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Abstract—This paper investigates the impacts of transient
instability on power system reliability. Traditionally, composite
system reliability evaluation has been performed based on steady-
state estimation of load curtailments; system dynamics have often
been ignored, mostly due to computational complexity. In this
paper, three probabilistic transient stability indices are proposed
to assess system robustness against dynamic contingencies and to
account for system instability in computing reliability indices. A
direct method is utilized for transient stability assessment based
on computing the energy margin of the system under fault events
(energy margins measure the ability of a system to withstand
contingencies). Energy margins along with the probability of
occurrences of the events are used to update the probabilistic
transient stability indices. The dependencies of reliability and
stability indices on the fault clearing time are also evaluated.
This method is applied on the reduced Western Electricity
Coordinating Council and the New England 39 bus test systems.
The results indicate the importance of considering the effect of
stability in reliability evaluation.

Index Terms—Reliability, transient stability, direct methods.

I. INTRODUCTION

MODERN power systems are increasingly being operated
close to their stability limits due to the increase in

the penetration level of renewable energy sources, market
forces, and recent advances in computation and communica-
tion technologies. In composite system reliability evaluation,
following a contingency, faulted components are assumed to
be disconnected from the grid immediately and the system is
assumed to return to a stable state with suitable generation
rescheduling for minimum load curtailments. Although the
generation rescheduling optimization problem may converge
to a feasible solution representing a steady-state operating
point, a stable transition to a post-fault Stable Equilibrium
Points (SEP) is not guaranteed. Therefore, transient stability
assessment is an important factor that should be considered
in evaluating the reliability of a given system. However,
transient stability assessment is computationally expensive and
for this reason system dynamics are often ignored in reliability
evaluation.

Power systems may evolve along any of numerous possi-
ble trajectories after occurrence of potentially destabilizing
contingencies. The computational challenge of performing
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time-domain simulation of every or even a selected set of
probable trajectories has prohibited the inclusion of transient
stability analysis in the applications that require repetitive
computations such as reliability assessment. More recently,
however, there have been theoretical developments that po-
tentially enables determination of system stability with low
computation burden. These methods are predominantly based
on direct methods, such as Lyapunov and energy function
methods. Direct methods recursively filter a set of possible
contingencies into stable, potentially unstable, and undeter-
mined sets. In other words, direct methods screening tools
selectively exclude stable contingencies and perform detailed
analyses on the undertermined and potentially unstable con-
tingencies [1]–[6]. For instance, three levels of filtering each
of which has inertial and post-inertial time frames has been
proposed in [1], [2]. The filtering process is applied along
the solution sequence toward controlling unstable equilibrium
points (controlling UEPs). Transient stability screening for on-
line applications using the Boundary of stability region based
Controlling Unstable equilibrium point method (BCU method)
has been proposed in [3]. Six classifiers are used to omit stable
and mild contingencies and pass undertermined contingencies
for further detailed analyses. Subsequently, the authors of
[3] introduced improvements to the classifiers in [4]. One
of the improvements is adding an islanding mode classifier.
A screening tool based on direct methods that utilizes a
homotopy-based approach has been proposed in [7], [8].

Time-domain simulation may be performed to evaluate po-
tentially unstable and undetermined contingencies. However,
direct methods have proved to be effective in reducing the
volume of contingencies that require detailed analysis using
time-domain simulations, and thereby made it possible to
screen and compute dynamic contingencies in real-time. Thus,
one saves significant computation time without compromising
accuracy. If the initial condition does not belong to any region
of attraction (ROA) or belongs to the ROA of an unstable
solution or belongs to the ROA of an unrealizable equilib-
rium (e.g. solution in complex domain), then time domain
simulation may be required to determine system trajectories.
However, even under such a circumstance it is noted that
the time-domain simulation can be avoided by determining
a suitable initial point. Thus, the extent to which time-domain
simulations are required may not be significant.

