage	degraded	pressure
portional	solenoid		or no	sensor
valve	valve		signal	degraded
				signal

Figure 1. Important failure modes for fluid power pitch systems. Subjectively identified from the ReliaWind project (Fig. 5 of Wilkinson and Hendriks⁴).

Figure 2. Failure rate distribution for fluid power pitch systems. Reproduced from the study by Carroll et al.⁶

From the aforementioned studies, it is clearly evident that pitch systems contribute significantly to both the downtime and failures of modern multi-megawatt turbines. Hence, lowering the failure probability and downtime of such systems will have the potential to significantly increase the availability of wind turbines. In lowering the failure probability of pitch systems, an important basis is knowledge of failure modes and component failure rates. Two of the mentioned studies address the failure modes and failure rates for current fluid power pitch systems. Figure 1 shows a list of subjectively determined failure modes identified through the ReliaWind study.⁴ Component leakage and sensor faults are seen to be the dominating faults. Failure rates related to oil, valves and accumulators faults show to make up a large portion of the total failure rate. The failure rates are categorized from field service reports where information can be inadequate. The *Others* category consists of these partially documented failures.

While the failure modes indicate what failures occur and the failure rate indicates how frequent they occur, these studies do not point out why any of the failures occur. Thus, the relation between root cause and system failure is unknown. Without knowledge of the root cause and system failure relation, it is difficult to mitigate failures in future pitch system designs.

A state-of-the-art analysis of fluid power pitch systems revealed that only a few sources deal with failure analysis.⁸ Failure analysis in this paper is regarded as the qualitative process of analyzing the root cause and effect relation. Yang *et al.*⁹ presented a method for determining reliability on the basis of a Stochastic Petri Net (SPN) of a 500 kW Vestas V39 turbine fluid power pitch system. The method mainly concerned the development of an algorithm for determining minimal cut sets of the SPN and not how the SPN is constructed itself. Thus, the failure analysis was not evident, and only few failure modes of the system were considered. Han *et al.*¹⁰ presented a similar approach, where the SPN was defined from a Fault Tree Analysis (FTA). The construction of the FTA was not evident and similarly only considered a sparse number of failure modes for a few of the components. The previous studies on failure analysis of pitch systems have therefore been focused on quantitatively determining reliability and not the root cause and effect relation that underlies the analysis.

Several patents exist describing pitch system concepts with an objective to increase reliability.⁸ Many consider redundant components and also closed circuit type systems. However, the actual impact of the designs to reliability remains undocumented.

Within the general field of fluid power, two categories of qualitative failure analysis are seen to be the subject for research.⁸ One category of methods uses expert knowledge of component failure modes and automatically determines

fault propagation in a system on the basis of a circuit diagram.^{11–14} The other category also uses a circuit diagram but utilizes component simulation models to determine fault propagation.^{15–17} While some of the methods seem promising for identifying fault propagation, only the work by Stecki *et al.*¹⁶ and Gjerstad *et al.*¹⁷ allows for analyzing the system risk. Stecki *et al.* augment an automated fault propagation method with input for a Failure Mode and Effects Analysis (FMEA). However, no additional information is given for conducting the FMEA itself. Gjerstad *et al.* present the system risk as a product of reliability and severity of a failure mode.¹⁷ This method is not directly applicable to fault detection on fluid power pitch systems, as the reliability data for fluid power components are very limited. This is also noted by the Gjerstad *et al.*¹⁷ In addition, the used risk evaluation method does not cover the influence of condition monitoring.

The reviewed research shows that there still exists a lack of knowledge in the subject of failure analysis of fluid power pitch systems. This gap in knowledge exists in the early design phase and includes constructing the root cause and effect relation, determining how to identify weak spots in the design and ultimately incorporating this knowledge into more reliable systems.

The main contribution of the paper is to provide a verified design tool that enables systematic analysis of fault propagation and allows for risk evaluation of a fluid power pitch concept in the early design phase of development. This paper also presents design improvements that decrease the overall risk of the fluid power pitch system.

The risk, which is central to the design tool, is determined on the basis of qualitative scores describing severity, occurrence and detectability of failures in the system. The risk score enables identification of weak spots in a concept and directly evaluates the effect of different design changes. The design tool incorporates the industry standard failure analysis methods FMEA and FTA, to increase usability in industrial development. Both FMEA and FTA are originally defined in general terms to cover a wide range of mechanical, electrical and software systems.^{18–20} However, this makes the results sensitive to subjectivity and bias issues generally related to qualitative failure analysis. The design tool focuses on creating a systematic framework that sets both FMEA and FTA in the context of wind turbine and fluid power systems, to overcome the subjectivity and bias issues. As its use is aimed at the early design phase of development, the input depends on a circuit diagram and function description.

This paper is arranged as follows. Section 2 reviews the methods for failure analysis of wind turbine and fluid power systems. Section 3 describes a generalized fluid power pitch system, which is used as a case study to show usability of the design tool. Section 4 introduces the design tool and uses it on the pitch system. Section 5 validates the tool by comparing the results with field failure data. Section 6 presents design changes to the pitch system on the basis of the design tool results and evaluates how risk is affected. Section 7 finalizes the paper with conclusions and discussions of the methods and results.

