
1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2017.2767044, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT 1

Workload Management in Database
Management Systems: A Taxonomy

Mingyi Zhang, Patrick Martin, Wendy Powley, Jianjun Chen

Abstract—Workload management is the discipline of effectively monitoring, managing and controlling work flow across

computing systems. In particular, workload management in database management systems (DBMSs) is the process or act of

monitoring and controlling work (i.e., requests) executing on a database system in order to make efficient use of system

resources in addition to achieving any performance objectives assigned to that work. In the past decade, workload management

studies and practice have made considerable progress in both academia and industry. New techniques have been proposed by

researchers, and new features of workload management facilities have been implemented in most commercial database

products. In this paper, we provide a systematic study of workload management in today’s DBMSs by developing a taxonomy of

workload management techniques. We apply the taxonomy to evaluate and classify existing workload management techniques

implemented in the commercial databases and available in the recent research literature. We also introduce the underlying

principles of today’s workload management technology for DBMSs, discuss open problems and outline some research

opportunities in this research area.

Index Terms—Taxonomy, Workload Management, Database Management Systems

—————————— ——————————

1 INTRODUCTION

database workload is a set of requests that have some
common characteristics such as application, source of

request, type of query, business priority, and/or perfor-
mance objectives [72]. For both strategic and financial
reasons, some business organizations are consolidating
multiple individual database servers onto a shared data-
base server to serve as the single source of corporate data
[3] [9]. This trend of database server consolidation means
that multiple types of workloads are simultaneously
present on a single database server. These workloads may
include on-line transaction processing (OLTP), which
consists of short and efficient transactions that may re-
quire only milliseconds of CPU time and very small
amounts of disk I/O to complete, as well as Business In-
telligence (BI) workloads [31], which include longer, more
complex and resource-intensive queries that can require
hours or an even longer time to complete. Workloads
submitted by different applications or initiated from dis-
tinct business units may have unique performance objec-
tives (goals) that need to be strictly satisfied. The perfor-
mance objectives of a workload are normally derived
from a formal service level agreement (SLA).

On a shared database server, there is an interdepen-
dence among the concurrently running workloads that
results from the workload’s competition for the shared

system resources, such as system CPU, main memory,
disk I/O, network bandwidth and various queues. If a
workload, e.g., an operational BI workload, is allowed to
consume a large amount of shared system resources
without any control, the concurrently running workloads
may have to wait for the workload to complete and to
release its used resources, thereby resulting in waiting
workloads missing their performance goals and the entire
database server suffering degradation in performance. As
workload requests present on a database server can fluc-
tuate rapidly among multiple types, it becomes impossi-
ble for database administrators (DBAs) to manually ad-
just the system configurations in order to maintain the
workload’s performance requirements during their run
time. Thus, workload management becomes necessary
and critical to effectively control the processes of different
types of workloads and manage shared system resources
to achieve a set of per-workload performance goals in a
complex workload mix environment.

Workload management is the discipline of effectively
monitoring, managing and controlling work flow across
computing systems [8] [74]. In particular, workload man-
agement for database management systems (DBMSs) is
the process or act of monitoring and controlling work (or
requests) executing on a database system in order to
make efficient use of system resources in addition to
achieving any performance objectives assigned to that
work [3]. Thus, the primary goals of workload manage-
ment for a DBMS are: 1) to maintain the DBMS running in
an optimal state, i.e., neither under-loaded nor over-
loaded, 2) to ensure that all workloads meet their desired
performance objectives (if any), and 3) to balance resource

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————

 Mingyi Zhang and Jianjun Chen are with Huawei America Research,
Santa Clara, California, USA 95050. E-mail: mingyi.zhang1@ huawei.com,
jianjun.chen1@huawei.com.

 Patrick Martin and Wendy Powley are with School of Computing, Queen’s
University, Kingston, Ontario, Canada K7L3N6. E-mail: mar-
tin@cs.queensu.ca, wendy@cs.queensu.ca.

A

mailto:wendy@cs.queensu.ca

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2017.2767044, IEEE Transactions on Knowledge and Data Engineering

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT

demands of workloads running concurrently and maxim-
ize performance of the entire system. Niu et al. [59] ob-
serve that the specific goal of workload management is to
address the conflict of cost sharing and SLA satisfaction.
Cost sharing aims to consolidate more user applications
onto a single database server in order to minimize busi-
ness cost and maximize its investment return. While, on
the other hand, the goal of SLA satisfaction is to achieve
performance requirements of all work running concur-
rently on the single database server. It is easy to observe
the conflict between these two perspectives as better cost
sharing (more users sharing a database server) can lead to
poorer SLA satisfaction (resulting in significant resource
competition). To resolve this issue, researchers and engi-
neers [9] [37] [47] believe that instead of trying to develop
a single sophisticated workload management technique, a
workload management system that employs multiple
types of workload management techniques becomes ne-
cessary.

The primary objective of this paper is to provide a sys-
tematic study of workload management in today’s
DBMSs by surveying the workload management systems
and techniques implemented in major commercial data-
bases as well as those proposed in the research literature.
In a previous survey of workload management for
DBMSs, Niu et al. [59] proposed a general framework of
autonomic workload management for DBMSs and used a
set of criteria to evaluate the existing facilities for support-
ing the features of autonomic workload management in
DBMSs. In another overview of workload management in
DBMSs, Aboulnaga et al. [1] discussed and compared a
set of workload management techniques used in the data
warehouse and MapReduce systems. While, Krompass et
al. [37] [39] presented a process of workload management
in DBMSs and examined various control policies at each
control point in the workload management process. In
this study, we propose a taxonomy of workload man-
agement techniques to classify workload management
techniques and evaluate the state of the art in today’s
workload management for DBMSs.

The remainder of the paper is organized as follows.
Section 2 reviews the background of the current workload
management technology for DBMSs and introduces the
underlying principles. Section 3 presents a taxonomy of
workload management techniques developed based on
the main functions presented in a workload management
process and the typical techniques presented in current
studies and practice. We survey typical workload man-
agement systems and techniques and use the taxonomy to
classify and evaluate the systems and techniques in Sec-
tion 4. Finally, we summarize the contents of this paper,
based on the examination of the progress made on work-
load management, discuss open problems, and suggest
future research in Section 5.

2 BACKGROUND

Research in workload management for DBMSs has been
mainly driven by commercial database vendors. As data-
bases are becoming increasingly large and complex, pro-

viding features of workload management in the DBMSs
to help the systems to achieve desired performance objec-
tives has been a key factor for business success. By sur-
veying the workload management facilities provided in
today’s commercial DBMSs and techniques proposed in
the recent research literature, we present background in-
formation on workload management technology for
DBMSs and introduce the underlying principles in this
section.

In the use of the workload management facilities in
commercial databases, e.g., IBM DB2 Workload Manager
[30], Microsoft SQL Server Resource and Query Governor
[50] [51], Teradata Active System Management [71] [72],
Oracle Database Resource Manager [61], and Pivotal
Greenplum Databases [63], three major steps are sug-
gested to effectively manage the wide variety of work
executing concurrently in a database server:

 Explicitly understand performance objectives (or
goals) of all requests based on a formal SLA (if
any);

 Clearly identify arriving requests in the database
server;

 Impose appropriate controls on the requests to
manage their behaviors so that the requests can
make steady progress towards the desired per-
formance objectives;

These principles are not only applied to the workloads
on traditional DBMSs, but are also able to extend to other
workloads, such as the real-time analytical workload on
in-memory databases or tables [52] [53] [62] [68]. In the
following subsections, we discuss each of these principles
of workload management in detail.

2.1 Performance Objectives and Management
Policies

As introduced previously, a request executing in a data-
base server may have an assigned business priority (or a
business-importance level) and performance objective,
and both are defined in terms of a SLA. The mapping
from the business-level SLA to the specific business prior-
ities and performance objectives can be a non-functional
process (that is, a function cannot be defined for the map-
ping) that requires business mapping rules along with
knowledge shared by the DBAs. The performance objec-
tives can be expressed by one or more performance me-
trics.

Typical performance metrics include response time, the
elapsed time between the start and completion of a re-
quest, throughput, the number of requests completed in a
time unit, and request execution velocity, the execution
speed of a request in a database system [74]. Request ex-
ecution velocity can be simply described as the ratio of
the expected execution time of a request to the actual time
the request spent in the system, i.e., the total time of ex-
ecution and delay, where the expected execution time can
be obtained from historical observations in the system’s
steady state. If an execution velocity is close to 1, the de-
lay of the request is small, while, an execution velocity
close to 0 indicating a significant delay. In particular, high
priority requests, such as the ones that directly generate

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2017.2767044, IEEE Transactions on Knowledge and Data Engineering

ZHANG ET AL.: WORKLOAD MANAGEMENT IN DATABASE MANAGEMENT SYSTEMS: A TAXONOMY

 3

revenue for business organizations, or those issued by a
CEO or VP of the organizations, may expect a quick re-
sponse, and thus they need to complete quickly. Low
priority requests, such as the ones for generating routine
business reports, can wait longer to get results. In using
request execution velocity, performance objectives as well
as business priorities of requests can be captured. That is,
by checking if a request’s execution velocity is close to 1,
it can be known that the request (no matter a low or high
priority) has met its desired performance objective or not.
To efficiently manage an end user’s work, requests are
grouped into workloads. As a result, performance objec-
tives of the requests can be expressed relative to a work-
load. In many situations, workload performance objec-
tives are described in averages or percentiles, such as the
average response time of transactions in an OLTP work-
load, or, % queries in a workload for data warehousing
decision support system complete in time units or less
[9]. A workload with a high business priority may be as-
sociated with a high performance requirement, or, larger
 and smaller values. For non-goal request workloads,
there are typically no associated performance objectives.
However, their performance may be inferred from a sys-
tem resource allocation plan, such as ―non-goal work-
loads may consume no more than % of the total proces-
sor resources‖ [9].

In a workload management process, workload man-
agement policies are important in controlling the beha-
vior of running requests, where policies are the plans of
an organization to achieve its objectives [44] [57]. Work-
load management policies may include determining if a
request can be admitted to a database system, how long
the request has to wait in a queue for available shared
system resources, and how fast the request can be ex-
ecuted in the database system. The policies are typically
derived from the defined workload business priorities
and performance objectives, and the policies may be ap-
plied to all points in a workload management process. At
different points, policies may have different specifications
and rules, such as admission policies used for specifying
how a request would be controlled during its admission
to the system, scheduling policies used for guiding the
request scheduling processes of workload management
facilities, and execution control policies used for defining
dynamic execution control actions [37] [47] [80].

2.2 Request Identification

Having explicitly defined performance objectives and
management policies to manage the end user’s work to
achieve the desired performance objectives, current prac-
tice shows that arriving requests need to be clearly identi-
fied when they present on a database system so that the
queries can be properly managed [9] [30]. Thus, various
workload definition approaches are used to identify the
incoming requests.

The term workload is also used to refer to an object in
today’s commercial databases, which is defined for moni-
toring and controlling a set of requests [30] [72]. Work-
load definition approaches use classifications to map ar-

riving requests to workloads. A defined workload can be
assigned a priority (at the business level) based on the
SLA specifications when the workload is defined. A busi-
ness transaction processing workload, such as data inser-
tions generated by cashiers in a store, is always assigned
high business priority as the transactions directly gener-
ate revenue and should complete promptly. On the other
hand, a business analysis workload, such as a set of busi-
ness report generation queries for the store (i.e., a report-
generation batch workload) may be assigned a lower
priority as report generation is a daily routine and may be
done in any idle time window during the day. High busi-
ness priority workloads require high-priority access to
shared system resources so that their performance objec-
tives can be reached and guaranteed. Grouping requests
into workloads simplifies the task of allocating resources
and provides visibility into how system resources are
being used by each workload [30] [50] [61] [72].