The effect of transient instability on power system relia-
bility has been introduced in [9]–[11]. The work presented
in [9] evaluates the effect of transient instability on power
system reliability using time-domain simulation which is time
consuming. On the other hand, the work presented in [10]
evaluates the stability of the system based on the potential
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energy boundary surface (PEBS) method. However, the accu-
racy of the PEBS method strongly relies on the choice of the
critical machine, and thus it may produce inaccurate results
[12]. Further, the work presented in [9], [10] do not consider
system robustness against fault events which is an important
factor in planning studies. The work presented in [11] is based
on determining the probabilistic fault critical clearing times
for system components which is computationally expensive
even for small systems as concluded by the authors, requires
statistical data for protection malfunctions, and does not count
for variations in system conditions. Also, stationary probabil-
ities instead of chronological representation of system events
are used which do not capture the sequence of faults if more
than one component is failed. In other words, only first order
contingencies are considered.

The work presented in this paper evaluates both the effect
of transient stability on power system reliability and the
degree of system stability using the concept of direct methods
and the controlling UEP. The proposed investigation of the
impact of transient stability on power system reliability adds
another dimension toward realistic modeling of power system
reliability evaluation. Three probabilistic transient stability
indices are introduced: (1) expected transient instability index
which provides an evaluation of the system instability, (2)
expected transient stability robustness index which measures
the ability of a system to withstand fault events, and (3) the
expected system risk of instability index which measures the
risk of a system being unstable following fault events. Also,
four reliability indices are evaluated, namely, loss of load
probability, frequency, and duration, and expected power not
supplied. The effect of the fault clearing time on the reliability
and stability indices is also evaluated. Monte Carlo next event
method is used in determining the reliability and stability
indices. The results of the effect of transient stability on power
system reliability and the robustness of power systems against
disturbances are provided.

The remainder of the paper is organized as follows. Section
II presents models of power system networks in reliability
studies and power system reliability indices. Section III de-
scribes the transient stability assessment approach using direct
methods and a homotopy-based method. Section IV introduces
the proposed transient stability indices. Section V shows the
implementation of the proposed method on two test systems.
Section VI provides concluding remarks.

II. NETWORK MODELING AND RELIABILITY ANALYSIS

This section describes modeling of power system networks
for minimum load curtailment using linear programming and
the evaluation of the reliability indices. Linear programming
has been commonly used in evaluating the reliability indices
of composite systems. The objective function is minimum
load curtailment. For every system state, if load curtailment
is unavoidable, an optimal redispatch algorithm minimizes the
amount of load to be shed.

A. Linear Programming for Minimum Load Curtailment
Optimal redispatch algorithms consider two types of con-

straints: equality and inequality constraints. The equality con-

straints represent the power balance at the system buses and
the inequality constraints represent the equipment capability
limits (generation and transmission capacities). The linear
programming formulation of the network with the DC power
flow model is given in (1) and (2) [13].

LC = min

(
Nb∑
i=1

Ci

)
. (1)

Subject to:

B̂θ +G+ C = D

G ≤ Gmax

bÂθ ≤ Fmaxf (2)

−bÂθ ≤ Fmaxr

G,C ≥ 0

θ unrestricted

where Nt is the number of lines, Nb is the number of buses,
LC is the amount of load curtailment, b is the susceptance
matrix of transmission line, B̂ is the augmented node suscep-
tance matrix, Â is the element-node incidence matrix, Gmax

is the vector of maximum available generation, C is the vector
of bus load curtailments, θ is the vector of bus voltage angles,
D is the vector of bus load, G is the solution vector of the
generation at buses, and Fmaxr and Fmaxf are the vectors of
reverse and forward flow capacities of lines, respectively.

B. Calculation of Reliability Indices

Simulation methods have been commonly implemented in
reliability evaluation of power systems. In this work, the
Monte Carlo next event method [14] is used in sampling
system states X (for both reliability and stability studies) and
evaluating the reliability and stability indices. Monte Carlo
next event is used here due to the following reasons: (a) Monte
Carlo state duration method is computationally expensive and
it requires large memory storage, and (b) Monte Carlo state
sampling method do not provide the sequence of events which
introduces a difficulty in evaluating transient stability indices.

