
Computers in Industry 96 (2018) 40–53
Harnessing business intelligence in smart grids: A case of the electricity
market

Miloš Radenkovi�ca, Jelena Luki�ca, Marijana Despotovi�c-Zraki�cb, Aleksandra Labusb,
Zorica Bogdanovi�cb,*
a Public Enterprise Elektromreža Srbije, Kneza Miloša 11, 11000 Belgrade, Serbia
b Faculty of Organizational Sciences, University of Belgrade, Jove Ili�ca 154, 11000 Belgrade, Serbia

A R T I C L E I N F O

Article history:
Received 13 April 2017
Received in revised form 16 November 2017
Accepted 9 January 2018
Available online xxx

Keywords:
Smart grid
Business intelligence
Electricity market
Data warehouse

A B S T R A C T

This paper discusses analytical aspects of smart grids and offers insights into the development of a
business intelligence solution for the electricity market. The goal is to design a system that provides an
emerging electricity market with the necessary data flows and information for forecasting, data analysis
and decision making, leading to better business results and more control over the market. By employing a
methodology specifically suited to the electricity market domain, we designed a business intelligence
solution for the Serbian electricity market operator “Elektromreža Srbije”. The research results show that
the proposed approach leads to more effective market management in data-rich smart grid
environments, while still being dynamic enough to adapt to frequent rule changes in the still
developing grids and their markets.
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1. Introduction

Throughout history, as well as in modern times, the energy
sector represented a key factor for accelerating economic growth
and achieving sustainable development. Nowadays, the energy
industry constantly needs to seek new ways to achieve higher
levels of energy efficiency in order to answer the ever-increasing
demands of consumers, businesses and governments. The key
factor in achieving optimum energy efficiency is surely the
development and adoption of smart grid technologies [1].

Smart grid technologies bring many innovations to the electric
power industry, as well as changes to market structure, business
models and services. As operators strive towards implementation
of smart grids and accompanying technologies, they are faced with
various problems concerning the ever-increasing consumer needs
[2]. In order to succeed and thrive in this constantly changing
business environment, electricity market operators must con-
stantly seek to expand their access to operational data, and more
importantly, improve their ability to convert the huge amounts of
data into intelligence relevant to the operation of the grid [3]. In
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turn, the adoption of smart grid technologies must lead to
consequent changes in companies' information systems. The
dynamic nature of the energy business would serve as the perfect
grounds for implementing analytical systems capable of meeting
these requirements [4]. Business intelligence (hereinafter: BI) and
knowledge management infrastructures have existed in business
environments for many years, and their importance is an
established fact. The necessity for such infrastructures in large
energy systems has been recognized, as well.

BI in smart grids is considered to be one of the essential
mechanisms of maximizing the “smartness” of the grid. A business
intelligence model suited for the needs of a smart grid must offer a
way to generate immediate business value from the new disparate
data sources, including modern metering and supervisory data.
The focus on the utilization of newly acquired data implies that the
grid and market operators that are still in the process of smart grid
adoption could gain the most from the implementation of a BI
solution. This provides an opportunity to influence the future
development of the metering infrastructure, allowing the grid to
evolve into an information-rich environment where any decision
could be based on actionable intelligence [5].

On the other hand, the majority of electricity markets in the
developing countries still do not operate in the smart grid
ecosystem. In order to adapt to the expected changes, it is
necessary to design the current projects in such a way that they can
be easily adapted to future smart grid expectations. Taking this into
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Table 1
Smart grid analytics taxonomy [16].

Field Applications

Operational analytics Operational effectiveness
System performance
Asset management
Load trends and forecasts

Business analytics Demand profiles
Market segmentation
Nonlinear load parameters
Demand response behavior/forecasts
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account, this research aims at proposing a bottom-up approach for
developing BI solutions that support future developments of the
deregulated electricity markets in the developing countries.
Energy markets in this new environment will need to adapt to
the newfound flexibility in energy demand, as well as to the
consumers, who will become market participants and take an
active role in energy generation [6]. Under these conditions, the
energy systems still need to remain stable, in the sense that energy
demand must be equal to its supply. Stable energy systems require
adequate management of energy supply, and to some extent, of the
demand, as well, in order to meet the optimum operational plans.
For this purpose, it is necessary to develop and use analytical and BI
applications in the markets. However, the literature does not offer
much information about methodologies and best practices for
designing BI solutions that incorporate all the specifics of rapidly
evolving energy markets.

With the idea of making a contribution to filling in this gap, the
focus of the research was placed on designing BI models capable of
supporting an emerging electricity market. The models were
specifically shaped for the electricity markets of the developing
countries, which are in the process of grid modernization and
migration to a smart grid. The developed BI model includes the
required analytical data structures, as well as a set of key
performance indicators (hereinafter: KPI) specifically suited for
the three core processes of an emerging energy market: Balance
Responsibility, Balance Mechanism and Allocation of Cross-border
Capacities. While the energy market rules may differ from one
country to another and from one market to the other, these
processes remain largely unchanged. For this reason, other
emerging markets can easily adjust the model presented here to
fit their market rules.

The proposed approach was developed and evaluated within
the Public Enterprise Elektromreža Srbije (hereinafter: PE EMS), a
Serbian transmission system and electricity market operator.

The paper includes four sections. The second section provides a
theoretical background of the business intelligence systems and
data warehousing technologies from the perspective of an energy
transmission system operator. The third section offers insights into
the project itself, the methodology used, as well as the specifics of
the conducted project. A subset of notable key performance
indicators is also presented in this section. The fourth section
analyses the achieved results for each of the distinct business
process groups that were identified. The fifth section contains the
discussion and the conclusion of the paper.

2. Theoretical background

The importance of smart grid concepts for the energy industry
is a well-established fact [7]. Smart grid is a complete information
architecture and infrastructure system that encompasses the
entirety of energy-related activities in the field of power
generation, transmission and distribution [8]. Smart grid strives
to optimize the delivery of electricity through bidirectional
communication between the grid and its users. End users in the
smart grid environment act interactively and are allowed to adapt
their energy consumption according to their needs, preferences,
environmental concerns or other characteristics [9].