Assigning a request to a workload can be done based
on the request’s operational properties, such as origin or
type [30] [72], or by applying a set of user-defined criteria
functions [50]. A request’s origin, which indicates ―who‖
is making the request, can include properties, such as the
application name, user name, application’s session ID and
client IP address. A request’s type specifies ―what‖ the
characteristics of the request are, such as types of state-
ments, estimated costs or estimated cardinalities. The
types of request statements may include READ, WRITE,
Data Manipulation Language (DML), and Data Definition
Language (DDL) [67]. Estimated costs or cardinalities
predict the consumption of various shared system re-
sources. Criteria functions are typically scalar functions
that contain the logic to classify the incoming requests
into workloads, where the logic can be derived from re-
quest properties [50].

TABLE 1
THREE TYPES OF CONTROLS IN A WORKLOAD MANAGEMENT PROCESS

Control Type Description Control Point Associated Policy

Admission

Control

Determines whether

or not an arriving

request can be

admitted into a

database system

Upon arrival in

the database

system

Admission control

policies derived

from a workload

management

policy

Scheduling

Determines the

execution order of

requests in batch

workloads or in wait

queues

Prior to sending

requests to the

database execu-

tion engine

Scheduling poli-

cies derived from

a workload man-

agement policy

Execution

Control

Manages the execu-

tion of running

requests to reduce

their performance

impact on the other

requests running

concurrently

During execu-

tion of the

requests

Execution control

policies derived

from a workload

management

policy

2.3 Workload Control

Current research proposes that a workload management
process in DBMSs may involve three different types of
controls, namely, admission, scheduling and execution con-
trol [37] [39] [80], as listed in Table 1, and the controls are

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2017.2767044, IEEE Transactions on Knowledge and Data Engineering

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT

guided by specified workload management policies [38]
[80]. Admission control determines whether or not newly
arriving requests can be admitted into a database system,
thereby avoiding an increase in load while the system is
busy. It identifies ―problematic‖ requests, such as the
long-running and resource-intensive requests, and makes
appropriate admission decisions. The decision is based on
the estimated costs of the arriving requests and the speci-
fied workload management policies (specifically admis-
sion control policies). The cost is typically estimated by
the database query optimizer [13] [25]. If a request’s esti-
mated cost exceeds the pre-defined admission threshold,
the request may be queued for later admission or rejected
with some returned message. The pre-defined admission
thresholds are determined based on the admission control
policies. The thresholds can include the upper limits for
the estimated resource usage of a request, the estimated
execution time of the request, and the number of requests
running concurrently (the multi-programming levels) in
the database system. Workloads with different priorities
can be associated with different admission control poli-
cies, and therefore have different sets of threshold values.
A high priority workload usually has higher (less restric-
tive) thresholds, so high priority requests can be guaran-
teed to be admitted into the database system for execu-
tion.

Request scheduling determines the execution order of
requests in batch workloads or admitted requests in wait
queues (e.g., priority queues) and decides when the re-
quests can be sent to the database execution engine for
execution based on the workload management policies
(specifically scheduling policies). The challenge of request
scheduling is to determine the optimal number of re-
quests with various characteristics, priorities, and re-
source demands that can run concurrently in a database
system while maintaining the system in an optimal state
and meeting the performance objectives for all workloads.
Traditionally, the multi-programming levels (MPLs), a
database system’s threshold-based configuration parame-
ter, are used to manage the system load. MPLs specify the
upper limit of the number of queries that are allowed to
run concurrently in a database system. If the MPL value is
too large, the system can become over-utilized, while, on
the other hand, if the MPL value is too low, the system
may be under-utilized. In both cases, system performance
suffers. For the same database system, different types of
workloads have different optimal MPLs. Request sche-
duling aims to dynamically set MPLs for each of the
workloads to decide which and how many requests can
be sent to the database to execute concurrently based on a
specified scheduling policy.

In contrast with the admission control and scheduling,
which are applied to requests before their execution, the
execution control is imposed on a request during the run
time. The main goal of execution control is to dynamically
manage a running request in order to limit its impact on
other running requests, e.g., by slowing down the re-
quest’s execution speed and freeing up shared system
resources for use by the other requests. Since query costs
estimated by the database query optimizer may be inac-

curate, long-running and resource-intensive queries may
get the chance to enter a system while the system is expe-
riencing a high load. These ―problematic‖ requests com-
pete with others for the limited available system re-
sources and result in the requests obtaining insufficient
resources and missing their desired performance objec-
tives. Execution control manages the running of the prob-
lematic requests based on an execution control policy and
determines to what degree the control should be applied.

3 A TAXONOMY OF WORKLOAD MANAGEMENT

TECHNIQUES

In the past decade, considerable progress has been made
in workload management for DBMSs. New features of
workload management facilities have been implemented
in commercial DBMSs and new techniques have been
proposed by researchers. However, the descriptions of
the facilities and techniques in publically available docu-
mentation are very different in terms of their terminolo-
gy, even though their primary goals are the same, namely
to achieve a set of per-workload SLAs in a complex mixed
workload environment. To facilitate the study and under-
stand the state of the art of the current workload man-
agement technology for DBMSs, we develop a taxonomy
shown in Figure 1 to categorize workload management
techniques based on the main features of the techniques.
The purpose of the taxonomy is to:

 Classify the typical workload management tech-
niques proposed in the research literature and
used in workload management facilities provided
in DBMSs;

 Highlight the relative strengths and weaknesses of
existing techniques and to point out deficiencies in
the current set of techniques;

Our taxonomy is developed based on the controls in-
volved in the workload management process discussed
previously, and the techniques currently suggested by
commercial database vendors and in the recent research
literature. We categorize the workload management tech-
niques for DBMSs into four major classes, namely, work-
load characterization, admission control, scheduling and execu-
tion control. Within a class, the workload management
techniques are further divided into subclasses based on
their distinct mechanisms. In this section, we discuss the
main features of typical techniques in each class. These
features are used to classify a particular workload man-
agement approach.

3.1 Workload Characterization

Workload characterization is essential for a workload
management process as it provides the fundamental in-
formation about a workload to its controllers. Workload
characterization can be described as the process of identi-
fying characteristic classes of a workload in the context of
its properties, such as costs, resource demands, business
priorities, and/or performance requirements. A business
transaction processing workload, for instance, is often
characterized as having low cost, few resource demands,
high business priority, and requiring good performance.

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2017.2767044, IEEE Transactions on Knowledge and Data Engineering

ZHANG ET AL.: WORKLOAD MANAGEMENT IN DATABASE MANAGEMENT SYSTEMS: A TAXONOMY

 5

While, on the other hand, a business analysis workload
can be characterized as having high cost, large resource
demands, low business priority, and requiring best-effort
(implicit) performance objectives. The workload definition
discussed in Section 2 is considered as a process of work-
load characterization as, when a workload is defined, it is
also characterized with regard to its assigned business
priorities, estimated costs and expected performance be-
haviors.

We divide workload characterization techniques into
two types, namely, static characterization and dynamic cha-
racterization, as shown in Figure 1. Static workload charac-
terization defines the workloads before requests arrive
and allocates shared system resources to the defined
workloads. This type of technique is widely employed in
workload management facilities provided in commercial
DBMSs [30] [50] [72]. The main features of the techniques
are the differentiation of arriving requests based on their
operational properties discussed in Section 2, the map-
ping of the requests to a workload, and the resource allo-
cation to the workloads for their execution. Resource allo-
cation is typically done based on the priority assigned to a
workload, such as high, medium or low. A workload with
higher business priority would have a higher priority to
access shared system resources. Once assigned to a priori-
ty level (at the system level), a workload has the rights
defined for the priority level to access shared system re-
sources. However, the priority may be dynamically
changed during the workload execution based on the
workload’s performance requirements and actual per-
formance behavior [9], as explained in the discussion of
Execution Control in the following sections.

Dynamic workload characterization identifies the type
of a workload when it is present on a database server
(e.g., an online transaction processing or an online analyt-
ical processing workload). Typical techniques proposed
in the research literature for workload classification is
machine-learning [19] [73]. In using this technique, the
system learns the characteristics of sample workloads
running on a database server, builds a workload classifier
and uses the workload classifier to dynamically identify
unknown arriving workloads on the database server.

3.2 Admission Control

Traditionally, admission control in OLTP systems ensures
that the number of client connections is kept below a
threshold so that the resource contention level among
concurrent requests is controlled. In the system, if the
number of requests increases, throughput of the system
increases up to some maximum. Beyond the maximum, it
begins to decrease dramatically as the system starts
thrashing [7] [16] [27]. In particular, admission control in
mixed workload environments aims not only to avoid
accepting more work than a database system can effec-
tively process, but also to allow arriving requests to
achieve their desired performance objectives.

We divide workload admission control techniques into
two types, namely, threshold-based admission control and
prediction-based admission control, as shown in Figure 1.
Threshold-based techniques specify the upper limit of a
threshold, such as a system parameter, under which an
arriving query can be admitted. This type of technique is
widely used in workload management facilities provided
in commercial DBMSs [30] [50] [72]. As described in Sec-
tion 2, thresholds are used for controlling a request’s ad-
mission, and the typical thresholds used are query cost
and the number of concurrently running requests. The
query cost thresholds dictate that if a newly arriving
query has estimated costs greater than the threshold, then
the query is rejected, otherwise it is admitted. The MPL
threshold dictates if the number of concurrently running
requests reaches the threshold, then no new requests are
admitted into the system. Workloads may be associated
with different sets of threshold values based on a specific
admission control policy. Requests with higher priorities
can be admitted into the system for execution. The admis-
sion control policy may also specify different thresholds
for various operating periods, for example during the day
or at night.

As an alternative to using system parameters, re-
searchers have proposed threshold-based techniques that
rely on performance or monitor metrics, such as the con-
flict ratio, the transaction throughput in time intervals of
the recent past, and system performance indicators. The
conflict ratio [56] is the ratio of the total number of locks

Workload Management Techniques

Admission Control Scheduling Execution Control

Threshold-based

Control

Queue

Management
Suspension ReprioritizationCancellation

Workload

Characterization

Dynamic

Characterizaton

Throttling Suspend & Resume

Query

Restructuring

Static

Characterization

Prediction-based

Control

Fig. 1. Taxonomy of Workload Management Techniques for DBMSs

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2017.2767044, IEEE Transactions on Knowledge and Data Engineering

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT

that are held by all transactions in the system and total
number of locks held by active transactions. If the conflict
ratio exceeds a (critical) threshold, then new transactions
are suspended, otherwise they are admitted. The ap-
proach that uses the transaction throughput [26] is a
feedback method. The approach measures the transaction
throughput over time intervals. If the throughput in the
last measurement interval has increased (compared to the
interval before), more transactions are admitted; if the
throughput has decreased, fewer transactions are admit-
ted. The indicator approach [79] [80] uses a set of monitor
metrics of a DBMS to detect the performance failure. If
the indicator’s values exceed pre-defined thresholds, low
priority requests are no longer admitted. The basic idea of
each approach is to monitor some metric or a set of me-
trics that indicate the current degree of resource conten-
tion in the system, and to react to changes based on speci-
fied admission control policies. A summary of the thre-
shold-based approaches used for workload admission
control is shown in Table 2.