2. FAILURE ANALYSIS

Failure analysis is used for identifying failure mechanisms of a system and for indicating how faults propagate. Failure analysis and reliability modeling are integrated processes, where failure analysis is the qualitative basis for determining quantitative reliability measures.¹⁸ Two methods dominate the area of qualitative failure analysis: FMEA and FTA.^{18,21} FMEA is a bottom up approach where failure mode(s) of each component is determined with its associated effects (on a higher level) and causes (on a lower level). The analysis is normally documented using tables and enables the analyst to provide details on root cause and failure mode correlation. FMEA is referred to by the generally used wind turbine design standard IEC-61400.²² and is therefore known to the industry. A problem associated with FMEA is determination of the adequate level of detail for describing the failure characteristics of a system. If the level of detail is too low, not all relevant failure modes will be discovered and thus leaving out potential important weak spots. On the other hand, if the analysis is too detailed, the analysis will become complex and results in high workload.²⁰ Additionally, it is recognized that by analyzing a system bottom up, it can be difficult to overview which effect a component failure mode has to the system. This overview can be achieved using FTA.

Fault Tree Analysis considerers the failure propagation in reverse compared with the FMEA. Here, the system is analysed top down starting from an undesired top event to individual failure modes. FTA is documented graphically using logic gates and provides a systematic approach to connect systems effect to failure mode. The process of FMEA and FTA is summarized in Figure 3. Because of the details provided by the FMEA and the systematic approach of the FTA, many sources advise to use both FTA and FMEA concurrently to detect all relevant failure modes of a system.^{11,18,23} A major problem related to both FMEA and FTA is that the methods are subjective and exposed to bias from the group of experts performing the analysis.^{18,19} This may compromise the analysis result and will subsequently make it difficult to use as a basis for comparing different design concepts. The design tool to be presented in this paper seeks to lower the bias by introducing specific guidelines for performing the analysis applied to fluid power pitch systems.

Mbari and McCandlish presented a method for constructing a FTA of a fluid power system. The method provides guidance to subdivide the system analysis on the basis of a circuit diagram and knowledge of normal behavior.¹¹ With adjustments, this method is used as a basis for creating the FTA of the pitch system.

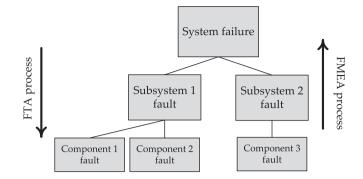


Figure 3. Failure analysis approach using either FMEA or FTA.

Table I. Scales for severity, occurrence and detection reproduced from the work by Arabian et al. ²⁴

Scale	Description	Criteria
-	Severity	
1	Category IV (minor)	Electricity can be generated, but urgent repair is required
2	Category III (marginal)	Reduction in ability to generate electricity
3	Category II (critical)	Loss of ability to generate electricity
4	Category I (catastrophic)	Permanent structural damage to the turbine
	Occurrence	
1	Level E (extremely unlikely)	Single failure mode probability of occurrence is less than 0.001
2	Level D (remote)	Single failure mode probability of occurrence is more than 0.001 but less than 0.01
3	Level C (occasional)	Single failure mode probability of occurrence is more than 0.01 but less than 0.10
5	Level A (frequent)	Single failure mode probability greater than 0.10
	Detection	
1	Almost certain	Current monitoring methods almost always will detect the failure
4	High	Good likelihood that current monitoring methods will detect the failure
7	Low	Low likelihood of current monitoring methods to detect the failure
10	Almost impossible	No known monitoring method is available to detect the failure

Arabian *et al.*²⁴ presented a Failure Mode and Effects Analysis in relation to wind turbine drive trains. The study is conducted on the basis of the Risk Priority Number (RPN). In this case, the RPN is a measure of combining both reliability and the risk of not producing electricity. FMEA augmented by the RPN is often named a Failure Mode and Effects Criticality Analysis (FMECA). RPN is normally defined as a product of scores for failure mode severity, occurrence and detection. With the MIL-STD-1629A, Arabian *et al.*²⁴ defined scales for severity, occurrence and detection, and set them in terms of wind turbine taxonomy. The scales are given in Table I.

Severity is directly linked to the system effect of a failure mode. The scale for occurrence describes ranges for failure probabilities, but here, only the qualitative terms are used for determining the score. This means that the occurrence can be evaluated relatively rather than in absolute values, which makes the rating significantly less complex. Detection is defined as the qualitative probability that a condition monitoring scheme will detect the failure. Guidelines for selecting the scores are given in Section 4. An extension to this FMECA method is made by Tavner *et al.*²⁵ to calculate the RPN, not as a product of scores but as given by the following equation:

$RPN = 2^{Severity + Occurrence + Detection}$

Given the aforementioned modified RPN, scores appear as terms in exponents. The benefit is that failure modes with high individual scores are amplified. Also, the ratio change in RPN remains the same regardless of the change in individual scores. The modified RPN is used in this paper. To systemize the FMEA procedure, Arabian *et al.*²⁴ limit the number of both failure modes and root causes. This step is especially helpful when comparing different system designs and is further utilized in the presented design tool.

3. FLUID POWER PITCH SYSTEM

The fluid power pitch system used in this study is shown in Figure 4. The diagram is derived from knowledge of different configurations applied to wind turbines. For clarity, the diagram is divided into three. The supply circuit is located in the

stationary nacelle of the turbine and connects to the rotating hub through the main shaft and a rotary union. The rotary union is a component that allows supply and return flow to pass between the rotational movements of the hub to the stationary nacelle. The actuator and safety circuit rotate with the hub and are used for each blade; thus, three are used in total. The actuator circuit consists of two parallel pitch cylinders controlled by a proportional valve. The safety circuit consists of gas accumulators that store pressurized fluid used for actuating the pitch cylinders in the event of an emergency shutdown.