The basic concept of the smart grid and its effects on the
electricity market stakeholders are outlined together with the
conceptual model described in the NIST Framework and Roadmap
for Smart Grid Interoperability Standards [10]. This model
describes communications across the smart grid and offers a
framework for the identification of actors, their interactions and
their potential capabilities. In addition, this model can offer a new
view on the potential sources of data that need to be integrated
into the BI system of electricity markets. The identified potential
data sources are:

– Electricity producers generate electricity from various forms of
energy. The use of energy production data allows for smart
generation and load balancing.

– The transmission and distribution of electricity to the customers
is achieved through transmission and distribution operators. The
use of distribution and transmission data allows for advanced
prediction, minimization of transmission losses and ultimately
the actualization of a self-healing grid.

– Residential, commercial and industrial customers are the end
users of electricity. In smart grids, they are also able to produce
and distribute energy, and are therefore able to participate in the
retail market.

– Markets manage wholesaling, retailing and trading in electricity.
They connect service providers, operators and customers, and
often act as a connection point where data from various
elements of the smart grid must be exchanged. Market data
allows for detailed market analyses, trend and pattern recog-
nitions and advanced forecasts.

– Service providers perform customer management, billing, and
installation and maintenance services. They are often the link
between the markets, operators and customers. Service provider
data enable insights into customer behavior at a higher level of
aggregation.

The use of BI systems in the energy industry has a potential
to bring new value to business models and become the leading
influence in the empowerment of the energy industry [11,12].
The use of a BI solution, coupled with a data warehouse, allows
the market operator to collect data from heterogeneous systems
and translate them into KPIs and analytical models that could
be further analyzed. For this reason, data warehouses are
commonly regarded as a basis for BI and decision-supporting
systems [13].

BI solutions based on data warehousing technology are
becoming a standard in the electricity markets. The most frequent
way these systems are used is facilitation of faster report-drafting,
as well as serving as a common integration point for data
originating from different systems [14]. While highly useful, these
conventional applications of BI technologies are not sufficient to
enable a smart grid, and for this reason, further analytical aspects
of these systems need to be considered. Many electric utilities have
decided to harness the benefits of business intelligence systems
and advanced analytics capable of supporting data-driven decision
making and planning [15]. Table 1 shows the taxonomy of smart
grid analytics based on literature data [16]. These main areas draw
their analytical capabilities both from the technical data and the
business/user-oriented data.

Analysis of the literature shows that the existing BI solutions in
the energy industry are mainly focused on the fields of data
warehouse design, forecasting and customer relationship
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management. Only few examples related to the specific application
of BI in electricity markets are found in the literature.

Siksnys et al. [17] developed a data warehouse schema for
managing the complex energy data within the Mirabel smart grid
project. Their model includes certain electricity market aspects,
such as balancing supply and demand while utilizing the flex-
offers. The developed data warehouse, while suited to some of the
goals of the market operator, is narrowly focused on data and, in
particular, on flex-offers rather than on the business processes
taking place in the energy market. This data-oriented approach
towards building a data warehouse can cause end user adoption
problems, as well as problems with reporting and analytics that are
based on the business process in its entirety, rather than the
particular subset of data which are in the focus. In addition, the
solution was designed for real-time forecasting, aggregation and
querying the data [18]. However, the authors have not considered
any market-specific KPIs, nor have they delivered a fully functional
BI system to end users.

Escobedo et al. [19] provide a comprehensive framework for BI
projects in smart grids. However, their approach is rather general,
and it does not offer specific guidelines and recommendations on
how to design smart grid specifics. Martin-Rubio et al. [20]
advocate the importance of selecting adequate KPIs within BI
solutions of smart grid companies without providing specific
examples. Additionally, Personal et al. [21] place the research focus
entirely on KPIs, claiming that combining performance indicators
capability with alerts allows a proactive performance manage-
ment.

Recent research is shifting the focus on the application of
business intelligence systems for solving particular problems in
smart grid ecosystems. The problem of forecasting is the most
obvious one, and analyzing historical trends and emerging
patterns across the organization opens up the possibilities of
making accurate predictions about possible outcomes [22].
Forecasting by using such systems is possible and allows for
prediction of various issues that could arise during different
scenarios. For example, Yang et al. [23] propose a new decision-
making algorithm for analysis of high-speed streaming data in
smart grids. Vardakas et al. [24] analyze power-demand
scheduling scenarios of residential users who possess smart
metering infrastructure, with the aim to accurately predict and
reduce the peak demand. McLoughlin et al. [25] also analyzed
the smart metering data, using data mining techniques to
cluster households based on their pattern of electricity
consumption. User behavior analysis and forecasting offer
higher reliability and quality of the delivered electricity, better
consumption management and decrease of technical and
commercial losses [26].

BI technologies that offer an in-depth analysis of the grid
functionality have the possibility to further improve these
forecasts by intelligently using the data at their disposal either
in its aggregated or in its historical form. More advanced
applications for decision making in the electricity market have
been proposed in [27,28]. Sueyoshi and Tadiparthi [27] developed a
software for analyzing the price change in the U.S. wholesale
electricity market. This software is based on artificial intelligence,
and can be used by traders for decision making. The main
disadvantage of the proposed approach for modern electricity
markets is that it is not integrated with a company's information
system, and the data set needs to be imported before analysis,
which makes it hard to use for near real-time analytics frequently
needed in electricity markets. The same applies to Sancho et al.
[28], who developed a simulation tool for analysis of electricity
markets. Another issue is that these tools were designed for market
participants, not market operators. Market operators may use
these results to gain insight into to the use of BI and advanced
analytics in the context of smart grid electricity market, but they
cannot apply the same design principles.