In estimating the reliability indices, the expected values are
used to evaluate the indices. If an index is denoted by η, the
expected value of the index is calculated as follows.

η̂ = E [η] , (3)

where E [•] is the expectation operator.
1) Loss of Load Probability (LOLP) Index: The probability

of failure of the system to meet the demand is expressed by
the LOLP index and is calculated using (4).

q =

nf∑
i=1

P {xi : xi ∈ Xf} , (4)

where q denotes the LOLP index, Xf is the set of failure states
(Xf ⊂ X), X is the set of all states, xi is the system state
i, P {xi : xi ∈ Xf} is the probability of the system being in
state xi, and nf is the number of failure states.

Using Monte Carlo simulations, sampled states are eval-
uated and the failure probability index, q, is updated. In this
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regard, the estimated value of the LOLP index, q̂, is calculated
using Monte Carlo simulation as follows.

q̂ =
1

T

N∑
i=1

ϑi, (5)

where T is the sum of the durations of all sampled system
states, N is the number of samples, and ϑi can be expressed
as follows.

ϑi =

{
τi, if xi ∈ Xf

0, otherwise
(6)

where τi is the time duration of state xi.
2) Calculation of the Expected Power Not Supplied (EPNS)

Index: The EPNS index measures the expected load that will
be shed in cases of failure states. The EPNS index is calculated
using (7) where ρ denotes the EPNS index.

ρ =

nf∑
i=1

P {xi : xi ∈ Xf} × LC {xi : xi ∈ Xf} , (7)

where LC {xi : xi ∈ Xf} is the amount of load curtailment
of state xi.

Using Monte Carlo simulations, sampled states are evalu-
ated and the EPNS index, ρ, is updated based on the amount of
load curtailment. The estimated EPNS index, ρ̂, is calculated
using Monte Carlo simulation as follows.

ρ̂ =
1

T

N∑
i=1

ψi, (8)

where ψi represents the amount of curtailment and is ex-
pressed as follows.

ψi =

{
τi × LCi, if xi ∈ Xf

0, otherwise
(9)

3) Calculation of Frequency and Duration Indices: Fre-
quency and duration indices provide measures for how often
and how long a load is curtailed. It is worth mentioning
here that calculation of frequency and duration indices using
Monte Carlo state sampling method, for example, is not
a straightforward process as is for probability and energy
indices; some manipulations to the Monte Carlo state sampling
method have been introduced in [15]–[17]. However, Monte
Carlo next event method is adopted in this work due to
this reason and the reasons mentioned in section II-B. The
estimated LOLF index (φ̂) is calculated as follows.

φ̂ =
1

T

N∑
i=1

ϕi × 8760, (10)

where ϕi is a binary indicator for the transitions between
success and failure states which is expressed as follows.

ϕi =

{
1, if xi−1 ∈ Xs and xi ∈ Xf

0, otherwise
(11)

where Xs is the set of success states (i.e., Xs ⊂ X).

The expected fault duration index is defined in terms of the
LOLD index which is calculated using (12) where τ̂ is the
estimated value of the LOLD index.

τ̂ =
q̂

φ̂
. (12)

Through sampling process, success states are reevaluated
using transient stability analysis as explained in section III. If
the transition is unstable, reliability and stability indices are
updated; otherwise, it is classified as a stable transition. The
effect of transient instability is not considered in evaluating
the static reliability indices. On the other hand, the effect
of transient instability is included in the dynamic reliability
indices (as shown in section III) so that if failure of a system
component causes instability, the duration of the state is
included in the LOLP index, the amount of outage power
is included in the EPNS index, and the transition failure is
included in the LOLF index.

III. TRANSIENT STABILITY ASSESSMENT

Power system transient stability model (in the time horizon
of milliseconds) and the energy function are presented in this
section.

A. The Dynamical Model
For an n-generator system, the transient stability model of

the generators for a uniform damping with respect to the center
of inertia (COI) can be defined as follows [18].