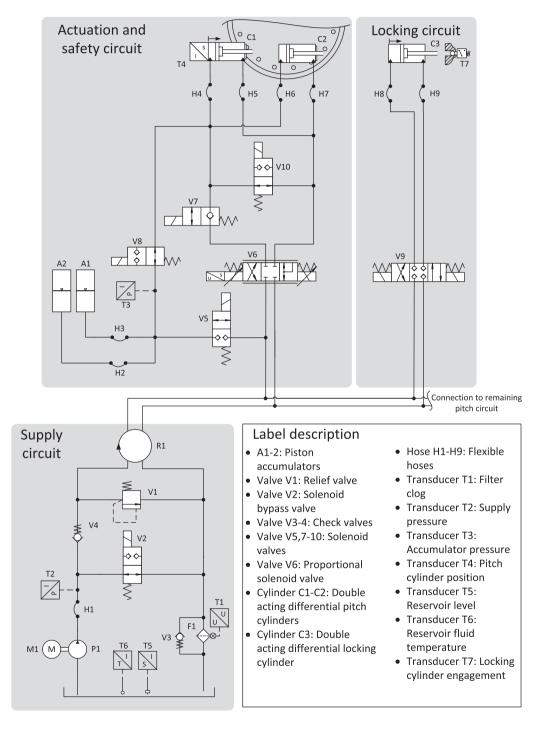


Figure 4. Generalized diagram of a fluid power pitch system. The diagram is based on knowledge from different designs used by the industry. All valves are shown in their de-energized state.

Emergency shutdown is possible even in the case of a power outage and is achieved by pitching the blades fully to 90° and using them as an aerodynamic brake.²² The locking circuit is placed parallel to the actuation and safety circuit and enables locking of the blade movement. The pitch system has four modes of operation: start-up, power regulation, emergency shutdown and normal shutdown. An explanation of each is given hereafter.

Start-up is initiated when the turbine is set to begin power production. Here, the two pitch cylinders C1 and C2 and the locking cylinder C3 are fully extended, and all valves are de-energized. All transducers (T1–T7) readings are checked to be within their specified range. The pump starts, and the bypass valve V2 is energized until T2 reads the desired supply pressure. Accumulators A1 and A2 are charged with fluid by energizing valve V5 until T3 reads the desired set pressure. Locking cylinder C3 is then retracted using valve V9, which releases for blade pitch rotation.

Power regulation is active when the turbine is producing power. Pitch cylinders C1 and C2 cause pitch rotation. The cylinders are controlled by proportional valve V6 connected to the supply unit. The pitch system controller receives a pitch angle set point depending on the wind speed. The controller sets a voltage signal to valve V6 and adjusts the desired pitch angle depending on the readings of position transducer T4. Valve V5 is de-energized, and valve V8 is energized to prevent flow from the accumulators. Valve V7 is energized to allow flow to and from the piston chamber of the cylinders C1–C2. Note that when the cylinders are extended, they are driven in the regenerative configuration, where rod side fluid is lead to the piston side. Extending the cylinder means pitching out of the wind.

Emergency shutdown is activated by de-energizing all valves and opening for supply fluid from the accumulators to both cylinders. As a result, the cylinders extend fully in the regenerative configuration. Note that the safety and actuation circuit is separated by valves V5 and V7.

Normal shutdown is activated when wind speed is too low for power production or the turbine is brought to a scheduled stop. The pitch angle set point is set to fully extend the pitch cylinders, and the function is similar to power regulation. When the pitch cylinders are fully extended, the locking cylinder is engaged by using valve V9 connected to the supply circuit. Lastly, the supply circuit is de-energized.

The pitch system is considered to fail if the intended function in any of the modes is not achieved. A special case applies for emergency shutdown. This function is safety critical and is normally designed with two out of three (2003) redundancy. It is sufficient for two out of the three blades to fully turn out of the wind for performing an emergency stop of the rotor. However, in this event, large structural loads are generated because of unbalanced aerodynamic forces. If more than two individual pitch systems fail during the emergency shutdown process, the turbine may be exposed to extremely high loads, which could result in permanent damage.

4. DEVELOPMENT OF DESIGN TOOL

The design tool takes its basis in combining FTA and FMEA. The flow chart describing the design tool is shown in Figure 5. Firstly, the system is defined using the circuit diagram with all components labeled according to Figure 4. At this point, it is important to select to what extent the analysis should be performed. An adequate level of detail is achieved using the assumptions and prerequisites listed hereafter.

Fault tree developed to failure modes of parts. The fault tree can be developed to any level of detail of a system ranging from sub-systems, components, parts to physics. The level of detail selected in this analysis reaches the component of the system.

No simultaneous faults. Only single fault events are assumed to occur at any time. The probability of two or more faults occurring simultaneously is regarded as very low in comparison with single fault events for the fluid power system. This assumption greatly reduces the fault tree structure and workload required to perform the analysis.

Initially fault free system. The system is assumed to perform according to design specification at the time it is used. No installation faults, misalignment faults or software faults are considered. This assumption reduces the number of failure modes and root causes. These types of faults may be considered later in the design phase as part of initial system installation considerations.