Rahimi and Ipakchi [29] provide an overview of electricity
market data quality and its integration with other services. They
identified connectivity and information flows within the smart
grid electricity markets and pointed out to the necessity for having
an integrated view of smart grid data.

Literature analyses show that although many authors point out
to the importance of BI and data analytics in smart grids, there are
not many results showing successful development or implemen-
tations of smart-grid-specific BI systems. There is also an
identifiable lack of results related to the design of KPIs for
electricity markets. Further, developing countries, which are in the
process of grid modernization, are struggling to find the right
guidelines and recommendations that would help them to prepare
for the expected changes.

3. Designing a business intelligence system for an electricity
market

3.1. Methodology

The first step in designing a business intelligence system for an
electricity market is selecting the appropriate methodology. The
choice of methodology needs to be guided by the specifics of the
business environment, the existing software and hardware
infrastructure and by the conditions of each electricity market,
in particular.

While designing a business intelligence system specifically
suited for the Serbian grid and its market, we have recognized that
much of the project could be implemented by using the Kimball's
methodology [30]. Kimball’s methodology for data warehouse
development is a de facto standard for any modern data warehouse
project. It is characterized by its strict bottom-up approach, where
particular attention is paid to the analysis and modeling of the
business process upon which the BI system is built. Alongside the
fairly well-structured business requirements, the methodology
sets a precedent for how data modeling is handled. In addition,
Kimball’s methodology recognizes the difficulty of making a BI
system for non-standard business processes and recommends the
iterative-incremental agile approach suitable for BI projects that
are likely to have the project requirements changed many times
during project implementation. This iterative-incremental ap-
proach was the main reason why we used this methodology as the
basis upon which we designed our own approach.

The main constraint placed upon the choice of methodology
was the need to work within the SAP ERP suite and SAP Business
Warehouse framework. This constraint is often present in
companies that employ SAP ERP suites, and as such often place
their own unique limitations upon any project. The most basic of
the constraints is the need to roughly fit in all the project activities
within the SAP ASAP roadmap (SAP, na; [49] in order for the project
to be effectively tracked and standardized with all the other
projects within the system. The use of a SAP-based BI platform (SAP
BW) offers its own development methodology that focuses on
predefined data extractors and data structures that are activated
and modified to fit the needs of the project. SAP BW methodology,
while representing a perfect example of a platform-based
methodology, falls short when encountering a problem for which
there are no standardized extractors and data structures, energy
markets being a prime example. While we were able to use the SAP
ASAP for BW methodology in its entirety on the part of the project
that pertained to building a BI for SAP-FI/CO module, we were not
able to effectively use it for the purposes of the energy market.
Additionally, SAP BW BI platform has its own constraints. Unlike
most platforms, it does not use a star schema model, but rather the
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snowflake model. For this reason, it posed some problems during
the Kimball dimensional modeling phase, which is based on the
star schema model. By using ASAP elements to complement those
of Kimball’s, we defined our own brand of dimensional modeling
that revolves around the snowflake model and is inspired both by
Kimball and ASAP. Additionally, we recognized the rather rigid
nature of the ASAP methodology in that it relies on well-defined
project requirements, and any project requirement changes during
the project are not well received. For this reason, we had to devise
an iterative/incremental approach inspired by Kimball to handle all
the requirement changes, while still being under the constraint to
fit all the increments in the ASAP phases that were required.

In addition to all the particularities of the SAP projects, the main
project phases and activities pertaining to the SAP environment
were taken from ASAP, while other activities that were closely
related to the development of a BI system are a modified version of
Kimball. This blend of ASAP and Kimball allowed us to take the best
of both worlds, the robustness and the fine detail of the Kimball's
approach coupled with the ASAP methodology suited for working
within a SAP environment. Table 2 shows the main gaps related to
Kimball's and ASAP methodology, as well as our approach in
overcoming these gaps.

A simplified iterative process developed by modifying the
Kimball's lifecycle is shown in Fig. 1. The proposed method was
developed so as to maintain the generic nature inherent to Kimball,
which is easier to understand due to its widespread use, reinforced
with elements from the ASAP methodology, which makes the
implementation within a SAP environment much quicker and
standardized. While the proposed approach is somewhat SAP-
centric, it can be used in any BI implementation, but particularly
targeting the modernizing grids and emerging energy markets.

The phases of the modified approach, as seen in Fig. 1, can be
closely related to traditional Kimball’s phases as well as to their
corresponding ASAP phases. The model contains more phases than
ASAP, as each ASAP phase is now broken down into multiple phases
for the purpose of better control, and in order to take advantage of
the agile approach. For example, the Blueprint ASAP phase, whose
result is a document detailing all project requirements and
Table 2
Existing gaps in methodologies and our approach.

Methodology Gap 

Kimball’s methodology
[30,32]

Kimball’s methodology is universal and platform-indepen
needs to be adjusted to the particularities of the platform
implementation.
Kimball uses the star schema, while a snowflake schema d
needed for the purpose of the project.

Kimball’s project management style was not appropriate f
company that has put in place its own in-house project ma
procedures. In our case, SAP ASAP, and all the phases and m
that come with it, cannot be exactly matched to each pha
activity in the Kimball’s approach.

ASAP methodology
(Yılmaz and Ozcan,
[50]; Kalaimani, [33])

ASAP is based on the waterfall model, which is sequential
iterative and non-agile.
ASAP is not suited for developing new models that are not
SAP ERP modules.

ASAP is focused around using existing structures and pre-
extractors for most of the ETL purposes.
specifics of the implementation, is in fact a sum of three phases:
Business Requirements, Dimensional Modeling and Report Design
and Analytics.

The dimensional modeling phase stands out in particular as it
bears most resemblance to Kimball’s, given that the ASAP
methodology was lacking when it came to dimensional modeling
of non-SAP-supported processes. The fine detail, which Kimball
provides for designing the dimensional models, allows us to
produce an entity-relationship model that can be easily converted
into a multi-dimensional model. This data model is closely tied to
the process it depicts, and the resulting data mart is able to meet all
the analytical needs of the selected business process. Kimball's
methodology of designing these models is helpful in overcoming
the complexity of the business model, as the energy market
processes are not widely known, and considerable amounts of
domain-specific knowledge is required in order to understand
their inner workings.