TABLE 2
Summary of the Approaches Used for Workload Admission Control

Threshold Type Description

Query Cost

[9] [50] [72]

System Para-

meter

If an arriving query’s estimated cost is great-

er than the threshold, the query’s admission

is denied, otherwise, accepted.

MPLs

[9] [50] [72]

System Para-

meter

If the number of concurrently running re-

quests in a database system has reached the

threshold, an arriving request’s admission is

denied, otherwise, accepted.

Conflict Ratio

[56]

Performance

Metric

If the conflict ratio of transactions in a data-

base system exceeds the threshold, new

transactions are suspended, otherwise, admit-

ted.

Transaction

Throughput

[26]

Performance

Metric

If the system throughput in the last measure-

ment interval has increased, more transac-

tions are admitted, otherwise fewer transac-

tions are admitted.

Indicators

[79] [80]

Monitor

Metrics

If the actual values exceed the pre-defined

thresholds, low priority requests are delayed,

otherwise they are admitted.

Prediction-based techniques attempt to predict the per-
formance behavior characteristics of a query before the
query begins running [21] [23] [42]. These techniques
build prediction models for queries using machine-
learning approaches. Ganapathi et al. [21] find correla-
tions among the query properties, which are available
before a query’s execution, e.g., the query’s SQL state-
ment, the query’s execution plan produced by the query
optimizer, and query performance metrics, e.g., elapsed
time and disk I/O. They use the statistical relationships to
predict the performance of newly arriving queries that
have the same properties. Gupta et al. [23] build a deci-
sion tree based on a training set of queries, and use the
decision tree to predict ranges of the new query’s execu-
tion time. Apart from being applied in workload man-
agement, this type of technique can be applied in other
areas, such as system capacity planning [76].

3.3 Scheduling

As introduced in Section 2, scheduling techniques for
workload management involve sending requests to the
database execution engine in a particular order that en-
sures the requests meet their desired performance objec-
tives and also maintains the database system running in a
normal (or optimal) state. In today’s commercial DBMSs,
workload management facilities do not support request
scheduling although thresholds, such as MPLs, may be
used for implementing certain functionalities of request
scheduling. As described previously, MPLs can be em-
ployed to manage the load in a database system and
therefore maintain the system in a normal state. However,
the threshold-based control is a static mechanism. In a
dynamic environment, the threshold-based scheduling
can result in the database server running in an under-
loaded or over-loaded state and cause the requests to
miss their required performance objectives.

In contrast with manually setting thresholds to control
the load on a database server, current studies have pro-
posed a set of scheduling approaches. In the scheduling
class of our taxonomy, the typical techniques presented in
the recent research literature can be divided into two
types, namely, queue management and query restructuring,
as shown in Figure 1.

The main features of queue management techniques
are the determination of execution order of requests
based on the properties, such as resource demands, prior-
ities, and performance objectives, as well as a scheduling
policy [2] [18] [24] [60] [69]. After passing through an ad-
mission control (if any), requests are placed in a wait
queue or classified into multiple wait queues according to
their performance objectives and/or business priorities (a
batch workload may also be treated as a queue, in which
a set of requests wait). A scheduler then orders requests
from the wait queue(s). The typical approaches include
using a linear programming based scheduling algorithm
[2] to determine an execution order for all requests in a
batch workload, or evaluating the admitted requests
queued in the wait queue(s) using a utility function [60]
or a rank function [24]. The algorithms and functions take
the request’s estimated costs and performance objectives
as well as business priorities as input and, based on the
returned values, the scheduler determines the execution
order for the requests. Before the requests can be released
from the wait queue(s) to the database execution engine
to execute, the total available system resources need to be
estimated in order to keep the system running in a nor-
mal state. Specifically, the total costs of executing requests
should not exceed the database system’s currently accept-
able cost limits [60]. In order to maintain this constraint,
studies show that queuing network models [35] [40] or a
feedback controller [17] [28] in conjunction with analytical
models may be applied [59] [69] [70]. The models and the
controllers attempt to dynamically predict the MPLs for
each type of being released requests and keep the system
running in a normal state.

Query restructuring techniques [36] decompose a
query into a set of small queries, thus the individual que-
ries each being smaller and less complex than the whole.

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2017.2767044, IEEE Transactions on Knowledge and Data Engineering

ZHANG ET AL.: WORKLOAD MANAGEMENT IN DATABASE MANAGEMENT SYSTEMS: A TAXONOMY

 7

In the context of query scheduling in workload manage-
ment for DBMSs, a set of decomposed queries can then be
put in a queue and scheduled individually. In releasing
these queries for execution, no short queries will be stuck
behind large queries and no large queries will be required
to wait in the queue for long periods of time. By restruc-
turing the original query, the work is executed, but with a
lesser impact on the performance of the other requests
running concurrently. The approaches [6] [54] to query
restructuring involves decomposing a large query execu-
tion plan into a series of sub-plans that follow a certain
execution order to produce results equivalent to the orig-
inal query.

3.4 Execution Control

Execution control aims to lessen the impact of executing
work on other requests that are running concurrently. We
divide the request execution control techniques into three
types, namely, query reprioritization, query cancellation and
request suspension. Request suspension techniques are fur-
ther divided into request throttling and query suspend-and-
resume, as shown in Figure 1. The main features of these
types of techniques are discussed in this section.

Query reprioritization involves dynamically adjusting
the priority of a query as it runs, thereby resulting in re-
source reallocation [5] [9] [14] to the query according to its
new priority. A query’s priority adjustment can be dy-
namically made through adjusting the priority of its
workload (at the business level) during execution. Nor-
mally, the priority of an end user’s query determines the
resource access priority of the query. That is, high priority
queries have greater access to shared system resources,
while low priority queries being given lower priority
access to the resources. Priority aging is a typical repriori-
tization mechanism implemented in commercial DBMSs.
The approach dynamically changes the priority of shared
system resource access for a request as it runs. When the
running request tries to access more rows than its esti-
mated row counts or executes longer than a certain al-
lowed time period, the request’s service level will be dy-
namically degraded, such as from a high level to a me-
dium level, thus reducing the amount of resources that
the request can access. Thresholds, such as execution time
or the number of returned rows, are incorporated in the
approach to adjust the priority of a running request. The
events of the threshold violation trigger the adjustment of
a request’s priority level, and, in turn, adjust the priority
of shared system resource access for the request when the
request’s actual performance behavior violates the thre-
sholds.

From the research literature, an approach proposed for
query reprioritization is resource allocation driven by a
specified workload importance policy [4] [46] [78]. In this
approach, certain amounts of shared system resources are
dynamically allocated to competing workloads according
to the workload’s business importance levels. High busi-
ness importance workloads are assigned more resources,
while low business importance workloads being assigned
fewer resources. The amount of shared system resources

assigned to a workload can be dynamically changed to
respond to changes in the workload importance level as it
runs. To enforce the workload business importance policy
to resource allocation among competing workloads, utili-
ty functions [34] [75] are used to guide the dynamic re-
source allocation processes, and economic concepts and
models [15] [20] are employed to potentially reduce the
complexity of the resource allocation problem [58] [78].
The approach shows that more shared system resources
can be dynamically allocated to higher business impor-
tant workloads than the ones with lower business impor-
tance during run time.

Query cancellation is widely used in workload man-
agement facilities of commercial databases [30] [61] [72] to
kill the process of a running query. When a running
query is terminated, the shared system resources used by
the query are immediately released, and the impact of the
query on the performance of concurrently running re-
quests is directly eliminated. The terminated query may
be re-submitted to the system for later execution based on
a query execution control policy [37] [80]. Like thresholds
incorporated in the query reprioritization techniques to
trigger the adjustment of a request’s resource access
priority, a query cancellation procedure can be automati-
cally invoked by the system when a query’s running time
or consumed shared system resources exceeds threshold
values.

Request suspension means slowing down a request’s ex-
ecution. In the query suspend-and-resume subclass, the
main features of the techniques [10] [12] include terminat-
ing a query when it is running, storing the necessary in-
termediate results and restarting the query’s execution at
a later time. When a query is suspended, the resources
used by the query are released and the impact of the
query on the performance of the concurrently running
requests is eliminated. The suspended query can be re-
sumed when the database system is less busy. The main
feature of request throttling techniques [64] [65] [66] is the
dynamic manipulation of a request’s process as it runs.
Instead of terminating a running query and storing its
intermediate results, request throttling pauses a running
request to slow down its execution, and, therefore, free up
some resources used by the request, such as CPU shares
and disk I/O. The difference between the throttling and
suspend-and-resume types of request suspension tech-
niques is that request throttling pauses the running que-
ries for a certain time, and query suspend-and-resume
terminates running queries and continues their execution
at a later time. A summary of the approaches used for
workload execution control is shown in Table 3.

Apart from using a query execution time threshold to
trigger the actions of dynamically controlling a query's
execution, a query progress indicator can assist the request
execution control techniques. It decides whether or not a
running query should be controlled based on a specific
execution policy. A query progress indicator attempts to
estimate how much work a running query has completed
and how much work the query will require to finish. This
problem has been studied, and a set of techniques have

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2017.2767044, IEEE Transactions on Knowledge and Data Engineering

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT

been proposed in the research literature [11] [41] [43] [45]
[55]. Progress indicators keep track of a running query
and continuously estimate the query’s remaining execu-
tion time. The difference between the use of query execu-
tion time thresholds and query progress indicators is that
thresholds have to be manually set, whereas query
progress indicators do not need human intervention and
therefore can potentially automate the request execution
control.

TABLE 3
Summary of the Approaches Used for Workload Execution Control

Approach Type Description

Priority Aging

[9]
Reprioritization

Dynamically changes the priority of

system resource access for a request

as it runs.

Policy Driven

Resource Allo-

cation

[4] [78]

Reprioritization

Amounts of shared system re-

sources are dynamically allocated

to concurrent workloads according

to the levels of the workload’s

business importance.

Query Kill [30]

[50] [61] [72]
Cancellation

Kills the process of a request as it

runs.

Query Stop-

and- Restart

[10] [12]

Suspend &

Resume

Terminates a query when it is

running, stores the necessary inter-

mediate results and restarts the

query’s execution at a later time.

Request Throt-

tling

[64] [65] [66]

Throttling
Pauses the process of a request as it

runs.

4 APPLICATIONS OF THE TAXONOMY

4.1 Commercial Systems

In commercial databases, a workload management facili-
ty (or system) is a set of tools or utilities with one or more
distinct workload management techniques. The workload
management systems include IBM DB2 Workload Man-
ager, Microsoft SQL Server Resource/Query Governor,
and Teradata Active Management System. These work-
load management systems provide good documentation
available online for guiding users to use the systems. By
distilling the information and applying the taxonomy of
workload management techniques shown in Section 3, we
discuss these systems and identify the workload man-
agement techniques employed in the systems. In this
study, we do not discuss all of the workload management
facilities implemented in commercial databases, but the
typical techniques are covered in the three systems. To
describe these workload management systems, an over-
view of the systems is presented in the following subsec-
tions.

4.1.1 IBM DB2 Workload Manager

Since the version 9.5 release, IBM DB2 has integrated a
workload management facility, Workload Manager, in the
DB2 databases for Linux, UNIX and Windows [30]. In the
workload management, there are three defined stages,
namely identification, management and monitoring, for users
to manage complex workloads on a DB2 database server.
The identification identifies the requests entering the data-

base server, the management manages the requests run-
ning on the server, and the monitoring monitors whether
or not performance objectives of the requests have been
met, and the database server is being efficiently used.
Before applying the stages to make a workload manage-
ment plan and implemente it, users are suggested to un-
derstand request goals. That is, to understand if any SLA
exists for the requests, what business priorities of the re-
quests are relative to all of the other work on the system,
and what the performance objectives (if any) of the re-
quests are.