The failure modes and root causes considered are given in Table II and III respectively. The failure modes are grouped into five categories, which are used in the analysis of the results. Both failure modes and root causes are generated on the basis of experience with fluid power systems and the descriptions found in the work by Totten,²¹ Watton²⁶ and Hunt.²⁷

Mbari and McCandlish¹¹ suggested dividing fluid power systems into panels. Panels consist of circuits, which are not interconnected other than by the supply circuit. For the pitch system, this means dividing actuator and safety circuit from the locking circuit. The fault tree is then constructed panel by panel. During this study, it is found that a more suitable

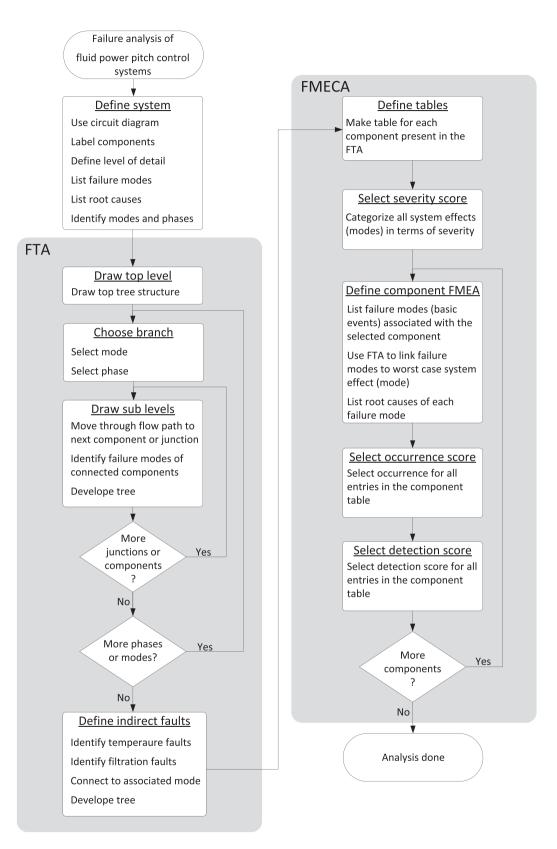


Figure 5. Flow chart describing the proposed design tool used for failure analysis of fluid power pitch systems.

Failure modes				
Internal rupture/leakage	External rupture/leakage	Seizure	Electrical faults	Other
Internal fluid rupture	External fluid rupture	Valve seized open	Electrical input malfunction	Blockage
Internal fluid leakage	External fluid leakage	Valve seized closed	Electrical output malfunction	Excessive external load
Internal gas leakage	External gas leakage	Excessive friction	Electrical intermittent malfunction	Structural integrity malfunction
			Electrical signal wire damage	
			Control unstable/malfunction	
		Root causes		
Fluid borne debris	High-pressure rupture	Excessive generated heat	Design error	Electrical overload
Errosion by air in fluid	Pressure cycle fatigue	Solenoid malfunction	Maintenance error	Seal malfunction
Corrosion by water in fluid	Fluid film breach	Spring malfunction	Loss of power	Pressure caused
				deformation
Errosion/Corrosion by high	High fluid viscosity	Unexpected environ- mental conditions	Loss of connection	Bearing malfunction
acid concentration in fluid				

Table II. Tallule modes and root causes considered in huld power pitch systems	Table II.	Failure modes and root cause	es considered in fluid	power pitch systems.
--	-----------	------------------------------	------------------------	----------------------

partitioning is carried out by analyzing the system using operational modes. The operational modes of a system are further referred to only as modes. A mode is defined as a state of operation for a system; it is regarded as either a sequence of operations or a specific function performed by the system. Fully analog to the description in Section 3, the modes of the fluid power pitch system are start-up, power regulation, emergency shutdown and normal shutdown. The introduction of operational modes greatly reduces the engineering judgment needed to construct the initial part of the fault tree. Not only does this introduce a more systematical approach for the failure analysis, it also shows to be necessary for correctly setting the severity score used subsequently in the FMECA.

Next is to identify which components are active and in which state they are set during a particular mode. Many fluid power components are multi-state components, for example, the proportional valve V6 (Figure 4). For this valve, three states are permitted: closed, open (cylinder retracting) and open (cylinder extending). A fault in each state results in different system effects. Each mode is subdivided into phases, to analyse all the effects. A phase sets all components in a defined state and allows for identification of the active flow path from supply to reservoir. As an example, consider the upper left part of the fault tree concerning the power regulation mode given in Figure 6. The phases of the power regulation mode are the *C1 and C2 not extending to set point* phase and the *C1 and C2 not retracting to set point* phases are all related to the main objective of the power regulation mode, which is to control the pitch cylinder piston to a desired set point.

After the system is defined, the top tree structure can be drawn. The top tree level consists of faults in the identified modes and phases. The structure for the pitch system is seen in Figure 6. Note that the 2003 structure of the emergency shutdown fault where a single pitch system emergency shutdown does not alone result in the top event occurring. The top level also shows filtration faults connected to the multiple emergency shutdown fault event. This is due to the severity of filter burst, which is considered in the latter part of this section.