˙̃
δi = ω̃i, (13)

˙̃ωi =
1

Mi
(Pmi − Pei)−

1

MT
PCOI − λd ω̃i, (14)

where Pei is the electrical power output of machine i, Pmi
is the mechanical input of machine i, δi and ωi are power
angle and speed of machine i respectively, Mi is the inertia
constant of machine i, and PCOI is the power associated with
the COI reference frame, δ̃i = δi − δo, ω̃i = ωi − ωo, δo =
1
MT

∑n
i=1Miδi, ωo = 1

MT

∑n
i=1Miωi, MT =

∑n
i=1Mi and

λd is the uniform damping constant.
The compact form of the system of (13) and (14) can be

presented as follows.

ẋ = g(x, t), (15)

where x is dynamic state vector of generating units and ẋ is
time-derivative of x.

The electrical power of machine i is given as follows.

Pei =
n∑
j=1

EiEj

[
Gij cos

(
δ̃i − δ̃j

)
+Bij sin

(
δ̃i − δ̃j

)]
(16)

where Bij and Gij are the susceptance and conductance
matrices of the network model and Ei is the internal voltage
magnitude of machine i.

The power of the center of inertial, PCOI , is computed as
follows.

PCOI =
n∑
i=1

Pmi −
n∑
i=1

n∑
j=1

EiEj

[
Gij cos

(
δ̃i − δ̃j

)
+Bij sin

(
δ̃i − δ̃j

)]
. (17)
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B. The Energy Function

In transient stability analysis, the energy function is used in
screening and computing the exit point (EP) which is in turn is
used to generate a sequence of steps to calculate the controlling
UEP. The energy function associated with the model of (15)
is given in (18) [19], [20]. The first term of (18) is the kinetic
energy function and the last two terms are the potential energy
function.

V =
1

2

n∑
i=1

Miω̃
2
i −

n∑
i=1

Pi

(
δ̃i − δ̃si

)
−
n−1∑
i=1

n∑
j=i+1

[
Cij

(
cos δ̃ij − cos δ̃sij

)
− Iij

]
, (18)

where
Pi = Pmi − E2

iGii,

and Iij is the absorbed energy in the transfer conductances.
The term Iij can be expressed as follows.

Iij =

δ̃i+δ̃j∫
δ̃si+δ̃

s
j

Dij cos δ̃ij d
(
δ̃i + δ̃j

)
. (19)

The integral term of (19) depends on the system trajectory
which is not known in advance. Several methods have been
suggested in the literature to approximate this term. In this
paper, the method suggested by [19] is used which can be
given as follows.

Iij = Dij

δ̃i + δ̃j − δ̃si − δ̃sj
δ̃i − δ̃j − δ̃si + δ̃sj

[
sin δ̃ij − sin δ̃sij

]
. (20)

The approximation of the path dependent term Iij usually
causes imprecise determination of the EP. However, using the
homotopy method, accurate EPs are not necessary in finding
the controlling UEPs.

C. Calculation of the Controlling UEP

Determination of the controlling UEPs is pivotal in deter-
mining the critical energy which is used to assess the stability
of the system. A state vector x is called an equilibrium point
x∗ of the dynamic system represented in (15) if ẋ = 0. One of
the unstable equilibrium points (UEP) of (15) is the controlling
UEP. However, the controlling UEP is a unique UEP such
that it is located in the direction of the post-fault trajectory.
Mathematically, a controlling UEP is a UEP with a property
that its stable manifold, W s(Xco), intersects with the EP [12],
[19], [21], [22] as shown in Fig. 1. The EP is a point at which
the sustained fault-on trajectory (δ(t), ω(t)) intersects with the
stability boundary of the post-fault SEP. Mathematically, the
EP is determined by the first local maximum value of the
potential energy (the last two terms of (18)) of the post-fault
network.