A) Identification

In identification, workloads (database objects) are used in
DB2 workload management to identify incoming work.
This is implemented based on the source of the work. The
source of the work is determined using attributes of data-
base connections, which are assigned when a database
connection is established. The attributes include applica-
tion name, system authorization ID, session ID, and client user
ID that can be used to uniquely identify a connection.
Thus, work coming through a connection can be mapped
to a pre-defined workload, so in the use of the source of the
work, users identify incoming work through its origina-
tion. In addition to using connection attributes, incoming
work is also identified using work classes (database ob-
jects), which is created based on the type of incoming
work. A work class is defined in a work class set (database
objects). A work class has the incoming work with the
same type, such as RAED, WRITE, or, DML, DDL, LOAD,
CALL and ALL (all types). Work classes can also apply
predictive identification to the DML type of work. The
predictive elements include estimated costs and estimated
return rows. Users can create a work class, for instance, for
all large queries with an estimated cost over 1,000,000
timerons, or create a work class for all large queries with
estimated return rows more than 500,000.

B) Management

A service class is another object in DB2 databases. Service
classes are used for defining execution environments
where the arriving work runs. Execution environments
allocate shared system resources to the work, and create
various execution thresholds that detemine how the work
is allowed to execute. All work must run in a service
class, and the workload definition is used for assigning in-
coming work to a service class. When a service class is
created, its resource access priorities are also created,
which include agent priority, prefetch priority, buffer pool
priority and external WLM tag.

The agent priority is set for a CPU priority level of all
agents that work in a service class, and is relative to the
agent priority of all other DB2 agents. The prefetcher
priority is set for prefetch requests that are generated in a
service class. Agents send read-ahead requests to the da-
tabase prefetch queue, and then the prefetchers take these
read-ahead requests from the queue. High-priority pre-
fetch requests are processed before medium-priority pre-
fetch requests, which, in turn, are processed before low-
priority prefetch requests. Setting the buffer pool priority
of a service class can influence the proportion of pages in

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2017.2767044, IEEE Transactions on Knowledge and Data Engineering

ZHANG ET AL.: WORKLOAD MANAGEMENT IN DATABASE MANAGEMENT SYSTEMS: A TAXONOMY

 9

the buffer pool that are used by requests in the service
class. Increasing the buffer pool priority potentially in-
creases the proportion of pages in use by the requests in a
particular service class. The external WLM tag allows a
workload to have some of its resources controlled by the
AIX Workload Manager [8]. A service class can be di-
vided into multiple service subclasses. The service class
remains the highest tier for work, and service subclasses
are the place where arriving work runs. A subclass can
only be defined under a service class, that is, a subclass
cannot be defined under another subclass.

At times, a request’s execution behaviour exceeds ex-
pectations. As an example, a query surprisingly returns
hundreds of thousands of rows and consumes a large
amount of (I/O) resources at the expense of all of the oth-
er work running in the system. In DB2 workload man-
agement, thresholds (database objects) are used to look for
this type of exception and to trigger actions when the
thresholds are violated. These thresholds include Elapsed
Time, Estimated Cost, Rows Returned, Concurrent Workload
Activities and Concurrent Database Activities. Actions that
can be taken when a threshold is violated depend on the
threshold’s definition. The actions include collect data, stop
execution, continue execution, and queue activities.

In a service class (with its created thresholds), the re-
source access priorities of a query can be dynamically
changed by moving the query from one subclass to
another service subclass (under the same service class).
More resources can be accessed if the priorities of the new
service subclass are higher, and fewer resources are avail-
able if the priorities of the new service subclass are lower.
A query is moved between two service subclasses when
the thresholds are violated based upon the pre-defined
maximum usage of a specific resource, such as CPU time
or return rows. The priority change (priority aging) is
triggered when the threshold violation is detected. After a
query is mapped to a new service subclass, it continues to
run with the new resource constraints applied.

C) Monitoring

The monitoring provides users the access to real-time op-
erational data, such as a list of running workload occur-
rences, the queries running within a service class, and the
averaged response time. The method for accessing the
real-time monitor data is through using table functions.
Table functions provide users capabilities to create appli-
cations (or write queries) to query data as if it were a table
in the databases. Statistical information is available at a
few levels, which include service classes, service subclasses,
workloads, work action sets and queues. Besides the table
functions, event monitors, such as activity event monitor,
threshold violations event monitor and statistics event monitor,
are used to capture monitor information. The activity event
monitor captures information about individual queries in
a service class, workload, or work class. The threshold vi-
olations event monitor captures information as a threshold
is violated. It indicates what threshold was violated, what
query was the source of the exception, and what action
was taken when it occurred. The statistics event monitor

captures detailed query information by collecting aggre-
gated data, such as the number of queries completed and
the averaged execution time.

4.1.2 Microsoft SQL Server Resource/Query Governor

Microsoft SQL Serve provides users a workload man-
agement facility, Resource and Query Governor, for manag-
ing workloads and system resources. Resource Governor
[50] enables users to manage workloads and resources
through specifying limits on resource usage of arriving
requests. Query Governor Cost Limit Option [51] is used for
specifying an upper limit on execution time, under which
a query can run. In a SQL Server environment, if Query
Governor Cost Limit is specified with a nonzero and
nonnegative value, the query governor will disallow execu-
tion of any arriving query that has an estimated execution
time exceeding the value, while, specifying zero (the de-
fault value) meaning all queries can run without any time
limitation. Query Governor Cost Limit can be applied to
the server wide or to per database connection. Resource
Governor manages complex workloads present on SQL
Server by differentiating the workload requests and allo-
cating shared system resources to the requests based on
the limits that users specify. Resource Governor consists
of three main components, namely resource pool, workload
group and classification.

A) Resource Pools

A resource pool represents physical resources (CPU and
Memory) of the server. A resource pool has two portions.
One partion does not overlap with other pools, which
enables a minimum resource reservation in the resource
pool. The other partion is shared with other pools, which
supports maximum resource consumption on the server.
In the use of the resource pool, the resources are allocated
by specifying MIN and MAX. MIN represents the mini-
mum guaranteed resource available in the resource pool,
and MAX represents the maximum resources of the pool.
MIN and MAX are set for the two resources (CPU and
Memory), respectively. The sum of MIN across all re-
source pools cannot exceed 100 percent of the server re-
source. MAX can be set anywhere in the range between
MIN and 100 percent inclusive. The shared portion of a
pool indicates that a certain amount of resources can go if
the resources are available. However, when the resources
are used, e.g., they go to a specified resource pool, they
become not shared any more. These shared resources im-
prove resource utilization in the cases, where there are no
requests in a pool, and the resources configured to the
pool can be freed up for other pools.

In the use of Resource Governor, two resource pools,
i.e., internal and default, are predefined. The internal pool
represents the resources used by SQL Server itself. This
pool contains only the internal workload group, and the
pool is not alterable. Resource consumption by the inter-
nal pool is not restricted. That is, the workload in the pool
are considered critical for server functions, and the inter-
nal pool is allowed to ―pressure‖ other pools even if it
means the violation of limits set for those pools. The de-

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2017.2767044, IEEE Transactions on Knowledge and Data Engineering

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT

fault pool contains default workload group. The default pool
cannot be created or dropped but it can be altered. The
default pool also contains user defined workload groups
in addition to the default workload group.

B) Workload Groups

The workload group serves as a container for session re-
quests that are similar according to the classification crite-
ria (the criteria are applied to each request as it arrives).
The workload group provides users the capabilities of
monitoring resource consumption and applying a uni-
form policy to all the requests in the group. In the use of
Resource Governor, two workload groups, i.e., internal
and default, are predefined. Users cannot change anything
classified as the internal workload group, but users can
monitor the workload group. Incoming requests are clas-
sified into the default workload group if there are no criteria
defined to classify the incoming requests, or if there is an
attempt to classify the requests into a nonexistent group,
or there is a failure with the classification. Resource Gov-
ernor also supports the creation of user defined workload
groups. A user-defined workload group is assicated with
a resource pool, and it can be moved from one resource
pool to another.

C) Classification

Classification is used by Resource Governor to differen-
tiate the incoming session requests, which is based on a
set of user-written criteria defined in a classification func-
tion. The results of the function logic enable Resource
Governor to classify session requests into an existing
workload group. Before a classification function can be
used, users need to create and register the classification
function and update the Resource Governor configura-
tion. After the configuration change being applied, the
Resource Governor classifier can use the workload group
name returned by the function to send a new request to
the appropriate workload group. The characteristics and
behaviors of a classification function is that the function is
defined within the server scope, it is evaluated for each
new session, the function is designated as a classifier, and
it gives a workload group the context of a session.

D) Monitoring

Resource Governor provides users monitoring capabili-
ties to obtain execution statistics for workload groups and
resource pools. Performance counters, e.g., Workload Group
Stats and Resource Pool Stats, are used to collect workload
group and resource pool statistics. The first counter re-
ports statistics for each active workload group, such as
the number of active requests, and the number of blocked
requests. The second counter reports statistics for each
active resource pool, such as the number of memory
grants that occurs in the resource pool per second, and
the amount of memory that is used by the resource pool.
In addition to using the performance counters, Resource
Governor introduces events, e.g., CPU Threshold Exceeded,
Pre Connect Starting and Pre Connect Completed to indicate
when Resource Governor detects a query, which has ex-
ceeded the CPU threshold value, when Resource Gover-
nor Classifier starts execution, and when the classifier

finishes execution. Resource Governor also introduces
dynamic management views, e.g., Resource Governor Work-
load Groups, Resource Governor Resource Pools and Resource
Governor Configuration, to return current statistics and
configuration for workload groups and resource pools.

4.1.3 Teradata Active System Management

Teradata Active System Management (ASM) is a set of
tools and utilities used for managing complex workloads
on Teradata databases [71] [72]. Teradata ASM consists of
four main components, namely Teradata workload analyzer,
Teradata dynamic workload manager, Teradata manager and
Teradata regulator. The first three are the graphical user
interface (GUI) tools of Teradata client applications, and
the last one, Teradata regulator, is a component inside Te-
radata databases. The capabilities of Teradata ASM in-
clude analyzing and defining workloads, regulating sys-
tem resources, monitoring performance and identifying
abnormalities.

A) Teradata Workload Analyzer

The Teradata workload analyzer (WA) is a tool that provides
users recommendations on workload definition and operat-
ing rules. A workload definition is used for defining work-
loads, and the operating rules are used for helping data-
bases meet service level goals (SLGs). By analyzing the
data of database query log (DBQL), Teradata WA pro-
vides users workload recommendations, which include
workload definitions, workload SLGs, and the mapping
between workloads and resource allocation groups. By
using Teradata WA, users can also establish operating
rules based on the current system configurations and the
analysis of workload statistics.

A workload analysis process includes collecting query
DBQL, specifying dimensions to analyze the collected
data, and grouping the queries to form candidate work-
loads. Teradata WA recommends candidate workload
definitions based on the workload analysis. In the use of
the DBQL analysis, users can further refine the candidate
workload definition by either merging with another can-
didate workloads or splitting a candidate workload into
two or more separate candidate workloads.