The physical design phase, as opposed to dimensional
modeling, is almost entirely ASAP based, as it is tied to the SAP
BW BI platform. ASAP’s close ties to the platform allow for a
streamlined development of Infocubes, characteristics, hierarchies
and aggregations. The master data management model designed in
the previous phase was instrumental in tying the business side of
things to the corresponding data structures in data warehouse.
After the first iteration of the physical design, a data integration
phase must take place in order to complete the ETL cycle, with the
initial load of data. Specific to the project was the diversity of data
sources that needed to be integrated. The ETL tools that were at our
disposal performed poorly in the initial iteration, and more
efficient ways of ETL needed to be found. For this purpose, we
extended the data integration phase, which was entirely ASAP
based, with Kimball’s elements that pertain to the development of
an in-house ETL application that suits the needs of the project.

What is characteristic of both the physical and dimensional
phase is that they are both actualized in an incremental/iterative
fashion, as it is almost certain that the user will, upon seeing the
initial prototype, provide the developers with a list of new
requirements and changes to the model itself. In projects of such
Our approach

dent. It
 used for

We adapted the Kimball’s approach to better suit the SAP BW BI
platform, while still keeping it as close to the original as possible.

esign was Our model, due to being platform-dependent, was restricted to a
snowflake schema design; we used ASAP guidelines, as well as
Kimball’s process-oriented approach, in order to further enhance our
dimensional modeling phase.

or any
nagement
ilestones

se and

Due to the limitations posed by the SAP ERP system, and the project
management procedures that are put in place, Kimball’s approach had
to be heavily modified to fit the standardized ASAP projects, which are
traditionally very strict and non-agile. We tried to keep the agile
approach that Kimball proposes while still maintaining the company
policy and ASAP methodology. Additionally, relying on SAP phases
allows seamless transfer of the testing system to the production
system, which in turn allows a more streamlined and quicker
deployment.

, non- By making it iterative/incremental within each phase we do still
maintain the project flow, all the while conforming to ASAP.

 based on Our model heavily relies on the development of new models. We
wanted to keep Kimball’s process-oriented modeling approach and
combine it with ASAP’s snowflake schema design.

built ASAP does not offer much in terms of ETL development that is not
standardized and working with already known data sources. For this
reason, we had to use Kimball’s approach for developing ETL
applications, while still keeping a fair part of the ETL process on the
OLAP side where ASAP could be used.



Fig. 1. Model for developing a business intelligence system for an electricity market.
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complexity, it is often the case that understanding of business
processes on the part of the designers is not sufficient in order to
provide a comprehensive data mart that can meet all the users'
analytical requirements. Therefore, it is critical to push for the first
iteration in order to diminish the risk incurred when the project
moves forward with its later stages. The final phases – “Final
preparations” and “Go Live & Support” –are usually specific for
each enterprise, as each company has its own policies regarding
final testing, user training and usual preproduction and postpro-
duction phases. In our case, these stages were provided by ASAP,
and the standardized manner in which they are conducted has
proven to be helpful for making sure that everything is in working
order and that all the required steps were completed before the
system was brought into its production state.

Additionally, we recognized that BI projects consist of the
following critical phases that must be treated with utmost
attention, whereby each of them presents its own unique
challenges that must be overcome for the project to succeed:
Planning and project preparation, Business requirements,
Dimensional modeling and data integration, Report design and
analytics. Each of these four phases are described in more detail in
the following text.

3.2. Planning and project preparation

While compiling project requirements, we noticed that the
information systems of utilities have a tendency towards making
point-to-point solutions that create separate data silos. However,
in the smart grid era, a unified approach is needed. This unified
approach needs to be flexible and able to transform strategic
initiatives into action-driven operations quickly. The challenges of
establishing this unifying data infrastructure reside in the
collection of data from disparate sources that originated from
different organizations and from different platforms. The imple-
mented BI system needs to provide capability for information
integration across the applications such as DAMAS, SRAAMD,
SCADA, and other systems originating both in the transmission and
the distribution layers of the smart grid. Alongside tackling the
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problem of data integration of existing and increasingly complex
applications, there is an ever-present problem of integrating the
unstructured and semi-structured forms of data from other
sources. These sources are usually other organizations operating
inside the electricity supply chain, or the market department itself
in the form of generated spreadsheets, XML files and various other
formats.

Having this in mind, the main objective of the project was to
supply the users with information, advanced reports and analyses
relevant to the following business processes within the electricity
market: balance responsibility, balance mechanism and alloca-
tions of cross-border capacities. Accordingly, the architecture of
the BI system was designed (Fig. 2) to enable data integration and
consolidation required for the functioning of the market processes
in the Serbian electricity market.

The integrated data can be used by analytical and reporting
applications to provide new interpretations of data. The design of
the framework is constructed in such a way that it aims to increase
performance and reliability of current market processes by
focusing on each of the processes separately, before moving on
to integrating and aggregating them further for the purpose of
reporting and analysis. Additionally, the added benefit of process-
focused design is the ease of use by those who are intimately
familiar with the market data, allowing the market engineers to
create their customized ad-hoc analytics in a self-service model.

3.3. Business requirements

Business requirement definition phase included the mandatory
interviews with end users, where the majority of functional and
non-functional requirements was identified. The focus was on the
improvement of the processes taking place in the Electricity
Market Division of the enterprise. The process groups chosen for
this purpose were asked to provide an in-depth perspective on the
market functionalities. KPIs were defined based on the best
Fig. 2. Business intelligence framew
transmission system operator practices and company policies [34].
They strive to cover the full scope of the core activities and offer
further insights into market behavior and cross-border capacity.
Based on the requirements of the Electricity Market Division, the
data were translated into measurable indicators, each having its
own unit and formula. Before the implementation, over 40 existing
KPIs were identified in various applications and platforms, often
encompassing different subsets of data, and rarely portraying the
full picture due to their inability to acquire and integrate data from
different platforms and applications. As a part of the business
requirement phase, the users defined the KPIs they wanted to be
tracked through the BI system. For the purpose of this paper, a
subset of the KPIs is provided, as shown in Table 3.