Next the sub-levels of the fault tree are drawn by selecting a phase and developing it to the failure modes of components connected to the active flow path. These failure modes are bottom events of the fault tree and represented by circles. The procedure is best illustrated by an example considering the *C1 and C2 not retracting to set point* phase. The fault tree is seen in Figure 7. The first components considered are the pitch cylinders C1 and C2 and the position transducer T4. The basic events at this level are the failure modes directly related to the cylinder or transducer that result in the cylinders not retracting to the desired set point. The failure modes cover excessive external load, excessive friction, structural integrity malfunction and position sensor T4 malfunction. The next level is expanded by categorizing the pressure needed to perform the function as *too high* or *too low*. This approach is similar to the descriptions given by Hogan *et al.*¹³ in the design of an automated failure analysis. It is clear that too low-ring port pressure or too high piston port pressure prevents the retracting motion. These two events therefore facilitate the construction of the next level in the tree structure. The ring port chamber is connected to a junction of valves V6 and V10, and hoses H5 and H7. Failure modes that result in either of the components to cause low-ring port pressure construct this level. Further analysis is performed by following the active flow path. For the selected phase, this leads to valve V6, and the analysis continues by following the flow path through this component. This procedure is repeated until there are no more active components to follow, which is usually at the reservoir level.

The last step considers filter and temperature fault. The pitch system used in this case study is not equipped with a cooling system; thus, temperature fault is not considered. Filtration fault potentially causes the release of a large amount

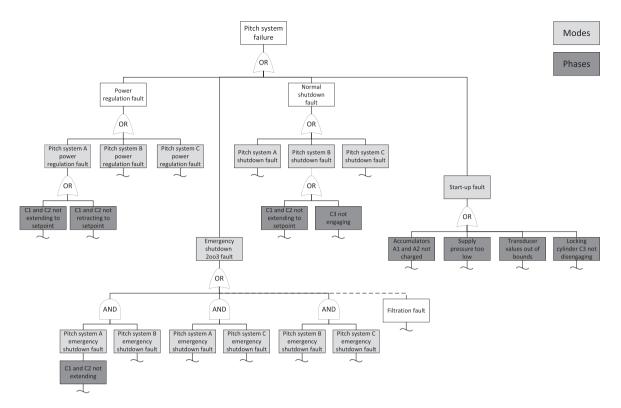


Figure 6. Fault tree top level for fluid power pitch systems.

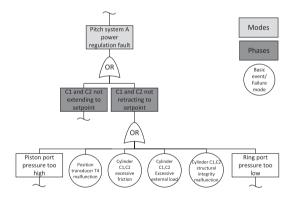


Figure 7. Fault tree example describing faults in power regulation mode.

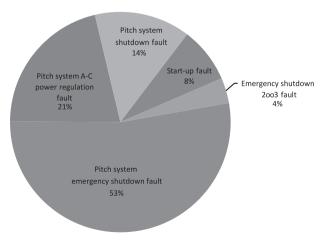
of accumulated fluid borne debris into the system. If the fluid becomes heavily contaminated with debris, it is expected that many components become affected and thus violate the no simultaneous faults assumption. Filtration fault is therefore connected to the worst case fault event, which is the multiple emergency shutdown faults. This concludes the FTA.

The FMECA requires tables for all components considered in the FTA. The next step is to categorize all modes in terms of severity. Because many of the part failure modes in the FTA will cause multiple faults, the severity score will aid in selecting the worst case scenario. The categorization is shown in Table III. Note that pitch systems for each blade are named A–C.

The component FMECA is defined by selecting a component and listing all related failure modes (bottom events) from the fault tree. By using the fault tree structure, all failure modes are linked to their corresponding system effects (mode faults). If multiple mode faults are available, the one having the highest severity score must be selected. Lastly, all root causes applicable to the failure modes will be listed.

The final two steps of the failure analysis are to select appropriate occurrence and detection scores. While Table I generally outlines the criteria for selecting the scores, it is up to engineering judgment and experience to apply them in the FMECA. However, some considerations for selecting the scores for fluid power pitch systems are given hereafter.

Occurrence is selected relatively. By assuming proper component design, failure modes caused by high-pressure rupture can be considered to be extremely unlikely (score 1). Because of the erratic loads caused by turbulence, a remote probability (score 2) of pressure cycle fatigue is regarded for components connected directly to the pitch cylinders. Pressure cycle fatigue for other components is considered to be extremely unlikely (score 1). Two state solenoid valves (poppet valves) are more robust to leakage and seizure failure modes than proportional spool valves.²¹ Therefore, leakage and seizure failure modes are regarded as extremely unlikely (score 1) and occasional (score 3) for spool valves. Fluid borne debris is one of the highest contributors to faults in fluid power systems and is regarded to have a remote probability (score 2).²⁸


Detection is related to the condition monitoring methods applied to the system. Faults, which can be identified by a fault detection scheme or measured directly by a sensor, are regarded as almost certain (score 1). An example is the detection of a seized spool in the proportional valve V6 by using the spool position sensor. The rating high (score 4) is given for faults that are measured indirectly. This could, for instance, apply to internal pump leakage causing lowered supply pressure. Low likelihood of detection (score 7) is given to external leakage faults as they are only indirectly measured by the reservoir fluid level transducer. All other failure modes are considered almost impossible to detect (score 10). It should be noted that faults in fluid power systems that are visible by inspection are also regarded as impossible to detect, because of the long time service intervals specified for wind turbines.

An overview of the total system RPN distribution is seen in Figure 8. An emergency shutdown fault in a single pitch system is seen to be the largest contributor to system RPN.

Note that while the presented design tool is developed for fluid power pitch systems, it could prove useful for fluid power systems in general. The FTA is not unique to the pitch system and is directly applicable to other fluid power systems. However, this is not the case for the FMECA, which has to be adapted. Specifically, this could be carried out by changing criteria for selecting the severity score presented in Table I. Also, the lists of root causes and failure modes in Table II may need to be updated to suit the specific system.