B) Teradata Dynamic Workload Manager

The Teradata dynamic workload manager (DWM) supports
detailed creation and management of workload defini-
tions. The workload definition is a set of rules that de-
scribe a class of queries for the purpose of appropriate
resource allocation based on performance objectives. The
rules apply filters, throttles, and classification on queries
to regulate their execution behaviors, and determine ex-
ceptions. Teradata DWM provides users a GUI tool to
create rules and to manage workloads based on system
states or environment events.

Rules define how a Teradata database manages work-
loads. As described above, three types of rules, namely
filters, throttles and workload definitions, are used for man-
aging workloads. The filters reject unwanted logon or
queries before execution. There are two types of filters,
namely object access filters and query resource filters. The
object access filters limit access to specific database objects

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2017.2767044, IEEE Transactions on Knowledge and Data Engineering

ZHANG ET AL.: WORKLOAD MANAGEMENT IN DATABASE MANAGEMENT SYSTEMS: A TAXONOMY

 11

for certain or all types of SQL requests. The query resource
filters limits queries that are estimated to access ―too
many‖ rows, take ―too long‖ to complete, or perform cer-
tain types of joins.

The throttles (i.e., concurrency rules) limit the number
of active sessions, queries or utilities on a Teradata data-
base. There are two kinds of throttles, namely, object throt-
tles and utility throttles. The object throttles limit the num-
ber of queries executed simultaneously against a database
object. The utility throttles enforce concurrency limits on
the database utilities, such as load, export and restore,
that run simultaneously. The filter and throttle rules can
be applied to the database wide or to per workload.

The workload definitions specify how a Teradata data-
base regulates queries, which includes classification crite-
ria, execution behaviors, exception criteria and actions, and
SLGs. The classification criteria determine whether or not a
query can be assigned to a certain workload. The criteria
include ―who‖, which specifies the source of the request,
such as user id, account, application, and client IP ad-
dress, ―where‖, which specifies objects being accessed,
such as tables, views, and databases, and ―what‖, which
specifies characteristics of the request, such as estimated
processing time and join types. The execution behaviors
specify the mapping of a workload to a priority level and
a resource allocation group. The execution behavior also
defines a workload concurrency throttle, which specifies
how many queries can be executed at one time under the
workload definition. When the threshold is exceeded,
new queries are placed on a delay queue. The exception
criteria include a set of conditions, such as high IO skew
or too much CPU processing time, which are determined
after a query begins execution. The exception actions speci-
fy what actions to take when an exception occurs. SLGs
specify performance objectives of workloads.

C) Teradata Manager

The Teradata manager is a GUI tool that helps users moni-
tor a Teradata database and visualize real-time perfor-
mance and historical trends. The Teradata manager in-
cludes dashboard workload monitor and workload trend analy-
sis. The dashboard workload monitor provides a view of
current and recent historical workload status, as well as
the option of the change of the workload definition that is
assigned to the current session or all sessions. The infor-
mation provided by the dashboard workload monitor in-
cludes CPU usage per workload, number of active ses-
sions per workload, request arrival rate of a workload (in
the last collection period), the number of complete re-
quests per workload, response time of requests in a work-
load, the number of requests violate SLGs in a workload,
the number of requests currently on delay queue per
workload, list of session numbers, and workload names.
The workload trend analysis lists workload definitions ac-
cording to various user defined criteria, and reports
workload reources usage trends.

D) Teradata Regulator

The Teradata regulator is a proactive tool for managing the
system performance. Requests submitted to the system

are classified into an appropriate workload and managed
based on the workload’s operating rules, such as throttles,
resource priorities, and exception management. The regu-
lator also monitors queries as they run to check for excep-
tion conditions, such as CPU time, IO count, CPU to disk
ratio, CPU or IO skew, response time and blocked time,
and then handles them according the rules defined with
the workload definition configurations.

4.1.4 Evaluation of the Workload Management Systems

A summary of the workload management systems de-
scribed in the previous subsections is shown in Table 4.
The classification of the techniques employed in the sys-
tems is processed using the taxonomy of workload man-
agement techniques depicted in Section 3. The workload
management systems provide rich sets of monitoring
tools. Typically, monitoring is a separate component in a
DBMS, so the taxonomy of workload management tech-
niques does not examine and classify the monitoring
tools. As none of the systems implements any scheduling
technique, the scheduling class is not discussed and pre-
sented in the table.

TABLE 4
SUMMARY OF THE WORKLOAD MANAGEMENT SYSTEMS

Workload

Management

Systems

Workload

Characterization

Admission

Control
Execution Control

IBM DB2

Workload

Manager

[30]

Based on the

source or type of

incoming work,

workloads are

created

Thresholds are

used to manage

request concur-

rent levels at the

workload or the

database level

Service classes are

used to allocate

requests resources

and thresholds are

used to monitor and

control the request’s

execution behaviour

Microsoft SQL

Server Re-

source/Query

Covernor

[50] [51]

Using classifica-

tion functions,

incoming work is

differentiated in

workload groups

Query Governor

is used to eva-

luate arriving

queries based on

their cost limits

Resource pools

dynamically allocate

resources and per-

formance counters,

thresholds and views

are used to monitor

requests execution

behaviour

Teradata Active

System Man-

agement

[71] [72]

Teradata work-

load analyzer

recommends a

workload for a

class of queries

Filters & throt-

tles are used to

reject unwanted

requests and to

control request

concurrent levels

Teradata DWM

allocates resources to

requests based on the

workload definition,

and rules are used to

monitor and control

the request’s execu-

tion behaviour

IBM DB2 Workload Manager provides the identifica-
tion, management and monitoring stage to manage complex
workloads on DB2 databases. In the identification stage,
the workload and work class (set) are used to identify in-
coming work based on the source and the type of the in-
coming work. In the management stage, the service class is
used for providing an execution environment to defined
workloads. The execution environment allocates shared
system resources and creates thresholds to manage the
workload execution. Thresholds are used for detecting
exceptions and triggering actions if the thresholds are
violated. Actions include rejecting a request admission,
stopping a request execution and conducting priority ag-

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2017.2767044, IEEE Transactions on Knowledge and Data Engineering

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT

ing, e.g., downgrading resource access priorities of a run-
ning workload. In monitoring stage, the performance of
running workloads is monitored. By applying the tax-
onomy of workload management techniques, we examine
IBM DB2 Workload Manager and identify the employed
techniques in the workload management system, which
include static workload characterization, threshold-based
(costs, types and MPLs) admission control, and execution
control with query re-prioritization (dynamica resource
re-allocation) and query cancellation.

Microsoft SQL Server provides Resource Governor to
manage complex workloads on a Microsoft SQL Server.
The resource governor consists of resource pools, workload
groups and classification components. A resource pool has
two portions. One portion does not overlap with other
pools, which reserves minimum amount of resources. The
other portion is shared with other pools, which supports
maximum possible resource consumption. A workload
group serves as a container for requests that are similar
according to the classification criteria. Classification is
used to differentiate the incoming requests, which is
based on a set of user-written classification functions. The
Query Governor Cost Limit option is used for specifying
the upper limits of query execution time. The query gov-
ernor disallows execution of incoming queries that have
an estimated execution time exceeding the cost limit. By
applying the workload management technique taxonomy,
we examine Microsoft SQL Server Resource Governor
and identify the employed techniques in the system,
which include static workload characterization and ex-
ecution control with dynamic resource reallocation. The
Query Governor Cost Limit option employs threshold-
based admission control technique.

Teradata Active System Management is used for man-
aging complex workloads on a Teradata database. Tera-
data ASM consists of Teradata workload analyzer, Teradata
dynamic workload manager, Teradata manager and Teradata
regulator components. The main component of Teradata
ASM is Teradata dynamic workload manager. There are three
categories of rules, namely filters, throttles and workload
definitions, are used in Teradata dynamic workload manager
to provide workload definition and workload controls.
The filters reject unwanted logon and query requests be-
fore they are executed. The throttles limit the number of
active sessions, query requests, or utilities on a Teradata
database. The workload definition specifies a workload’s
classification criteria, execution behaviors, exception cri-
teria and actions and service level goals. To examine Te-
radata Active System Management, we apply the work-
load management technique taxonomy to identify the
employed techniques in the workload management sys-
tem. The techniques include static workload characteriza-
tion, threshold-based admission control, and execution
control with query cancellation.

4.2 Techniques in Research Literature

In contrast with the use of thresholds as a main execution
control mechanism in commercial databases, dynamic
workload scheduling and execution control approaches
have been developed in research. In the following subsec-

tions, we describe typical techniques proposed in the re-
search literature and classify them into a technique class
(and a subclass) by applying the taxonomy of workload
management techniques. A description of the techniques
is presented below.

4.2.1 Query Scheduling Techniques

Niu et al. [60] propose a query scheduler to manage the
execution order of multiple classes of queries in order to
achieve the workload’s service level objectives (SLOs).
The query scheduler is built on an IBM DB2 database sys-
tem and uses DB2 Query Patroller [30], the DB2 query
management system, to intercept arriving queries, ac-
quire information of the queries, determine a suitable
order of execution, and then release the queries to the
database engine for execution. The Query Scheduler has
two main processes, namely the workload detection
process and the workload control process.
 The workload detection process classifies arriving que-
ries based on their SLOs, which include the query’s per-
formance goals and business importance, and monitors
performance to detect whether or not queries are meeting
their performance goals. If the queries miss their perfor-
mance goals, the query scheduler calls the workload con-
trol process to change the mix of queries in order to allow
the more important queries to meet their performance
goals. The query scheduler’s workload control process
implements a cost-based approach and periodically gene-
rates new plans to respond to the changes in the mix of
arriving requests. A scheduling plan is generated based
on the cost limits of the service classes to which arriving
queries belong, the arriving queries’ performance goals
and the database system’s available capacity. The cost
limit of a service class is the allowable total cost of all con-
currently running queries belonging to the service class.
The query scheduler uses utility functions to estimate
how effective a particular cost limit will be in achieving
performance goals. An objective function, which is de-
fined based on the utility functions, is used to measure if
a scheduling plan is achieved, and an analytical model is
used to predict the system performance when a schedul-
ing plan is applied.

4.2.2 Request Throttling Techniques

A) Utility Throttling

Parekh et al. [64] propose a database utility throttling ap-
proach to limit the impact of on-line database utilities on
user’s work. Database utilities may include statistics up-
date, index rebuild, database backup and restore, and
data reorganization. These are essential operations for a
database system’s good performance as well as operation
and maintenance, but when they are executed on-line, the
database utilities can significantly degrade the perfor-
mance of production applications. The authors attempt to
show how these on-line utilities can be controlled so the
performance degradation of production applications can
be managed at an acceptable level.
 In their approach, a self-imposed sleep is used to slow
down (throttle) the on-line utilities by a configurable
amount. All work present on a database system is divided

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2017.2767044, IEEE Transactions on Knowledge and Data Engineering

ZHANG ET AL.: WORKLOAD MANAGEMENT IN DATABASE MANAGEMENT SYSTEMS: A TAXONOMY

 13

into two classes, namely utilities and production applica-
tions. The system monitors the performance of the pro-
duction applications and reacts according to high-level
policies to decide when to throttle the utilities and esti-
mates the appropriate amount of throttling. The perfor-
mance degradation of production applications is deter-
mined by comparing the current performance with the
baseline performance acquired by the production applica-
tions. The authors assume a linear relationship between
the amount of throttling and system performance and use
a Proportional-Integral controller to control the amount of
throttling, and a workload control function translates the
throttling level into a sleep fraction for the on-line utili-
ties.