The terms used in Fig. 1 are defined as follows: MGP is
the minimum gradient point, EP is the exit point, A(Xs) is
the ROA of the post-fault SEP (Xs), Xco is a controlling
UEP, R(Xco) is the convergence region of a controlling UEP,

EP

MGP

Fault-on Trajectory

coX

)( coXR

)( co

s
XW

)( sXA¶

)( sXA

sXpre

sX

 

Fig. 1. Region of stability and the controlling UEP [21].

∂A(Xs) is the boundary of the ROA, Xpre
s is the pre-fault

SEP, and W s(Xco) is the stable manifold. The MGP is
numerically defined as the first minimum value of the norm
of the vector field of the post-fault trajectory of (15) [21].

The convergence region can be defined as follows: starting
from an initial point, an iterative numerical method finds the
desired solution if the starting point is located inside the
region of convergence of the solution, and it fails to find
the desired solution if the initial point is located outside the
region of convergence. However, the region of convergence of
a controlling UEP can be fractal and it varies, in terms of its
size and shape, according to the used numerical method [21].
Thus, if the initial point is not inside the convergence region
of the controlling UEP, iterative methods will no converge
to the relevant controlling UEP. In other words, to ensure
convergence, the initial point must be sufficiently near to the
controlling UEP.

Time-domain simulations have been commonly used in
simulating the fault-on trajectory to determine the EP and then
the MGP. The MGP is used as an initial point to generate a
sequence of solution steps toward the controlling UEP [12],
[22]–[27]. Consequently, the reliability of determining the
controlling UEP relies strongly on the quality of the calculated
MGP [22]–[24], [27], [28]. However, an inaccuracy in comput-
ing the EP could cause difficulty in determining the relevant
MGP. Also, determining an accurate EP is computationally
expensive and interpolation methods have been to used upon
locating EPs within certain ranges. Therefore, a numerical
inaccuracy in determining the EP will probably lead to failure
of iterative methods to compute the controlling UEP.

In detecting the EP, most of the available methods simulate
the fault-on trajectory using an adaptable step size until the
EP is bounded between two time points. A more accurate EP
is then detected by using numerical tools such as the golden
section and linear/quadratic interpolations. Upon discovering
a more accurate EP, the MGP is computed by simulating
the post-fault trajectory. The MGP is then used as an initial
point to calculate the controlling UEP. Thus, it is obvious that
detecting the EP and determining the MGP is computationally
involved. Also, the accuracy of finding the EP and the MGP
is a major factor in computing the controlling UEP.

In this work, a homotopy-based method is used in com-
puting the controlling UEP to overcome the requirement of
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computing the MGP. Also, the homotopy-based method does
not require accurate EPs. Homotopy-based methods are known
to be globally convergent and are reliable in finding the
solutions [29]–[32]. The homotopy-based method is explained
in following section.

D. Homotopy-Based Method

Finding the equilibrium points of (15) have been based on
iterative methods such as Newton methods. In this work, the
homotopy-based method is used to compute the controlling
UEPs of (15). The use of homotopy-based methods in com-
puting the controlling UEPs was developed by the authors in
[33]. We have found that the proposed homotopy based method
is robust, reliable, and efficient in calculating the controlling
UEP. Also, homotopy methods are not sensitive to the initial
points. Though the rigorous derivation will not be reproduced
here; the homotopy-based method is explained by means of
simple arguments to derive expressions for the probabilistic
stability indices.

Although homotopy-based methods are known to be reliable
in calculating equilibrium points, they are intrinsically slow
because these methods map the trajectory of the solution from
a known solution to the desired solution. In this paper, the
homotopy-based method is used with EPs as the initial points
to find controlling UEPs. Therefore, using approximate EPs
rather than determining accurate EPs, as is common practice
in computing the controlling UEP, and avoiding the compu-
tational burden in finding MGPs, the intrinsic low speed of
computation of homotopy-based approaches is compensated.

Homotopy is a continuation method to determine the roots
of non-linear systems such as (15). The basic concept of
the homotopy-based methods is that they determine solutions
based on path continuation. The mapping starts at a known
solution, x0, (i.e., G(x0) = 0) as shown in (21) which is the
most widely homotopy function used in the literature.