3.4. Dimensional modeling and data integration

Designing the data model for an energy market has proven to be
a daunting task. The processes involved are of high complexity and
are not subject to most commonly used “good practices” since each
energy market does business under different market rules, which
can be highly volatile, particularly in the case of developing
markets. In addition, vast amounts of data originating from the
metering and monitoring infrastructures need to be integrated.
This is a difficult task because data needed for adequate electricity
market analysis are located in a multitude of different internal or
external systems owned and operated by different organizations.
In order to cope with this, the developed solution had to be
equipped with advanced information management capabilities
suited for managing data collection, data modeling, information
analysis and data integration [36]. In order to meet these
requirements, an original dimensional model fully capable of
supporting the current and future market rules of the Serbian
market needed to be developed.

The data model designed for these purposes was modeled with
the SAP Business Warehouse (SAP BW) platform. In order to store
ork for the electricity market.



Table 3
Representative subset of indicators for monitoring the electricity market [35].

Indicator/Definition Unit Calculation

BALANCE RESPONSIBILITY
Total nominated balancing group position (UPP) MWh UPP ¼ ð

X
BRPBOS;oi �

X
BRIBOS;oiÞ þ ð

X
EUBOS;oi �

X
EIBOS;oiÞ

where:
BRP - accepted block of internal exchange of electrical energy which one balancing group takes over from
the other balancing group; BRI - accepted block of internal exchange of electrical energy which one
balancing group delivers to another balancing group; EU - accepted block of cross-border electricity
exchange which a balancing group takes over from the other market area; EI - accepted block of cross-
border exchange of electricity which a balancing group delivers to another market area; BOS- index
designating BRP in charge of the respective balancing group; oi - index designating accounting interval.

Total metered balancing group position (UOP) MWh UOP ¼ ð
X

UPRBOS;oi �
X

UPOBOS;oiÞ
where:
UPR - total delivered electricity to the places of handover; UPO - total taken electricity in places of handover;
BOS- index designating a BRP responsible for the respective balancing group; oi - index designating
accounting interval.

Imbalance settlement price (ISP) EUR Settlement price can be a maximum of 1.5 times greater than the maximum price for the engaged balancing
energy in regulation upward in the respective accounting interval.

Balancing group deviation(OBOS) MWh OBOSBOS;oi ¼ UPPBOS;oi þ UOPBOS;oi � BENBOS;oi
BENBOS;oi ¼ ½BESBOS;oi þ BETBOS;oi þ BETSBOS;oi�

where:

UPP - total nominated balancing group position; UOP - total metered balancing group position; BEN - total
engaged balancing energy of the balancing group; BET - balancing energy as a result of tertiary regulation
engagement for system balancing; BES - balancing energy as a result of secondary regulation engagement;
BETS - balancing energy as a result of tertiary regulation engagement for ensuring secure power system
operation; BOS - index designating BRP in charge of the respective balancing group; oi - index designating
accounting interval.

Acceptable Imbalance of the Balance Group (POB) Value of acceptable imbalance of the balancing group (POB) is determined for each day and is equal to:

MAX (1 MWh; 3% of maximum scheduled hourly
consumption from the balancing group’s daily
schedule)

In the event that the balancing group is associated
with at least one Withdrawal/Injection point
(hereinafter: WIP point), the respective BRP assumes
the role of Consumption Responsible Party and does
not have the role of Production Responsible Party.

MAX (1 MWh; 1,5% of maximum scheduled hourly
production from the balancing group’s daily
schedule)

In the event that the balancing group is associated
with at least one WIP point and that BRP assumes the
role of Production Responsible Party and does not
have the role of the consumption Responsible Party.

MAX (1 MWh; 1 MWh and summarized value of 3%
of Maximum scheduled hourly consumption and
1.5% Maximum scheduled hourly production from
the balancing group’s daily schedule)

In the event that BRP assumes the role of
Consumption Responsible Party and the role of
Production Responsible Party.

0 MWh In the event that BRP assumes role of Trade
Responsible Party.

Risk value (R) R = max (P1, P2, P3)� D� C

where:

R - risk value; P1 - average value of the balancing group’s daily consumption of electrical energy during the
preceding twelve-months period; P2 - average value of the balancing group’s daily generation of electrical
energy during the preceding twelve-months period; P3 - average value of daily notified blocks of internal
and cross-border balancing group’s electrical energy exchange in the direction of the receipt, during the
preceding twelve-months period.

D - number of days (D=3)

C - estimated prices (mean value of peak product on EPEXSPOT Germany from 1st October in Year Y-2 till
30th September in Year Y-1)

BALANCE MECHANISM
Total balancing energy engaged in the power
system in the secondary regulation (BESsystem,oi)

MWh BESsystem;oi

X
ðSRGbe;oi � SRDbe;oiÞ

where:
BESsystem - total balancing energy in the transmission system as a result of a deployed secondary regulation;
SRG - balancing energy as a result of engagement of the secondary regulation upward; SRD - balancing
energy as a result of engagement of the secondary regulation downward; be - index designating balancing
entity; oi - index designating accounting interval; system - index designating electric power system.