B) Query Throttling

Using the work of Parekh et al., Powley et al. [65] [66]
propose an autonomic query throttling approach to dy-
namically throttle large queries in a database system
based on high-level business objectives. Query throttling
is a workload execution control approach that slows the
execution of large queries to free up resources for other
work running concurrently in the system to achieve the
required performance goals. In their approach, a self-
imposed sleep is used to slow down (throttle) long-
running queries, and an autonomic controller automati-
cally determines the amount of throttling for large queries
needed to allow other concurrently running queries to
meet their performance goals.
 Powley et al. use autonomic computing principles [22]
to build two different types of controllers, a simple con-
troller and a black-box model controller, and compare
their effectiveness in determining that high priority work-
loads meet their goals. The simple controller is based on a
diminishing step function, and the black-box model con-
troller uses a system feedback control approach. The au-
thors also develop two query throttling methods, which
are called constant throttle and interrupt throttle. The
constant throttling method involves many short pauses,
which are consistent and evenly distributed throughout a
query’s run time, thus slowing the query’s execution. The
pause length is a parameter that can be defined by a user,
but the number of pauses is determined by the amount of
throttling. The interrupt throttling method involves only
one pause throughout a query’s run time, and the pause
length is determined by the amount of throttling.

4.2.3 Query Suspension and Resumption Techniques

Chandramouli et al. [10] propose a query suspend-and-
resume approach to controlling long-running and re-
source-intensive analytical queries. It is a query execution
control technique that attempts to provide DBMSs with
the ability to quickly suspend long-running and low-
priority queries when high-priority queries arrive, and
resume the suspended queries when the high-priority
work has completed. To achieve this goal, the lifecycle of
traditional query execution is augmented with two new
phases, called suspend and resume, that are triggered on
demand.

 Once the database query optimizer chooses an execu-
tion plan for a query, the query enters its execution phase.
Upon receiving a suspension request, the query enters its
suspension phase. A SuspendedQuery data structure is
produced in this phase, which encapsulates all the infor-
mation needed to resume the query later. This structure
may be written on disk. A suspend cost is incurred dur-
ing the query’s suspension, but it needs to be low. After
suspension, all of the query’s resources are released.
When the DBMS is ready to resume the query, it enters
the resume phase. The SuspendedQuery structure is read
back into memory and the query’s execution state is set to
the suspend point, so the execution phase can continue
from where it was interrupted. In their approach, asyn-
chronous checkpointing is proposed in the execution
phase, with each operator checkpointing independently
of others in the query plan. In the suspend phase, a new
suspend strategy, GoBack, is proposed as an alternative
to DumpState, so an operator writes only its current con-
trol state to the SuspendedQuery structure at the time of
suspend. Although GoBack incurs a lower suspend cost
than DumpState, it can result in a higher resume cost than
DumpState in the resume phase. In their approach, au-
thors use mixed-integer programming to find the optimal
suspend plan that minimizes the total overhead of sus-
pend/resume while meeting a given suspend cost con-
straint.

4.2.4 Query Kill and Resource Reallocation Techniques

Krompass et al. [39] propose an automated workload ex-
ecution control approach for Business Intelligence work-
loads on a data warehouse. Managing BI workloads can
be a challenge as BI queries exhibit large variances in re-
sponse times, resource demands and may have different
SLOs. The workload execution control approach consists
of two main components, a query execution controller
and a set of query execution control actions. The execu-
tion control component is implemented with a rule-based
fuzzy logic controller, and the query execution control
actions include query reprioritize, kill and resubmit after
kill. The workload execution control approach is used to
manage problematic queries that consume a large amount
of resources and run for a long time.

The authors use a fuzzy logic controller as they believe
the fuzzy logic paradigm can address issues including
classifying queries based on the expected behavior where
the queries’ execution times are not entirely predictable;
governing queries’ execution where there are numerous
factors that have to be considered; complete knowledge
about the state of a data warehouse and the queries run-
ning in the system is not available due to the complexity
of the system. In their workload execution control ap-
proach, the controller uses information gathered at run-
time to manage the queries concurrently running in a
database system. The monitored metrics include priority,
number of query cancellations, operator progress, re-
source contention etc., in which the priority of a query has
an impact on the resource allocation. Based on these me-
trics, the controller can impose several control actions on

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2017.2767044, IEEE Transactions on Knowledge and Data Engineering

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT

the problematic queries in order to control workloads.
With the reprioritize action a query is re-prioritized and
its resources are redistributed immediately among the
other queries according to the priorities of the individual
queries. The kill action kills a running query and imme-
diately frees the resources used by the query. Any inter-
mediate results generated during the execution of the
query are disposed. The kill-and-resubmit action kills a
running query and the query is queued again for subse-
quent execution.

4.2.5 Evaluation of the Workload Management

Techniques

In this section, we apply the taxonomy to classify the re-
search techniques discussed in the previous subsections.

TABLE 5
SUMMARY OF THE WORKLOAD MANAGEMENT TECHNIQUES

Proposed

Techniques

Technique

Classes
Features Objectives

Niu et al.

[60]

Admission

Control &

Scheuling

Intercepting arriving

queries, acquiring

their information,

and determining an

execution order

Achieving a set

of service level

objectives for

multiple concur-

rent workloads

Parekh et al.

[64]

Execution

Control,

throttling

A self-imposed sleep

slows down online

utilities; a Propor-

tional Integral con-

troller determines the

amount of throttling

Maintaining

performance of

running work-

loads at an

acceptable level

Powley et al.

[65] [66]

Execution

Control,

throttling

A self-imposed sleep

slows down large

queries; a step func-

tion and a black-box

model determine the

amount of throttling

Meeting the

service level

objectives of

high-priority

requests

Chandramouli

et al. [10]

Execution

Control,

suspend and

resume

Query execution is

augmented with

suspend and resume

phases that are trig-

gered on demand

Achieving high

performance for

high-priority

requests

Krompass et

al. [39]

Execution

Control, query

cancellation and

reprioritization

Cancelling or repri-

oritizing low-priority

and long-running

queries

Achieving high

performance for

high-priority

requests

The query scheduler technique proposed by Niu et al.
can be classified into query scheduling and admission
control classes, as the technique attempts to determine the
execution order for arriving queries, and to maintain the
optimal number of concurrent requests in a database sys-
tem based on the performance goals, cost limits and
priorities of the arriving queries. The database utility
throttling approach proposed by Parekh et al. and the
large query throttling approach proposed by Powley et
al., respectively, can be classified into query throttling
technique subclass, as the techniques attempt to slow
down the execution of a running request. Although a da-
tabase utility is not a query, the actual meaning of ―query
throttling‖ here is the database request throttling. The
query suspension and resumption approach proposed by
Chandramouli et al. is a typical technique in query sus-
pend & resume subclass, as it attempts to stop the process
of a running query and restart it at a later time. The work-
load execution control approach proposed by Krompass

et al. can be classified into query kill and resource reallo-
cation subclasses, as the typical query kill and resource
reallocation techniques shown in Section 3 are used in the
workload execution control approach. A summary of the
research techniques described above is shown in Table 5.

5 CONCLUSIONS AND FUTURE RESEARCH

5.1 Summary

In this paper, we present a systemic study of workload
management in DBMSs. We surveyed workload man-
agement systems implemented in today’s commercial
DBMSs and techniques proposed in the recent research
literature. We propose a taxonomy of workload manage-
ment techniques to classify workload management tech-
niques and identity the techniques employed in a work-
load management system. The taxonomy categorizes
workload management techniques into four major tech-
nique classes, namely workload characterization, query
admission control, query scheduling and query execution
control technique classes. In a workload management
technique class, the techniques may be further divided
into subclasses based on their distinct technique mechan-
isms. We also introduce the underlying principles of
workload management technology used by today’s com-
mercial DBMSs, which are outlined as defining perfor-
mance objectives for arriving queries based on a given
SLA, identifying the arriving queries present on a data
server, and imposing controls on the queries to manage
their behaviors in order to achieve the performance goals.

In the taxonomy of workload management techniques,
we show that the typical technique used in the workload
characterization technique class is workload definition
associated with resource allocation. The typical technique
used in the query admission control techniques class is
setting thresholds for queries. The typical techniques used
in the query scheduling technique class are managing
query waiting queues and query restructure, and in the
query execution control technique class, the typical tech-
niques are query suspension, resource reallocation and
query kill, in which the query suspension type techniques
can be further divided into query throttling and query
suspend-and-resume subtypes.

5.2 Open Problems

Despite the efforts of researchers and developers in both
academia and industry to provide facilities to effectively
manage highly varied and frequently changing work-
loads, workload management in DBMSs is still an open
research area. There are several issues that need to be ex-
plored and addressed for today’s workload management
systems, which include automatically choosing and ap-
plying appropriate techniques to manage customers’ re-
quests during execution, dynamically estimating availa-
ble system capacity and execution progress of running
queries as well as reducing the complexity of a workload
management system’s operation and maintenance.

Varied workload management techniques, as dis-
cussed previously, have been developed and imple-
mented in most major commercial DBMSs, but it is un-

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2017.2767044, IEEE Transactions on Knowledge and Data Engineering

ZHANG ET AL.: WORKLOAD MANAGEMENT IN DATABASE MANAGEMENT SYSTEMS: A TAXONOMY

 15

clear what techniques are appropriate and should be cho-
sen and applied to be most effective for a particular work-
load executing on the DBMSs under certain particular
circumstances, or how the multiple techniques can be
well coordinated to manage performance of all running
workloads to meet their required performance goals. For
example, consider a data server, where there is an ad hoc
workload present while a large number of important
transactional requests are arriving. The ad hoc workload’s
execution may need to be restricted in order to free up
sufficient shared system resources for the important re-
quests to reach their performance goals. To restrict the ad
hoc workload execution, several approaches may be ap-
plied, which include the ad hoc workload’s kill, throttle,
suspension and resumption, and priority degradation for
shared system resource access. It is unclear which tech-
niques are most appropriate and effective under this cir-
cumstance. In addition, the interplay among multiple
workload management techniques can be difficult to an-
ticipate at runtime.

System capacity estimation is also significant in the
workload management process, as all controls imposed
on the end user’s requests are based on the system state.
If the system state of a database server is overloaded, no
requests can be admitted and scheduled, while some run-
ning requests should have their execution slowed down
and release some used resources. The progress estimation
of a running query provides the necessary information for
the query’s execution control. A small query may be
queued in a database system for a certain amount time for
execution, and the query’s spent time in the system ex-
ceeds the threshold upper limits of query execution time.
If there is less information about the query progress, the
query can be treated as a long-running query and killed
for releasing shared system resources for more important
requests. However the performance of important requests
would not be improved as the query was not a big con-
sumer of the resources.

A DBMS is a complex information management sys-
tem, and it can have hundreds of tuning parameters for
performance optimization. With the integration of work-
load management features, a large number of workload
control threshold values must be well understood and set
by the system administrators, thus rendering the entire
system becomes more complex in terms of operation and
maintenance.