Table III Mode esteractization in terms of coverity for fluid power pitch evetems

	Table III. Whole categorization in terms of sevenity for huld power pitch systems.		
Scale	Description	Mode	
1	Category IV (minor)	None	
2	Category III (marginal)	Pitch system A–C power regulation fault	
3	Category II (critical)	Pitch system A–C emergency shutdown fault, normal shutdown fault, start-up fault	
4	Category I (catastrophic)	Emergency shutdown 2003 fault	

5. VERIFICATION OF DESIGN TOOL

The results are compared with the quantitative failure data reported by Carroll *et al.*, to emphasize the usefulness of the design tool developed in this paper.⁶ Here the field failure data show component and event failure rate of fluid power pitch systems of wind turbines located offshore. They are presented as percentage of the total pitch system failure rate. The reason for only selecting the occurrence score for comparison is that it bears the closest resemblance to the failure rate evident from the field data. The comparison is shown in Figure 9.

The component fault categories cover valves, accumulators, rotary union, cylinders, transducers and pipe/hose issues. All occurrence scores for the components are simply summarized, to compare occurrence in the component categories. The event failure categories are oil issues, blade not releasing and hydraulic block leakage. The oil issues cover unscheduled oil replenishment, oil change and sludge issues. Neither of these failure modes is directly evident from the lists of root causes and failure modes. However, all rupture/leakage failure modes will cause the fluid level to decrease and thus result in needed replenishment. Sludge in the fluid normally causes the filter to clog up and eventually be blocked. Filter failure modes caused by blockage is therefore included under oil issues. Hydraulic block leakage is also not directly evident from the analysis. The hydraulic block is a machined block interfacing to all valves in the actuator, safety and locking circuits. Leakage is assumed to occur in the interfacing parts of the block and valves, and occurrence for these faults is summarized and constitutes hydraulic block leakage. Lastly, the occurrence for blade not releasing is assumed to be equivalent to occurrence for the cylinder C3 not retracting. Note that the *Others* category has been omitted, and it is assumed that the inadequately documented failures are distributed uniformly to all categories. The field failure rate distribution shown in Figure 9 is therefore generally higher than depicted in Figure 2.

Recalling that the results obtained in this analysis are based on a generalized pitch configuration and qualitative reasoning, the overall tendency is well captured. Categories for valve and oil issues are highest for both field data and results from this analysis. Specifically, the field data and analysis result show very good agreement for the categories concerning the rotary union, transducers, hydraulic block leakage and blade not releasing. Here the difference between field data and occurrence is around 1% or lower.

The valves category shows the highest discrepancy between calculated occurrence and field failure rate. The largest single component contributing to valve failure occurrence is the proportional valve V6. If the failure mode occurrence for the proportional valve V6 is lowered to match the failure mode occurrence of the poppet valves, the total occurrence percentage of the valves group is lowered to 31% from original 33.5%. This change decreases the difference between field failure data and occurrence from the analysis. However, the occurrence of valve failure is still overestimated by 11.3%, and the change is regarded to have only a little effect on the total occurrence of valve failures. It is likely that the difference in valve failure rate distribution found in the field data. Here failure rates for different failure modes could have a difference that is of order of magnitude apart. Because valves are the most typical component in the pitch system, they also constitute the most occurrence failure modes. A large portion of the failure modes for valves receives a score of one, which should have been much lower. The sum of occurrence presented here is therefore greatly affected by the coarse occurrence scale used.

The relatively large discrepancy for the cylinder category may be caused by the system having two pitch cylinders and the field system only one. This also applies for the accumulators and pump.

In general, Figure 9 shows that a good agreement exists between the field data and the results from the analysis on the basis of the design tool developed here.

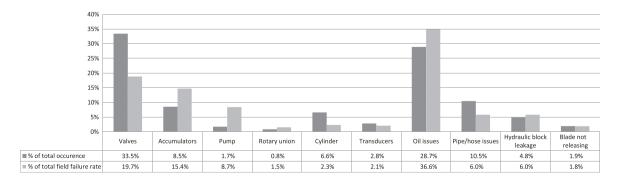


Figure 9. Comparison between calculated occurrence and field failure rate.

6. DESIGN IMPROVEMENTS

The aforementioned design tool represents the backbone for investigating design improvements of a pitch system in the early design phase. The design improvements given in this section are based on the component RPN. High-component RPN indicates the weak spots of the system in terms of risk. Because the RPN depends on severity, occurrence and detection, a lowered risk implies both an increase in safety and reliability. A Pareto chart of the top ten component RPNs is given in Figure 10. Here the components active in the event of emergency shutdown (valves V7, V8 and V10 and accumulators A1 and A2) are seen to contribute with high RPN, thus indicating weak spots of the system. High RPN follows the intuition that safety critical components imply high risk. The system RPN is therefore preferably lowered by making design changes that mitigate failure modes for these high risk components. For clarity, the failure modes for each component are divided into the categories previously described in Table II.

Four risk-based design changes are proposed in the following. The impact to total system RPN is seen in Figure 11.

Parallel redundant valve V8. Valve V8 is the most critical component of the system, which is mainly caused by the seizure failure mode. Inspection of the valve V8 failure modes reveals that the valve seized closed failure mode yields the highest RPN. This concurs with the inability to lead fluid from the accumulators to the cylinders in the event of an emergency shutdown. Inserting a parallel redundant valve V8 eliminates the valve seized closed failure mode because of the no simultaneous faults assumption. Inserting an additional valve, however, increases the number of leakage paths.