H(x, λ) = λF (x) + (1− λ)G(x) = 0, (21)

where λ is the mapping factor. The solution starts at λ = 0 and
then λ is incrementally increased along the mapping process
until λ = 1, i.e., H(x, 1) = F (x) and H(x, 0) = G(x).

In general, the function G(x) is arbitrarily chosen as long
as its solution is known. However, Newton Homotopy is the
most widely used function which is given in (22).

G(x) = F (x)− F (x0), (22)

where x0 is initial point. Thus, the homotopy function of (21)
can be expressed as follows.

H(x, λ) = F (x)− (1− λ)F (x0) = 0. (23)

In this paper, Newton homotopy is used to compute post-
fault SEPs and controlling UEPs of the tested systems by
which numerical problems in computing post-fault SEPs and
controlling UEPs are avoided. The F (x) function represents
the dynamical model of the system as given in (15) and x0 is
the EP.

It should be noted that in applying homotopy methods, the
direction of the search (forward or backward) for the solution

is a major factor in computing the correct controlling UEPs.
The direction of the search depends on the position of the EP
with regard to the controlling UEP on the stability boundary.
During the calculation process, the algorithm proceeds by
assuming forward mapping for one homotopy iteration; if the
solution diverges, the algorithm uses backward mapping.

E. Calculation of the Energy Margin
The energy margin is used to assess system transient sta-

bility for a particular contingency. Mathematically, the energy
margin (∆V ) is the difference between the transient energy
and the critical energy where both are determined from the
energy function of (18); the transient energy is the value of the
energy function at clearing time (Vc`) and the critical energy
(Vcr) is the energy at the controlling UEP. The energy margin
can be calculated using (24).

∆V = Vcr − Vc`. (24)

If the energy margin is positive (i.e., ∆V > 0), the system
is deemed stable; otherwise, the system is deemed unstable
under the designated contingency.

IV. PROBABILISTIC TRANSIENT STABILITY INDICES

To incorporate transient stability in power system reliability
evaluation, this paper proposes three probabilistic stability
indices to assess both system vulnerability and robustness
against fault events which include initial contingencies and
common mode failures. Direct methods in the form of the
energy function are used to evaluate system stability for each
contingency.

A. Expected Transient Instability Index
The expected transient instability (ETI) index provides a

measure for the probability of the system being in an unstable
state. Let α denote the ETI index which can be calculated as
follows.

α =

nu∑
i=1

P {xi−1,i : xi−1,i ∈ Xu} , (25)

where P {xi−1,i : xi−1,i ∈ Xu} is the probability of the sys-
tem being unstable while transitioning from state xi−1 to state
xi, xi is the system new state, Xu is the set of unstable
transitions (Xu ⊂ X), X is the set of all system states, and
nu is the number of unstable transitions.

A transition is considered unstable if the energy margin
(EM) is less than zero, that is EM < 0. Using Monte Carlo
next event sampling method, the estimated ETI index, α̂, is
calculated as follows.

α̂ =
1

T

N∑
i=1

γi, (26)

where γi is a duration function that can be calculated as
follows.

γi =

{
κi, if xi−1,i ∈ Xu

0, otherwise
(27)

where κi is the residence time in a contingency that results in
instability.
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B. Expected Transient Stability Robustness Index

Expected transient stability robustness (ETSR) index mea-
sures the ability of a system to withstand fault events. Let β
denote the ETSR index which can be calculated as follows.

β =

nst∑
i=1

P {xi−1,i : xi−1,i ∈ Xst}·EM {xi−1,i : xi−1,i ∈ Xst}

(28)
where P {xi−1,i : xi−1,i ∈ Xst} is the probability of the sys-
tem being stable while transitioning from state xi−1 to state
xi, Xst is the set of stable transitions (Xst ⊂ X), nst is the
number of stable transitions and EM {xi−1,i : xi−1,i ∈ Xst}
is the energy margin of a stable transition from state xi−1 to
state xi.

Using Monte Carlo next event method, the estimated ETSR
index, β̂, is calculated as follows.