5.3 Our Vision, Approach and Future Research

In order to resolve these issues, many researchers and
engineers [48] [59] [77] consider that building an auto-
mated workload management system for DBMSs is a
possible approach. An automated workload management
system is a self-managing system, which is capable of
automatically controlling complex workloads on a DBMS
based on the workload performance goals, actual perfor-
mance behaviors and the available system resources. To
achieve this goal, we envision Autonomic Computing as
the most effective approach [22] [29] [32]. The initiative of
autonomic computing aims to provide the foundation for

systems to manage themselves without direct human in-
tervention in order to reduce the complexity of the com-
puting environment and infrastructure. In this vision,
systems manage themselves in accordance with high-
level business objectives, and a fully autonomic compu-
ting system has the properties of self-configuring, self-
optimizing, self-protecting and self-healing. Self-
configuring means computing systems are able to auto-
matically configure components to adapt to dynamically
changing environments. The functionality of the property
allows the addition and removal of system components or
resources without system service disruptions. Self-
optimizing means that systems automatically monitor
and control the resources to ensure optimal functioning
with respect to the defined requirements. Self-healing
means that systems are able to recognize and diagnose
deviations from normal conditions and take action to
normalize them. This property enables a computing sys-
tem to proactively circumvent issues which could cause
service disruptions. Self-protecting means computing
systems are able to proactively identify and protect from
arbitrary attacks.

Although, in the current evolution stage, autonomic
computing faces a challenge that no one has yet built a
large-scale fully autonomic computing system or proto-
type, many successful autonomic components have been
developed and are proving useful in their own right [33]
[49]. In particular, we consider applying autonomic com-
puting principles to build an autonomic workload man-
agement system for DBMSs to manage complex work-
loads based on given high-level business objectives. The
autonomic workload management system may include all
the typical workload management techniques discussed
previously implemented using feedback loop control and
utility functions [34] [75]. The feedback loop control con-
sists of four components, which are a monitor that conti-
nuously monitors a database system performance, an ana-
lyzer that analyzes the database system available capacity
and the running query’s execution progress, and com-
pares the running query’s performance with their re-
quired performance goals, a planner that decides what
technique is most effective for a running workload under
its certain circumstances by applying the utility function,
and an effector that imposes the control on the workload.
The feedback control loop monitors changes of a database
system’s performance and running workload’s type mix,
takes effective actions and keeps the workloads to meet
their performance goals [80].

ACKNOWLEDGMENT

The authors wish to thank Dr. Yanto Qiao for editing the
first version of this paper.

REFERENCES

[1] A. Aboulnaga and S. Babu. ―Workload Management for Big Data Ana-

lytics‖. Tutorial at the ACM SIGMOD International Conference on Man-

agement of Data (SIGMOD '13), New York, USA. June 2013. pp. 929-932.

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2017.2767044, IEEE Transactions on Knowledge and Data Engineering

16 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT

[2] M. Ahmad, A. Aboulnaga, S. Babu and K. Munagala. ―Interaction-

aware Scheduling of Report-generation Workloads‖. In Intl. Journal on

Very Large Data Bases. Vol. 20, Issue 4, August 2011. pp. 589-615.

[3] P. Bird and R. Kalesnykas. ―Best Practices: Implementing DB2® Work-

load Management in a Data Warehouse‖, a White Paper of IBM. 2011.

[4] H. Boughton, M. Zhang, W. Powley, P. Martin, P. Bird and R. Horman.

―Using Economic Models to Capture Importance Policy for Tuning in

Autonomic Database Management Systems‖. In International Journal of

Autonomic Computing, Vol. 2, No. 2, 2016.

[5] K. P. Brown, M. J. Carey, and M. Livny. ―Managing Memory to Meet

Multiclass Workload Response Time Goals‖. In Proc. of the 19th Intl.

Conf. on Very Large Data Bases (VLDB ’93). Dublin, Ireland. August 24-

27, 1993. pp. 328-341.

[6] N. Bruno, V. Narasayya and R. Ramamurthy ―Slicing Long-Running

Queries‖. In Proc. of the VLDB Endowment. Vol. 3, Issue 1-2, Sept. 2010.

pp. 530-541.

[7] M. J. Carey, S. Krishnamurthi and M. Livny. ―Load Control for Locking:

The Half-and-Half Approach‖. In (PODS’90): Proc. of the 9th ACM SI-

GACT-SIGMOD-SIGART Symposium on Principles of Database Systems.

1990. pp. 72-84.

[8] S. Castro, N. Tezulas, B. Yu, J. Berg, H. Kim and D. Gfroerer. ―AIX 5L

Workload Manager (WLM)‖. An IBM RedBooks Publication, June 2001.

[9] W. J. Chen, B. Comeau, T. Ichikawa, S.S. Kumar, M. Miskimen, H.T.

Morgan, L. Pay and T. Väättänen. ―DB2 Workload Manager for Linux,

Unix, and Windows‖. An IBM RedBooks Publication, May 2008.

[10] B. Chandramouli, C. N. Bond, S. Babu, and J. Yang. ―Query Suspend

and Resume‖. In Proc. of the ACM SIGMOD Intl. Conf. on Management of

Data, Beijing, China, 2007. pp. 557-568.

[11] S. Chaudhuri, R. Kaushik, and R. Ramamurthy. ―When Can We Trust

Progress Estimators for SQL Queries?‖ In Proc. of the 2005 ACM SIG-

MOD Intl. Conf. on Management of Data. USA. 2005. pp. 575-586.

[12] S. Chaudhuri, R. Kaushik, A. Pol, and R. Ramamurthy. ―Stop-and-

Restart Style Execution for Long Running Decision Support Queries‖.

In Proc. of VLDB ‘07, Vienna, Austria, 2007. pp. 735-745.

[13] S. Chaudhuri. ―An Overview of Query Optimization in Relational

Systems‖. In (PODS’98): Proc. of the 17th ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems. 1998. pp. 34-43.

[14] B. Dageville and M. Zait, ―SQL Memory Management in Oracle9i‖. In

Proc. of VLDB’02, Hong Kong, China. 2002. pp. 962-973.

[15] D. L. Davison, G. Graefe. “Dynamic Resource Brokering for Multi-User

Query Execution”. In ACM SIGMOD Record, Volume 24, Issue 2, May

1995. pp. 281-292.

[16] P. J. Denning. ―Thrashing: Its Causes and Prevention‖. In Proceedings of

the AFIPS Joint Computer Conferences. San Francisco, California, USA.

December 1968. pp. 915-922.

[17] Y. Diao, J. L. Hellerstein, S. Parekh, R. Griffith, G. E. Kaiser and D. B.

Phung. ―A Control Theory Foundation for Self-Managing Computing

Systems‖. IEEE Journal on Selected Areas in Communications. Vol. 23, No.

1, January 2005. pp. 2213-2222.

[18] J. Duggan, U. Cetintemel, O. Papaemmanouil and E. Upfal. ―Perfor-

mance Prediction for Concurrent Database Workloads‖. In Proc. of

SIGMOD’11. Athens, Greece. June 2011. pp. 337-348.

[19] S. Elnaffar, P. Martin and R. Horman. ―Automatically Classifying Data-

base Workloads‖. In Proc. of CIKM‘02. McLean, VA, USA. November 4-

9, 2002. pp. 622-624.

[20] D. F. Ferguson, C. Nikolaou, J. Sairamesh, and Y. Yemini. ―Economic

Models for Allocating Resources in Computer Systems‖. In Market-

based Control: A Paradigm for Distributed Resource Allocation. World Scien-

tific Publishing Co., Inc. River Edge, NJ, USA, 1996. pp. 156-183.

[21] A. Ganapathi, H. Kuno, U. Dayal, J. Wiener, A. Fox, M. Jordan and D.

Patterson. ―Predicting Multiple Metrics for Queries: Better Decisions

Enabled by Machine Learning‖. In Proc. of ICDE ‘09. March 29 - April 2,

2009. Shanghai, China. pp. 592-603.

[22] A.G. Ganek and T.A. Corbi, ―The Dawning of the Autonomic Compu-

ting Era‖. In IBM System Journal, Vol. 42, Issue 1, Jan. 2003. pp. 5-18.

[23] C. Gupta, A. Mehta and U. Dayal. ―PQR: Predicting Query Execution

Times for Autonomous Workload Management‖. In Proc. of the 5th Intl.

Conf. on Autonomic Computing (ICAC’08). Chicago, IL, USA. June 2-6,

2008. pp. 13-22.

[24] C. Gupta, A. Mehta, S. Wang, and U. Dayal. ―Fair, Effective, Efficient

and Differentiated Scheduling in an Enterprise Data Warehouse‖. In

Proceedings of the 12th International Conference on Extending Database Tech-

nology: Advances in Database Technology, Saint Petersburg, Russia, 2009.

pp. 696-707.

[25] G. Graefe. ―Query Evaluation Techniques for Large Databases‖. ACM

Computing Surveys. Vol. 25, Issue 2, June 1993. pp. 73-169.

[26] H. Heiss and R. Wagner. ―Adaptive Load Control in Transaction

Processing Systems‖. In Proc. of the 17th Intl. Conf. on Very Large Data

Bases (VLDB’91). pp. 47-54.

[27] J. M. Hellerstein, M. Stonebraker and J. Hamilton. ―Architecture of a

Database System‖. Foundations and Trends in Database. Volume 1, Issue

2, 2007. pp. 141-259.

[28] J. L. Hellerstein, Y. Diao, S. Parekh and D. M. Tilbury, ―Feedback Con-

trol of Computing Systems‖, IEEE Press, Wiley-Interscience, John Wiley

& Sons, Inc, 2004.

[29] M. C. Huebscher and J. A. McCann. ―A Survey of Autonomic Compu-

ting - Degrees, Models, and Applications‖. ACM Computing Surveys,

Volume 40, Issue 3, August 2008, Article No. 7.

[30] IBM Corp., ―IBM DB2 Database for Linux, UNIX, and Windows Do-

cumentation‖. On-line Documents. https://publib.boulder.ibm.com/

infocenter/db2luw/v9r7/index.jsp

[31] IBM Corp., ―Cognos Business Intelligence 10.2.2 Product Documenta-

tion‖. On-line Documents. http://www-

01.ibm.com/support/docview.wss?uid=swg27042003

[32] J. O. Kephart and D. Chess, ―The Vision of Autonomic Computing‖.

Computer, Volume 36, Issue 1, January 2003. pp. 41-50.

[33] J. O. Kephart, ―Research Challenges of Autonomic Computing‖. In

Proceedings of the 27th International Conference on Software Engineering, St.

Louis, MO, USA, 2005. pp. 15-22.

[34] J. O. Kephart and R. Das, ―Achieving Self-Management via Utility

Functions,‖ IEEE Internet Computing. IEEE Educational Activities De-

partment, Piscataway, NJ, USA. Vol. 11, Issue 1, Jan. 2007, pp. 40-48.

[35] L. Kleinrock. ―Queueing Systems: Volume 1, Theory‖. John Wiley &

Sons, 1975.

[36] D. Kossmann, ―The State of the Art in Distributed Query Processing‖.

In ACM Computing Surveys, Volume 32, Issue 4, December 2000. pp.

422-469.

[37] S. Krompass, H. Kuno, J. L. Wiener, K. Wilkison, U. Dayal and A.

Kemper, ―Managing Long-Running Queries‖. In Proceedings of the 12th

International Conference on Extending Database Technology: Advances in Da-

tabase Technology, Saint Petersburg, Russia, 2009. pp. 132-143.

[38] S. Krompass, A. Scholz, M. C. Albutiu, H. Kuno, J. Wiener, U. Dayal

and A. Kemper. ―Quality of Service-Enabled Management of Database

Workloads‖. In Special Issue of IEEE Data Engineering Bulletin on Testing

and Tuning of Database Systems, IEEE Computer Society, 2008.