Series redundant valve V7. High RPN is associated with seizure of the valve V7. From the FMECA, it is seen to be caused by the seized open failure mode. Inserting a series redundant valve V7 eliminates this failure mode. Again, the additional valve increases the number of leakage paths in the system.

Spring return locking cylinder C3 and parallel redundant valve V9. Valve V9 implies high risk to the system because of the seized closed failure mode. If the valve is seized closed, the locking cylinder C3 cannot be operated. Inserting a parallel redundant valve V9 eliminates this failure mode. Additionally, if the locking cylinder C3 engaging motion is driven by a spring, valve V9 can be replaced by a normally open valve. Valve V9 solenoid and electrical wire malfunction is therefore eliminated. Hose H8 rupture failure mode can also be disregarded.

Accumulators A1 and A2 piston position transducer. Accumulator risk is associated with seizure, internal and external rupture and leakage failure modes. All have similar system effect and cause the inability to supply sufficient fluid to the pitch cylinders in the event of an emergency shutdown. The accumulator piston position is an indicator of either leakage or piston seizure. In introducing accumulator piston position transducers, these failure modes can therefore be detected, and the associated score can be decreased to the lowest level. The drawback of introducing a piston position transducer is an increased number of electrical failure modes.

From Figure 11, the accumulator piston position transducer is seen to be the most effective design change to lower the system RPN. Also the series redundant V7 and the altered locking circuit decrease the system risk. Parallel redundant V8 valves actually increase the system risk. This is caused by introducing new leakage paths that outweighs the advantages of eliminating the seized closed failure modes. This conclusion underlines why the proposed analysis tool is needed when evaluating design changes. Being able to comparatively evaluate design changes or even different system configurations at the design phase aids in selecting a proper architecture. Also note that the procedure enables for evaluation of system specific condition monitoring methods. Introducing condition monitoring will lower the detection score of the monitored failure mode or component.

Applying all design changes, but the redundant valve V8, to the pitch system results in a significant RPN reduction of 27.4%. The design tool therefore shows the ability to lower system risk. However, the impact of the design changes to failure rate and downtime must first be verified from field tests.

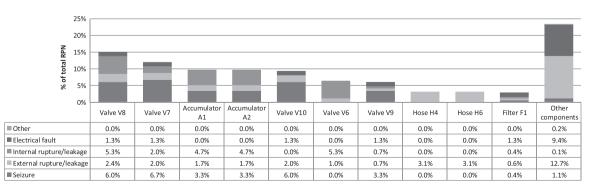


Figure 10. Component RPN Pareto chart with failure mode distribution.

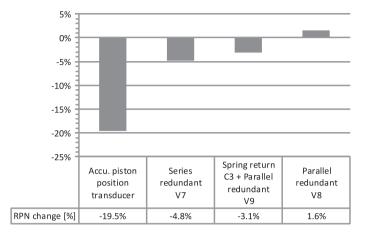


Figure 11. Change in total RPN due to design changes. Lower values are preferred.

7. CONCLUSIONS

A design tool for risk evaluation was proposed to facilitate qualitative failure analysis of fluid power pitch systems. Based on reliability field studies of multi-megawatt wind turbines, it was shown that the pitch system is a large contributor to turbine down time and failure rate. The field data also showed a large number of failures for valves and accumulators. Additionally, leakage faults where seen to be significant. However, the field data did not reveal details of the root causes for failures, and thus, the need for additional failure analysis was established. Past research was shown to focus on quantitative reliability calculation for pitch systems, and only few failure modes were previously considered. During the literature review for this work, no past papers were encountered on creating the qualitative basis. This emphasized the need for the design tool. Thus, the objective of the paper was to provide industry development with a systematic framework of known methods to aid in selecting proper system architecture in the early design phase.

The presented design tool was based on the industry standard failure analysis methods FTA and FMECA. FTA was chosen as it enables systematic discovery of relevant failure modes and shows fault propagation through the system. A procedure for performing FTA for fluid power systems was presented, which improves its usefulness when comparing different concepts. FMECA was used to construct a detailed overview of correlation between root cause, failure mode and system effect where the latter two were given by the FTA. The FMECA build upon prior research concerning wind turbine concepts and allowed risk evaluation via the RPN. Guidelines for determining RPN was adapted to pitch systems and standards were established in selecting the severity, occurrence and detection scores.

A case study of a fluid power pitch system applied to wind turbines was conducted to show usability of the design tool developed here. The results showed that valves and accumulators where high contributors to system failure. A comparison was made between occurrence score and field failure rate, to verify the design tool. The comparison showed a good agreement between the qualitative results from the design tool and the field data. Design changes were proposed on the basis of the component RPN to lower the overall systems risk. For example, inserting a piston position transducer in the accumulator to monitor leakage showed to significantly lower the system RPN. This design change did not alter the physical layout but dealt with monitoring of a critical part of the system. The presented design tool therefore allows for risk evaluation of not only physical design changes but also of condition monitoring methods.

ACKNOWLEDGEMENTS

The authors would like to thank project collaborator Hydratech Industries Wind Power for providing knowledge on fluid power systems for wind turbines and the Danish Energy Agency (EUDP) for co-funding the project (project no. 64013-0510).