β̂ =
1

T

N∑
i=1

%i, (29)

where %i is the energy margin of a stable transition (xi−1,i ∈
Xst) which can be expressed as follows.

%i =

{
EM, if xi−1,i ∈ Xst

0, otherwise
(30)

C. Expected System Risk of Instability Index

Expected system risk of instability (ESRI) index measures
the risk of a system being unstable against fault events. Let ξ
denote the ESRI index which can be calculated as follows.

ξ =

nu∑
i=1

P {xi−1,i : xi−1,i ∈ Xu}·|EM {xi−1,i : xi−1,i ∈ Xu}|

(31)
where |EM {xi−1,i : xi−1,i ∈ Xst}| is the energy margin of an
unstable transition from state xi−1 to state xi.

Using Monte Carlo next event method, the estimated ESRI
index, ξ̂, is calculated as follows.

ξ̂ =
1

T

N∑
i=1

σi, (32)

where σi is the absolute value of the energy margin of an
unstable transition (xi−1,i ∈ Xu) which can be expressed as
follows.

σi =

{
|EM| , if xi−1,i ∈ Xu

0, otherwise
(33)

D. Reliability and Stability Assessment Procedure

In performing transient stability assessment using direct
methods, numerical convergence problems may arise in cal-
culating EPs, post-fault SEPs, and controlling UEPs. If a
numerical problem is encountered, time-domain simulation
is performed. The process of evaluating the reliability and
probabilistic stability indices is shown in Fig. 2.

For every sampled state, optimal power flow is solved for
minimum load curtailment. If the sampled state is a failure
state (load curtailment is not avoidable), the reliability and
stability indices are updated. If the sampled state is a success
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Fig. 2. The flowchart of the transient stability assessment procedure.

state (no load curtailment), the state is evaluated for transient
instability. If it is unstable, reliability and stability indices are
updated; otherwise, it is classified as a success state.

V. CASE STUDIES

The reduced WECC 9 bus system and the NE 39 bus system
are used to invesitigate the impacts of transient stability on
power system reliability. The reduced WECC 9 bus system
consists of 3 generators, 6 transmission lines, 3 transformers
and 3 load buses [34]. The NE 39 bus system consists of
10 generators, 35 transmission lines, 12 transformers, and
19 load buses [35]. The reason of choosing these systems
is because they have been extensively tested from transient
stability perspective. The reliability data of the WECC system
were taken from [9]. The mean time to failure (MTTF) and
mean time to repair (MTTR) of the components of the NE
39 bus system are assumed as follows. The MTTFs of the
transmission lines are assumed 4380 hours and the MTTRs
are assumed 48 hours. The MTTFs of the transformers are
assumed 87600 hours and the MTTRs are assumed 720 hours.
The MTTFs and MTTRs data of the generators are given in
Table I.

TABLE I
GENERATION RELIABILITY DATA OF THE NE 39 BUS SYSTEM

No. Bus(es) Unit size MTTF MTTR Availability
(MW) (hour) (hour)

1 30 350 2240 60 0.97391
2 31, 36, & 37 650 1520 80 0.95000
3 34 700 1550 80 0.95092
4 32, 33, & 35 750 1280 70 0.94815
5 38 900 1100 150 0.88000
6 39 1500* 12000 200 0.98361

*: represents the aggregation of a large number of generators.

Table II and Table III show the reliability indices as cal-
culated with and without considering the effect of transient
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stability for the WECC and the NE 39 bus systems respec-
tively. These results provide a measure for static and dynamic
estimations of the ability of the system to meet the demand.
The amount of increase of these values in comparison with
the case of not considering the transient instability reflects the
contribution of dynamic instabilities.