Total engaged balancing energy in the power
system in the tertiary regulation (BETsystem,oi)

MWh BETsystem;oi

X
ðTRGbe;oi � TRDbe;oiÞ þ

X
BEUu

where:
BETsystem - total balancing energy in the transmission system as a result of engagement of the tertiary
regulation for the purposes of system balancing; TRG - balancing energy as a result of engagement of the
tertiary regulation upward for the purposes of system balancing; TRD - balancing energy as a result of
engagement of the regulation downward for the purposes of system balancing; BEU - balancing energy as a
result of activation of contractual operating reserve by issuing orders for the purchase of energy; be - index
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Table 3 (Continued)

Indicator/Definition Unit Calculation

designating balancing entity; oi - index designating accounting interval; u - index designating contract on
provision of ancillary services between transmission system operator and supplier, a contract regulating the
sale of emergency energy between transmission system operators and a contract regulating the joint usage
of balancing reserve in a regulation block; system - index designating electric power system.

Total quantity of engaged balancing energy in the
power system in the tertiary regulation, required
for ensuring secure operation of the power
system (BETSsystem,oi)

MWh BETSsystem;oi

X
ðTRGSbe;oi � TRDSbe;oiÞ

where:
BETSsystem - total balancing energy in the transmission system as a result of engagement of the tertiary
regulation required for ensuring secure power system operation; TRGS - balancing energy as a result of
engagement of the tertiary regulation upward required for ensuring secure power system operation; TRDS -
balancing energy as a result of engagement of the tertiary regulation downward required for ensuring
secure power system operation; be - index designating balancing entity; oi - index designating accounting
interval; system - index designating electric power system.

ALLOCATION OF CROSS-BORDER CAPACITIES
Available Transfer Capacity (ATC) MW joint: ATC ¼ NTC � AAC

split: ATC ¼ 0:5 � NTC � AAC
NTC ¼ TTC � TRM

where:

NTC - Net Transfer Capacity

AAC - Already Allocated Capacity

TTC - Total Transfer Capacity

TRM - Transmission Reliability Margin

Congestion scale: total demanded/total allocated
capacit

– If the total required capacity exceeds ATC, then Yes, otherwise No

No. of participants in auctions – Number of participants who submitted auction bids for the respective auction

Auction Price (marginal price) EUR/
MWh

The price of the last accepted auction bid during one auction
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the information inside SAP BW, adequate data structures capable of
holding the market data needed to be defined. The difficulty
concerning SAP BW data objects is the fact that they are not
particularly similar to the objects found in any data warehousing
paradigm, and function in a somewhat different manner than
those found in conventional BI solutions. The choice of platform
might seem odd considering its particularities, but if one considers
the utility industry and the high likelihood of the market operator
possessing the SAP ERP software suite, then this choice holds far
more merit than a design of a generalized solution that relies on no
platform in particular.

For the purpose of this paper, only the objects from the highest
layer are discussed: infocubes, which are an extended star schema,
and multi-providers, which are subsets of data from multiple
infocubes.

For reporting and data access purposes, the end users can access
either one of these two types of objects. Infocubes were created in a
way that closely follows Kimball's approach [30], where each “data
mart” is focused on the individual process or sub-process. Each of
the designed cubes contains a minimum of 10 dimensions with
their respective attributes, and as such are difficult to present in a
detailed manner. The infocubes which are essential for the purpose
of reporting and analysis of the electricity market are presented in
Fig. 3. Each of the presented cubes, coupled with other utility
cubes, can be grouped into multi-providers, which allows for a
more detailed analysis that can span multiple business processes
and is often required for a more detailed insight into the causes of
market behaviors.

Designing a data warehouse and business intelligence system
was performed iteratively by using the methods proposed in
[30,37]. During each iteration, new subject areas were loaded into
the warehouse and incrementally improved until they conformed
to the user requirements and data quality standards. The main
data model elements were identified by interviewing key users
and by analyzing the source system database schemas. The
developed data warehouse was designed with the extended star
schema [38].

Internal sources of data used were operational databases that
employed by different information systems, such as the system for
auctioning cross-border transfer capacities – DAMAS, and the
system for remote acquisition and accounting of metering data –

SRAAMD. External data sources include data from generators,
consumers, market participants, electricity traders, other trans-
mission system operators and distribution systems operating in
the territory of the Republic of Serbia. By encompassing all of the
internal and the external data sources, we aimed at developing a
system that could offer actionable intelligence across the entire
electricity supply chain, necessary for the effective coordination of
energy-related business activities [39,40].

3.5. Report design and analytics

In the previous phases, BI models were defined and imple-
mented for each of the selected processes (balance responsibility,
balance mechanism, auctions of cross-border capacity). These
models allow for intuitive drilling up and down through data, as
well as quick and easy aggregation and calculation that spans
across multiple processes. Some of the standardized analyses
within the developed system are provided in Table 4.

In addition to the required reporting capabilities and the
calculations of the defined KPIs, one of the most important results
of the implemented BI system is the ease with which the users can
access the data. Users are able to make their own reports based on
the data.

The reports are presented to end users in a highly visualized
manner, such as dashboards. The created dashboards are used for



Fig. 3. Data marts containing the key infocubes.
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measuring the performance in the related fields, analyzing reasons
behind gaps and descriptions of the possible corrective and
preventive actions.

4. Analysis of the results

4.1. Context

The proposed business intelligence system for the electricity
market was developed and evaluated within the Public Enterprise
Elektromreža Srbije (PE EMS), a Serbian transmission system and
electricity market operator. As the Serbian electricity market is
constantly evolving and adapting to the modern smart grid
principles, the market rules are constantly changing and the
developed BI solution must reflect this fact by being dynamic
enough to accommodate the data and rules regarding it. In order to
explain the effects on the current business processes taking place
in the market department of PE EMS, a short overview of the state
of the Serbian market was provided, as well as a description of
some of the specifics of the market and its processes.

Since the beginning of 2013, all customers connected to the
electricity transmission system have been obliged to purchase
electricity in the open retail market [26]. As of 01.01.2014, the
market is open to the customers whose facilities are connected to
the medium and low voltage distribution networks, allowing
households and small consumers to become market participants.
This opening of the retail market goes hand in hand with the
increase in regional and European initiatives for a unified
Balancing energy market, as well as a common intraday energy
market. As of 2016, the first organized Serbian energy exchange
(SEEPEX) was opened, which further increased the share of energy
that was traded under market conditions.