REFERENCES

- 1. Global Wind Energy Council & Greenpeace International. Global wind energy outlook. *Global Wind Energy Council* 2014; **5**.
- 2. Ribrant J, Bertling L. Survey of failures in wind power systems with focus on swedish wind power plants during 1997-2005. *Power Engineering Society General Meeting*, 2007. *IEEE*, IEEE, 2007; 1–8.
- 3. NordzeeWind, Operations report 2009, Technical Report OWEZ_R_000_20101112, NordzeeWind, 2010.

- 4. Wilkinson M, Hendriks B. Reliability-focused research on optimizing wind energy system design, operation and maintenance: tools, proof of concepts, guidelines & methodologies for a new generation. *Collaborative Project: Large Scale Integrated Project, FP7-ENERGY-2007-1-RTD* 2010.
- 5. Hines VA, Ogilvie AB, Bond CR, *Continuous reliability enhancement for wind (crew) database: Wind plant reliability benchmark*, Sandia National Laboratories, 2013.
- Carroll J, McDonald A, McMillan D. Failure rate, repair time and unscheduled O&M cost analysis of offshore wind turbines. *Wind Energy* 2015:1107–1119.
- Dvorak P. Hydraulic pitch control for wind-turbine blades, 2009. http://www.windpowerengineering.com/design/ mechanical/gearboxes/hydraulic-pitch-control-for-wind-turbine-blades/ [Retrieved 07-01-2016].
- Liniger J, Pedersen HC, Soltani M. Reliable fluid power pitch systems: A review of state of the art for design and reliability evaluation of fluid power systems. ASME/BATH 2015 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers, Chicago, US, 2015; 1–10.
- 9. Yang X, Li J, Liu W, Guo P. Petri net model and reliability evaluation for wind turbine hydraulic variable pitch systems. *Energies* 2011; **4**(6):978–997.
- Han X, Zhang H, Chen Y, Zhang X, Wang C. Fault diagnosis of hydraulic variable pitch for wind turbine based on qualitative and quantitative analysis. 10th world congress on Intelligent Control and Automation (WCICA), 2012. IEEE, Beijing, China, 2012; 3181–3185.
- 11. Mbari PN, McCandlish D. Reliability and fault tree analysis in hydraulic systems. *7th International Fluid Power Symposium*, Bath, UK, 1986; 303–311.
- Atkinson RM, Montakhab MR, Pillay KDA, Woollons DJ, Hogan PA, Burrows CR, Edge KA. Automated fault analysis for hydraulic systems: Part 1: fundamentals. *Proceedings of the Institution of Mechanical Engineers, Part I: Journal* of Systems and Control Engineering 1992; 206(4):207–214.
- Hogan PA, Burrows CR, Edge KA, Atkinson RM, Montakhab MR, Woollons DJ. Automated fault analysis for hydraulic systems: Part 2: applications. *Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering* 1992; 206(4):215–224.
- 14. Hogan PA, Burrows CR, Edge KA, Atkinson RM, Montakhab MR, Woollons DJ. Automated fault tree analysis for hydraulic systems. *Journal of Dynamic Systems, Measurement, and Control* 1996-06; **118**(2):278–282.
- Bull DR, Stecki JS, Edge KA, Burrows CR. Failure modes and effects analysis of a valve-controlled hydrostatic drive. *Challenges and Solutions: Tenth Bath International Fluid Power Workshop*, 1997; 131–144.
- 16. Stecki JS, Conrad F, Oh B. Software tool for automated failure modes and effects analysis (fmea) of hydraulic systems. *Proceedings of the JFPS International Symposium on Fluid Power*, Vol. 2002, 2002; 889–894.
- Gjerstad V, Lauvas T, Grahl Madsen M. FMECA of an offshore man-riding winch. *Power Transmission and Motion* Control 2003: 183–197.
- 18. Bertsche B. Reliability in Automotive and Mechanical Engineering: Determination of Component and System Reliability. Springer Science & Business Media: Berlin, 2008.
- Stapelberg RF. Handbook of Reliability, Availability, Maintainability and Safety in Engineering Design. Springer Science & Business Media: London, 2009.
- 20. Mauri G. Integrating safety analysis techniques, supporting identification of common cause failures, *Ph.D. Thesis*, Citeseer, 2000.
- 21. Totten GE. Handbook of Hydraulic Fluid Technology. CRC Press: Boca Raton, Florida, 2011.
- 22. IEC. Wind turbines part 1: Design requirements (IEC 61400-1:2005), 2006.
- 23. Isermann R. Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance. Springer Science & Business Media: Berlin, 2006.
- 24. Arabian-Hoseynabadi H, Oraee H, Tavner PJ. Failure modes and effects analysis (FMEA) for wind turbines. International Journal of Electrical Power & Energy Systems 2010; **32**(7):817–824.
- Tavner PJ, Higgins A, Arabian H, Long H, Feng Y. Using an FMEA method to compare prospective wind turbine design reliabilities. *European Wind Energy Conference and Exhibition 2010, EWEC 2010*, Vol. 4. Department of Mechanical Engineering, Faculty of Engineering, The University of Sheffield, UK, Sheffield, UK, 2010; 2501–2537.
- Watton J. Modelling, Monitoring and Diagnostic Techniques for Fluid Power Systems. Springer Science & Business Media: London, 2007.
- 27. Hunt TM. Handbook of Wear Debris Analysis and Particle Detection in Liquids. Springer Science & Business Media: Netherlands, 1993.
- 28. Hindman J, Burton R, Schoenau G. Condition monitoring of fluid power systems: A survey, *SAE Technical Paper*, National Fluid Power Association and Society of Automotive Engineers, Inc. 2002.