TABLE II
STATIC AND DYNAMIC RELIABILITY ANNUALIZED INDICES OF THE

WECC SYSTEM

LOLP EPNS LOLF LOLD
MW occ./yr hour

Static 0.01575 1.42170 5.84841 23.59103
Static & dynamic 0.04092 1.93237 12.58263 28.48842

TABLE III
STATIC AND DYNAMIC RELIABILITY ANNUALIZED INDICES OF THE NE

39 BUS SYSTEM

LOLP EPNS LOLF LOLD
MW occ./yr hour

Static 0.05063 22.53193 8.55621 51.83589
Static & dynamic 0.07773 31.56984 13.29079 51.23208

From Table II, static and dynamic indices of the WECC
system, it can be seen that accounting for transient instabilities
has more effect on the probability and frequency indices than
the expected power not supplied index. The reason is that
the static EPNS index of this system is relatively high and
therefore including transient instabilities will have less effect
on this index than other indices. The static EPNS index of this
system is high because failure of a transformer, a transmission
line, or a generator causes load curtailment.

From Table III, static and dynamic indices of the NE 39 bus
system, it can be seen that accounting for transient instabilities
has even effect on the LOLP, EPNS, and LOLF indices.
There is a slight decrease in the LOLD index which can be
related to fact that the rate of increase of the LOLF index
is slightly larger than that of the LOLP index (the LOLD
index is the ratio between the LOLP index and the LOLF
index as shown in (12)). The reason is that this system has
several parallel lines and interconnections and therefore failure
of one component, except failure of the lines/transformers that
result in separating the system into several subsystems, may
not cause load curtailment.

TABLE IV
THE STABILITY INDICES OF THE WECC AND NE 39 BUS SYSTEMS

ETI ETSR ESRI
WECC 9 bus system 0.02517 0.25603 0.10411
NE 39 bus system 0.05189 0.57240 0.11699

Table IV shows the stability indices of the tested systems.
The critical clearing times of the WECC ranges from 210
ms to 330 ms. The critical clearing times of the NE 39 bus
systems ranges from 0 ms (for the faulted components that
cause islandings) to around 300 ms. The stability indices were
calculated at a fault clearing time of 230 ms for the WECC
system and 110 ms for the NE 39 bus system. The ETI
index represents the probability of contributions of transient
instabilities on load curtailments. The ETSR index represents

robustness of the system against fault events which is calcu-
lated from the energy margins of the stable contingencies. The
ESRI index represents the risk of the being unstable against
fault events which is calculated from the energy margins of
the unstable contingencies.

Systems that have high ETSR index are more robust to
transient instabilities. On the other hand, systems with high
values of ETI and ESRI indices are more vulnerable to
transient instabilities. However, values of these indices depend
strongly on the fault clearing time. In this work, the effect of
fault clearing times on the stability and reliability indices of
the NE 39 bus system is evaluated.

The amount of change in the reliability and stability indices
of the NE 39 bus system against the fault clearing times are
shown in Fig. 3 and Fig. 4 respectively. From these two figures,
as the fault clearing time increases, the values of ETI and ESRI
indices increase and the value of ETSR index decreases which
is not surprising. However, an important observation is that if
fault clearing times are less than 80 ms, the system maintains
its robustness against transient instabilities. This observation
is useful in determining the sensitivity of the system to fault
clearing times.
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Fig. 3. Profiles of the reliability indices of the NE 39 bus system as functions
of the clearing time where LOLP is the loss of load probability index, LOLF
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VI. CONCLUSION

This paper has introduced a method to assess the effect
of transient instability on power system reliability. Three
probabilistic transient stability indices were introduced to
measure the effect of transient stability on power system
reliability which are: expected transient instability, expected
transient stability robustness and the expected system risk
of instability. Transient stability direct methods were used
in assessing system stability, determining the energy margins
and updating the stability and reliability indices. Also, power
system reliability indices were evaluated for the cases consid-
ering and not considering the effect of transient instability. The
effect of fault clearing times on power system reliability and
stability indices was also evaluated. This method was applied
on the reduced WECC and the NE 39 bus systems and the
results showed that the effect of transient stability should not
be ignored when evaluating reliability of the system. Also, the
results of the stability indices can be used to measure system
robustness against disturbances and the effect of fault clearing
times on reliability and stability.
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