[39] S. Krompass, H. Kuno, U. Dayal and A. Kemper, ―Dynamic Workload

Management for Very Large Data Warehouses - Juggling Feathers and

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2017.2767044, IEEE Transactions on Knowledge and Data Engineering

ZHANG ET AL.: WORKLOAD MANAGEMENT IN DATABASE MANAGEMENT SYSTEMS: A TAXONOMY

 17

Bowling Balls‖, In Proceedings of 33rd International Conference on Very

Large Databases. Vienna, Austria, 2007. pp. 1105-1115.

[40] E. Lazowska, J. Zahorjan, G. S. Graham and K. C. Sevcik ―Quantitative

System Performance: Computer System Analysis Using Queueing

Network Models‖. Prentice-Hall Inc., Englewood Cliffs, New Jersey,

1984.

[41] K. Lee et al. ―Operator and Query Progress Estimation in Microsoft SQL

Server Live Query Statistics‖. In Proc. of SIGMOD‘16. San Francisco,

USA, June 26 – July 1, 2016.
[42] J. Li, A. C. König, V. Narasayya and S. Chaudhuri. ―Robust Estimation

of Resource Consumption for SQL Queries Using Statistical Tech-

niques‖. In Proc. of the VLDB Endowment. Vol. 5 Issue 11, July 2012. pp.

1555-1566.

[43] J. Li, R. V. Nehme and J. Naughton. ―GSLPI: A Cost-Based Query

Progress Indicator‖. In Proc. of the 28th Intl. Conf. on Data Engineering

(ICDE ‘12). Washington, DC, USA. 2012. pp. 678-689.

[44] J. Lobo, R. Bhatia and S. Naqvi, ―A Policy Description Language‖, in

Proc. of 16th National Conf. on Artificial Intelligence, AAAI/IAAI, Orlando,

Florida, USA, 1999. pp. 291-298.

[45] G. Luo, J. F. Naughton, C. J. Ellmann, and M. W. Watzke. ―Increasing

the Accuracy and Coverage of SQL Progress Indicators‖. In Proc. of the

21st Intl. Conf. on Data Engineering (ICDE ’05). Tokyo, Japan. April 5-8,

2005. pp. 853-864.

[46] P. Martin, M. Zhang, W. Powley, H. Boughton, P. Bird and R. Horman.

―The Use of Economic Models to Capture Importance Policy for Auto-

nomic Database Management Systems‖. In Proc of the 1st ACM/IEEE

Workshop on Autonomic Computing in Economics in Conjunction with the

8th Intl. Conf. on Autonomic Computing (ICAC’11). 2011. Germany. pp. 3-

10.

[47] A. Mehta, C. Gupta and U. Dayal. ―BI Batch Manager: A System for

Managing Batch Workloads on Enterprise Data-Warehouses‖. In Proc.

of the 11th Intl. Conf. on Extending Database Technology: Advances in Data-

base Technology (EDBT’08). Nantes, France. March 25-30, 2008. pp. 640-

651.

[48] A. Mehta, C. Gupta, S. Wang and U. Dayal, ―Automated Workload

Management for Enterprise Data Warehouses‖. In Bulletin of the IEEE

Computer Society Technical Committee on Data Engineering, Vol.31, No.1,

March 2008. pp. 11-19.

[49] D.A. Menascé and J. O. Kephart, ―Guest Editors' Introduc-

tion: Autonomic Computing‖. In IEEE Internet Computing, Vol. 11, Issue

1, January 2007. pp. 18-21.

[50] Microsoft Corp., ―Managing SQL Server Workloads with Resource

Governor‖. http://msdn.microsoft.com/en-us/library/bb933866.aspx

[51] Microsoft Corp., ―Query Governor Cost Limit Option‖.

http://msdn.microsoft.com/en-us/library/ms190419.aspx

[52] Microsoft Corp., ―In-Memory OLTP‖. https://docs.microsoft.com/en-

us/sql/relational-databases/in-memory-oltp

[53] MemSQL Inc., Online Docs. http://www.memsql.com/

[54] Y. Meng, P. Bird, P. Martin and W. Powley, ―An approach to managing

the execution of large SQL queries‖. In CASCON ’07: Proc. of the 2007

Conf. of the Center for Advanced Studies on Collaborative Research. Toronto,

Canada. October 2007. pp. 268 - 271.

[55] C. Mishra, N. Koudas. ―The design of a query monitoring system‖.

ACM Trans. Database Syst., 34(1), 2009.

[56] A. Moenkeberg and G. Weikum, ―Performance Evaluation of an Adap-

tive and Robust Load Control Method for the Avoidance of Data Con-

tention Thrashing‖. In Proc of the 18th Intl. Conf. on Very Large Data Bases

(VLDB’92), Vancouver, BC, Canada, pp. 432- 443.

[57] J. Moffett and M. Sloman. ―Policy Hierarchies for Distributed Systems

Management‖. In IEEE Journal on Selected Areas in Communications, Vo-

lume 11, Issue 9, December, 1993.

[58] D. Narayanan, E. Thereska and A. Ailamaki. ―Continuous Resource

Monitoring for Self-Predicting DBMS‖. In Proc. of the 13th IEEE Intl.

Symposium on Modeling, Analysis, and Simulation of Computer and Tele-

communication Systems. Atlanta, Georgia, USA. September 27-29, 2005.

pp. 239-248.

[59] B. Niu, P. Martin and W. Powley, ―Towards Autonomic Workload

Management in DBMSs‖. In Journal of Database Management, 20(3), 1-17,

July-September 2009.

[60] B. Niu, P. Martin, W. Powley, R. Horman, and P. Bird. ―Workload

Adaptation in Autonomic DBMSs‖, In CASCON ’06: Proc. of the 2006

Conf. of the Center for Advanced Studies on Collaborative Research. Toronto,

Canada. October 2006.

[61] Oracle Corp., ―Oracle Database Resource Manager‖. On-line Documents.

http://download.oracle.com/docs/cd/B28359_01/server.111/b28310

/dbrm.htm#i1010776

[62] Oracle Corp., ―Oracle Database In-Memory with Oracle Database 12c

Release 2‖. An Oracle White Paper, March 2017.

[63] Pivotal Greenplum. ―Pivotal Greenplum Database v4.2.8 Documenta-

tion‖. http://gpdb.docs.pivotal.io/gpdb-428.html

[64] S. Parekh, K. Rose, J. Hellerstein, S. Lightstone, M. Huras and V. Chang.

―Managing the Performance Impact of Administrative Utilities‖. In

Proc. of Self-Managing Distributed Systems, Springer Berlin, Heidelberg,

February 2004. pp. 130-142.

[65] W. Powley, P. Martin, M. Zhang, P. Bird and K. McDonald. ―Autonom-

ic Workload Execution Control Using Throttling‖. In Proc. of 2010 IEEE

26th International Conference on Data Engineering Workshops (5th Interna-

tional Workshop on Self-Managing Database Systems), Long Beach, CA,

USA. March 1-6, 2010.

[66] W. Powley, P. Martin and P. Bird, ―DBMS Workload Control Using

Throttling: Experimental Insights‖. In CASCON ’08: Proc. of the 2008

Conf. of the Center for Advanced Studies on Collaborative Research. Toronto,

Canada. October 2008. pp. 1-13.

[67] R. Ramakrishnan and J. Gehrke. ―Database Management Systems‖ (3rd

Edition). McGraw-Hill. 2003.

[68] SAP HANA, Online Docs. https://www.sap.com/products/hana.html

[69] B. Schroeder, M. Harchol-Balter, A. Iyengar, E. Nahum and A. Wier-

man. ―How to Determine a Good Multi-Programming Level for Exter-

nal Scheduling‖. In Proc. of the 22nd Intl. Conf. on Data Engineering. At-

lanta, GA, USA. April 3-8, 2006.

[70] B. Schroeder, A. Wierman and M. Harchol-Balter. ―Open vs. Closed: A

Cautionary Tale‖. In Proc. of the 3rd Conf. on Networked Systems Design &

Implementation (NSDI'06). 2006.

[71] Teradata Corp., ―Teradata Workload Analyzer User Guide‖.

http://www.info.teradata.com/download.cfm?ItemID=1002974

[72] Teradata Corp., ―Teradata Dynamic Workload Manager User Guide‖.

http://www.info.teradata.com/download.cfm?ItemID=1005768

[73] Q. T. Tran, K. Morfonios and N. Polyzotis. ―Oracle Workload Intelli-

gence‖. In Proc. of SIGMOD’15. Melbourne, Victoria, Australia. May 31 -

June 04, 2015. pp. 1669-1681.

[74] R. Vaupel, ―z/OS Workload Manager: How It Works and How to Use

It‖, a White Paper of IBM. April 2014.

[75] W.E. Walsh, G. Tesauro, J.O. Kephart, R. Das. ―Utility Functions in

Autonomic Systems‖, In Proc. of the 1st Intl. Conf. on Autonomic Compu-

ting. New York, USA. May 17-18, 2004. pp. 70-77.

[76] T. Wasserman, P. Martin and H. Rizvi, ―Sizing DB2 UDB Servers for

Business Intelligence Workloads‖. In Proc. of the Conf. of the Center for

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2017.2767044, IEEE Transactions on Knowledge and Data Engineering

18 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT

Advanced Studies on Collaborative Research (CASCON’04). Toronto, Can-

ada. October, 2004. pp. 135-149.

[77] G. Weikum, A. Moenkeberg, C. Hasse and P. Zabback. ―Self-tuning

Database Technology and Information Services: from Wishful Thinking

to Viable Engineering‖. In Proceedings of 28th International Conference on

Very Large Databases, Hong Kong, China. August 20-23, 2002. pp. 20–31.

[78] M. Zhang, P. Martin, W. Powley and P. Bird. ―Using Economic Models

to Allocate Resources in Database Management Systems‖, In CASCON

’08: Proc. of the 2008 Conf. of the Center for Advanced Studies on Collaborative

Research. Toronto, Canada. October 2008. pp. 248-259.

[79] M. Zhang, P. Martin, W. Powley, P. Bird, and K. McDonald. ―Discover-

ing Indicators for Congestion in DBMSs‖. In Proc. of the 7th Intl. Work-

shop on Self-managing Database Systems in Conjunction with the 28th Intl.

Conf. on Data Engineering (ICDE’12). Washington, DC, USA. 2012. pp.

263-268.

[80] M. Zhang, P. Martin, W. Powley, P. Bird and D. Kalmuk. ―A Frame-

work for Autonomic Workload Management in DBMSs‖. it - Informa-

tion Technology. Volume 56, Issue 1, Feb 2014.

Mingyi Zhang is a Database Kernel Engineer at Huawei America
Research in Santa Clara, California. He holds a PhD in Computer
Science from Queen’s University. His research interests include
performance management in database management systems, cloud
computing and autonomic computing.

Patrick Martin is a Professor in the School of Computing at Queen’s
University and the Director of the Database Systems Laboratory. He
is a faculty fellow and a Visiting Scientist at the IBM’s Centre for
Advanced Studies and a Scotiabank Scholar. His research interests
include big data analytics, database system performance, cloud
computing and autonomic computing systems.

Wendy Powley is a Lecturer in the School of Computing at Queen’s
University. She holds a Masters of Science in Computer Science
from Queen’s University and worked as a Research Associate in the
Database Systems Laboratory from 1992–2016. Her research inter-
ests include autonomic computing, workload management for data-
base management systems and cloud computing.

Jianjun Chen is a Tech VP and head of advanced database re-
search and development group in Huawei US Santa Clara R&D
Center. He has 15+ year working experience in database area. He
had been working on many database related products in Microsoft,
Yahoo lab!, and Google before joining Huawei. He graduated with a
Ph.D from Computer Science department of University of Wisconsin,
Madison in 2002.