These market innovations are a major step towards supplying
most, if not all of the energy through the energy market. The
proposed BI solution aims to accommodate for this transition by
allowing for more insight into the wealth of information that is at
the operator’s disposal.

While unable to show detailed reports due to data confidenti-
ality and the ongoing process of developing a better KPI front-end
platform, we are restricted to revealing only the reports in their
most aggregated state.

4.2. Balance responsibility analysis

In accordance with the Calendar of Invoice and Payment in the
electricity market and pursuant to the Electricity Market Rules, PE
EMS is obliged to perform the calculation of the monthly fee for
deviation of the balancing group in the accounting period and to
submit it to the BRP. The balance responsibility of the participants
in the electricity market for each accounting interval means the
obligation to undertake financial responsibility towards the
transmission system operator for all deviations caused by



Table 4
List of notable implemented analyses [41].

BALANCE RESPONSIBILITY
– Calculation and analysis of the imbalance settlement price for specified accounting intervals;
– Calculation of weighted price and average imbalance settlement price;
– Analysis of the reported positions of balance responsible parties (registered internal and external transactions, reported production and consumption);
– Analysis of the metered data (production, consumption) of balance responsible parties per time accounting intervals, BRP, System Operator;
– Review and analysis of the of WIP points specified accounting intervals, BRP, System Operator;
– Calculation and analysis of the risk value for every BRP participating in the Serbian Market;
– Review of the composition of the balancing group (the number of WIP points, approved power, nominal power);
– Calculation of the Balance Responsible Party Imbalance Settlement;
– Calculation and analysis of acceptable Imbalance per BRP in combination with the calculated financial fee for BRP Imbalance.

BALANCE MECHANISM (BM)
– A trend analysis of bids submitted by BM participants in the Serbian Balancing Energy Market;
– The analysis of engagement of balancing energy per;
– type of regulation (tertiary, secondary);
– accounting interval level;
– BM participants;
– Balancing entity.

ALLOCATION OF CROSS-BORDER CAPACITIES
– A trend analysis of the value of cross-border transmission capacity available in the market for various accounting periods, as well as in all or some borders;
– An analysis of ratio between the required and allocated capacity which might be observed from different time perspectives or the viewpoint of different borders, as well

as of all participants in the auctions;
– A trend analysis of achieved prices at auctions per borders (directions);
– Overview of registered auction participants and their capacities;
– Review and analysis of cumulative revenue at auction per auction type, direction, time horizon;
– Congestion management.
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unbalanced daily schedule after closing the intraday nomination
process. Based on the calculation of the monthly fee, in case of a
positive imbalance of the balance group, PE EMS will pay to the
BRP, otherwise, BRP has to pay to the PE EMS [42].

- In order to facilitate Balance Responsibility, the following data
are used for calculating the accumulated imbalance of the
responsible parties:
Fig. 4. Settlement 
- Internal exchange (withdrawn and injected energy separately).
- Cross-border exchange (withdrawn and injected energy sepa-
rately).

- Activated secondary/tertiary regulation upward (from BM
participants belonging to a specific BRP).

- Activated secondary/tertiary regulation downward (from BM
participants belonging to a specific BRP).
price analysis.
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- Total injected electrical energy at the WIPs into the transmission
and distribution system (grid).

- Total withdrawn electrical energy at the WIPs from the
transmission and distribution system (grid).

- Total metered balancing group position.
- Total nominated balancing group position.
- Schedule imbalance.

The dynamically calculated BRP imbalance allows for a more
controllable system imbalance and an easier identification of
frequent balancing group deviations, as well as the hourly
imbalance patterns. The implemented model supports data
mining, specifically clustering of the BRPs according to their
imbalance.

The settlement price calculation uses regulation prices provid-
ed by the balance mechanism system for tertiary and secondary
regulation in order to calculate the Imbalance settlement price.
Currently, the settlement price is calculated on an hourly basis, but
the system allows for an easy transition to 15 min and 30 min time
frames.

Fig. 4 illustrates the dashboard, which presents the calculated
Imbalance settlement prices on an hourly basis. The BI system
calculates these prices with the fine-grained data at its disposal,
according to the business rules of PE EMS. The formula used for
calculation is in full compliance with the Serbian Energy Law and
Market Code. The calculated prices are then compared with the
system-calculated prices for a different control level. Furthermore,
advanced price analysis and trend analysis is possible. By analyzing
the settlement price and drilling up and down the provided cube,
the user can easily differentiate between the periods of the day and
make comparisons between them, as well as identify anomalies
and suspicious market participant behavior. Additionally, by
employing the highest granularity, it is possible to analyze each
participant in the market and their impact on the settlement price
in order to get a better profile for each of the market participants
and the patterns of their behavior. Fig. 4 shows a simplified report
for settlement price analysis for each of the periods of day.

BI applications leverage the smart meter data collected in order
to enable load forecasting for trading and demand-planning
activities. The vast amounts of historical data on the previous
forecasts, as well as the fine-grained nominated consumption and
exchange of the BRPs allow for an in-depth analysis of the patterns
Fig. 5. System loa
of actualized load and the identification of frequent errors that
have occurred for the day-ahead forecasts.

Fig. 5 provides an overview of the system load and the
forecasted values for each hour in the selected day. The report
shown in this figure can be used for historical analysis and drilling
down towards each generator and smart meter in order to provide
information as to the historical behavior on a more granulated
level.

4.3. Balance mechanism analysis

PE EMS is responsible for the organization and administration
of the balancing electricity market and for keeping the entire grid
in balance. In order to provide secure power system operation, the
implemented BI system is tightly integrated with the Balancing
Market and provides new insights into buying and selling
balancing energy by the electricity producers. BI system
aggregates and calculates financial fees for activations of the
balancing energy, including prices from activated offers and
prices for secondary regulation, allowing a far more detailed view
than the one enabled by the previous implementation of the
business process.

Fig. 6 illustrates a highly aggregated view of the utilized
balancing energy for secondary and tertiary regulation on an
hourly basis. While this figure hardly shows analytical information,
the underlying model allows for drilling down to the individual
balancing offer and generator that has been activated. It can be
used for an in-depth analysis of contingencies and their financial
outcomes. In addition, by virtue of having an integrated solution,
each of the contingencies could be linked to certain market
behaviors in the balance responsibility process.

4.4. Allocation of cross-border capacities

PE EMS performs the allocation procedure for the rights to use
cross-border transfer capacities on a yearly, monthly, weekly, daily
and intraday basis. In order to harmonize its operation with the
operators of the neighboring transmission systems, PE EMS
determines the values of cross-border transfer capacities. The
cross-border transfer capacity on the interconnections is allocated
by the auction operator of the neighboring transmission system,
according to the current agreements with the operators in the
d forecasting.



Fig. 6. Utilization of balancing energy.
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neighboring countries and Auction Rules in the form of commercial
transfer rights [43].

PE EMS is responsible for calculation, allocation and use of
cross-border transmission capacities on all borders of the control
area of the Republic of Serbia. For example, on the Serbian-
Hungarian border, the Hungarian transmission system operator
Transelectrica organized long-term (annual and monthly) and
intraday (first come-first served) auctions for the allocation of
100% of the available capacity, while PE EMS allocated the available
capacity on a daily level. The developed solution is able to use the
auction system of the neighboring transmission system operators
as a data source and offer an analysis of their auctions, alongside
the ones organized by PE EMS.

There is a general concern on the part of market participants for
reaching the correct business decisions when the operating
schedule of the transmission line or the contribution to the
Fig. 7. Daily Auctions ATC and Results for M
Available Transmission Capacity (ATC) is concerned. The developed
dashboards can be used for analyzing the allocation of transmis-
sion capacities at the borders in the control areas of PE EMS, as well
as for monitoring behavior of the participants in the market, as one
of many different scenarios. General data on auctions may vary
depending on the neighboring country, the period and many more
variables. With this data, dashboards are readily available to
engineers for cross-border analysis in order to monitor the flow of
energy along the grid, take actions and set goals for the upcoming
years in order to achieve performance improvements, and
therefore to increase the overall efficiency of the allocation
process.

Fig. 7 illustrates general data on joint daily auctions for the
allocation of 100% of available cross-border transmission capacities
on the Serbian-Romanian border for May 1st, 2015. The report
shows the aggregated data for each cross-border transmission and
ay 1st on the Serbian-Romanian border.
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it allows the user to use the data from the process of balance
responsibility in order to see in advance what the cross-border
traders are planning and how they diverge from their plans. This
integration between these two processes, which were previously
separate, allows for a detailed analysis of each of the traders, and
could be used to identify any suspicious bidding behavior.

5. Discussion and conclusions

The future of the energy industry is synonymous with smart
grid technologies and their applications, with the end goal being
the construction of a platform suited for new business models, the
so-called “Energy Internet” [44,45]. For this to become a reality, the
electricity companies will have to modernize and accept new
paradigms if they wish to become adaptive to end users' needs and
operate in competitive and deregulated markets [46,47].

Various reports have shown that the existing information
systems are struggling to meet the current needs of participants in
the energy industry. The challenge of improving operational and
managerial capacity implies the need for an integrated business
intelligence platform designed for KPI management, analysis and
forecasts. Business intelligence can be effectively used to integrate
large data volumes and support a variety of difficult and
challenging energy market issues, such as prediction, load
optimization, pattern recognition and others. In this complex
scenario, selecting a BI approach is an important decision, and this
paper offers one such approach that has proven to be adequate for
the Serbian market.

The main contribution of the paper is the approach to designing
a BI system that provides the emerging electricity market with the
necessary data flows and information for forecasting, data analysis
and decision making. As such, this approach may be adequate for
countries whose electricity market is in the process of develop-
ment.

The diversity between energy markets and their ever-changing
market rules, coupled with the fact that there are not as many
markets in the world, particularly those that are in the process of
being formed, leaves the developer of a BI solution with little or no
information related to standardized ways of implementation or
“best practices”. This poses a difficulty in finding individuals
qualified for designing a BI solution for an energy market, whereby
any domain-specific knowledge is precious.

Due to these reasons, the practical contribution of the paper is
reflected in the insights it offers into the development of a BI model
and architecture required for an emerging electricity market, with
three key data marts: “Balance Responsibility”, “Balance Mecha-
nism” and “Allocation of Cross-border Capacities”. These three data
marts are the backbone of any energy market, and their
understanding is a key factor in the success of any undertaken
BI project. Understanding these models based around business
processes and use of appropriate methodology allows any market
operator to use the proposed approach for the development of a BI
system adjusted to its specific market needs.

Finally, the authors acknowledge certain drawbacks of the
presented research. Larger volumes of data from the electricity
market are necessary to achieve higher quality of information.
Although the Serbian electricity market is difficult to analyze
because it is still developing and experiencing yearly changes in
the form of new business rules, we have tried to fill this gap by
offering a highly detailed model that supports the market
operations and facilitates its growth.

The future course of this research will take several directions.
First and foremost, a detailed analysis of the project results shall be
conducted. This will serve to modify the approach accordingly in
order to make it more flexible, responsive and agile for further
extensions of the system. As more advanced metering and sensor
technologies are used, the amount of generated data will exceed
the current capabilities of the system, which will require devising
more efficient methods for storing and managing the data.
Furthermore, there are plans to incorporate more business
processes that are taking place in PE EMS in order to construct
a more unified and centralized data repository that can truly
leverage the wealth of information provided by the new smart grid
technologies. Finally, new research will focus on real-time BI and
big data analytics and its application in the energy markets [48].
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