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Correlation between Strategic and Operational RiskMitigation Strategies in
Supply Networks

ﬁbssut;r)?nf; network’s performance is affected by twpes of risk: 1) risk of disruptions that distdnet
supply network’s topology by inactivating certairoguction facilities or transportation lanes; andigk

of variations in a facility’'s performance that reduhe efficiency of the supply network’s flow phémg

for fulfilling demands. In this paper, we demontdrdhat strategic and operational risk mitigation
strategies, which neutralize the impacts of disamgt and variations, respectively, are correlaidie.
consider “Robustness” and “Resilience” at a stiatkgyel to mitigate disruptions and “Reliabilitgt an
operational level to mitigate variations.

A mixed integer stochastic mathematical model igettped to simultaneously a) design a robust and
resilient topology for supply networks; and b) pkameliable flow throughout its topology. We sobhe
model using an example of a profit-based supplywoet that is constructed by relying on the
assumptions that were primarily used in prior stadA sensitivity analysis of the results from thedel
indicates that i) the correlation between robustraa®l resilience is negative; ii) the correlati@meen
robustness and reliability is positive; and iii¢ ttorrelation between resilience and reliabilitpégative.

Keywords: Supply Network; Robust Design; Disruption; Vaioat Reliability; Resilience; Flexibility.

1. Introduction
Supply networks (SNs) are crucial components of pmtitive and globalized markets. Companies
improve their competitive advantage by working astp of a SN, which results in lower production
costs, higher product quality, and greater respensiss with respect to the customers’ rapidly cimgng
needs and expectations (Chopra and Sodhi, 200#ueCgely, because SNs are globally distributed; the
are vulnerable to risks in business and workingrenments (Schmitt and Snyder, 2010; Peng et al.,
2011; Baghalian et al., 2013; Farahani et al., 20IHAerefore, risk management is critical for ssstel
SNs because many different types of risks exist.

According to Sarkar et al. (2002), during the labtiike in 2002, 29 ports on the west coast of the
United States were shut down, which led to the w®sof the new United Motor manufacturing
production factory (disruption in transportatiortifties). During the destructive earthquake inalajn

2011, the Toyota Motor Company ceased productiotwielve assembly plants to repair production



facilities, which resulted in a production loss1a0,000 automobiles (disruption in production féiet).
In another instance, Ericsson lost 400 million Buadter their supplier's semiconductor plant was
damaged due to a fire in 2000 (disruption in prdiducfacilities). The Taiwan earthquake of 1999
resulted in a supply shortage of DRAM chips for Apphat culminated in numerous order losses
(variation in supply process). This supply variatisas a cascading effect in multi-echelon SNs. For
examplé, consider an apparel supply network, as followsmall variation in machine performance at a
thread manufacturing plant in India can cause a-day delivery delay to a knitter in Malaysia, winic
can result in a seven-day delivery delay to a diydiong Kong and finally lead to a 10-day delivery
delay of trendy, new apparel at a clothing manuf&etin Europe and a loss of sales worth milliohs o
dollars (variation propagation in supply proces$gndricks and Singhal (2005) quantify the negative
effects of risks in SNs through empirical analy3iseir results demonstrate that risks result ind330%
lower stock returns, a 107% decrease in operatiogme, 7% lower sales growth, and an 11% increase i
cost.

Clearly, there are numerous sources of risk in $MN¢his paper, we demonstrate that risk mitigation
strategies used by SNs for different risk souralisriptions and variations) are not independent and
important correlations exist among them. Therefazempartmentalized decision making for the

mitigation of variations and disruptions, as dameiiior studies, results in suboptimal solutions.

2. Literature Review

Scholars have suggested numerous methods to gléssifisks of SNs. Waters (2007) and Kar (2010)
divide SN risk sources intinternal risks andexternal risks based on their controllability. Internal risks
are controllable and appear during normal operstisuch as late deliveries, excess stock, poor
forecasting, human error, and faults in IT systefsternal risks are uncontrollable and come from
outside of a supply network, such as earthquakasichnes, industrial actions, wars, terrorist ckta

price increases, problems with trading partnersrtages of raw materials, and crime. Furthermore,

! http://www.decisioncraft.com/dmdirect/variabilitym



Chopra and Sodhi (2004) categorize potential suppbin risks into nine categories, as follows: (a)
Disruptions (e.g., natural disasters, terrorismr,vedc.), (b) Delays (e.g., inflexibility of the poly
source), (c) Systems (e.g., information infrasuitetoreakdown), (d) Forecast (e.g., inaccurateciste
bullwhip effect, etc.), (d) Intellectual proper.g., vertical integration), (e) Procurement (eegchange
rate risk), (f) Receivables (e.g., number of cust®)) (g) Inventory (e.g., inventory holding camand
and supply uncertainty, etc.), and (h) Capacity.(ecost of capacity). These classification scheares
not adequate to analyze correlations among therdiit risk mitigation strategies of SNs. Therefave,
identify and use a different classification. Foisthblassification, risks are categorized into twoups

based on the nature of the SNs’ decisions thaaffeeted, as follows:

Disruptionsin a SN: Disruptions refer to rare and unexpected evdrashave a significant impact and
distort the topologyof a SN by rendering certain facilities or coniregtlinks inoperative. A SN’s
topology is determined by strategic level netwodsign decisions (see Figure 1). Network design
decisions are related to determining the numbegtion and capacity of the facilities (Schmidt and
Wilhelm, 2010). We summarize certain recent stuthas have been conducted in this domain. Tomlin
(2006) investigates the unavailability of a suppiiea two-echelon SN that includes one manufacture
and two suppliers. Chopra et al. (2007) analyzeathyropriate selection of mitigation strategiesdor
two-echelon SN that includes one buyer that isisedvby two suppliers. One of these suppliers is
reliable and the other is unreliable but less egpen Peng et al. (2011) develop a model to design
SN topology that performs well under normal comdii and performs relatively well when unreliable
facilities are disrupted. Baghalian et al. (2013)l &1ohammaddust et al. (2017) propose a path-based
approach to design a robust SN topology for whiwrd is a possibility of disruption in facilitieac
connecting links. Recently, certain scholars hasteraled the concept of disruption management from
companies and SNs to communities and human scitgtie are in danger of natural and man-made

disasters. For example, Gian et al. (2010) belibae communities and human societies should be able

2 A SN's topology is the way its individual facilities are organized and connected, and the resulting network structure
(http://www.personal.psu.edu/faculty/a/x/axk41/IEEE-Sys-Oct2010.pdf).



to mitigate danger and achieve a tolerable levgirofection against disruptions and disasters. &hes
scholars provide a framework to quantify theseuiesst for societies and present two applicatiortb®f
methodology to healthcare facilities. According Zobel (2011), two primary measures that are
important for the disaster management of sociétiglsde the initial impact of a disaster event #mal
subsequent time for recovery. The author presentsnaanalytic approach to represent the relatignshi
between these two characteristics. These studigsfarus on employing risk mitigation strategies to
preserve the performance of SNs or communitiesnagdisruptions. Risk mitigation strategies that ar
utilized to address disruptions are referred tdSigategic Risk Mitigation (SRM)” strategies in shi

paper because they include strategic network defggisions (see Figure 1).

Variations in a SN: Variations refer to frequent and expected eventh i{ess significant impacts that
only reduce the efficiency of flow planning in Sk&&e Figure 1). Flow planning in a SN refers to the
production quantities in the SNs’ facilities ane thuantities that are transported among the fasilit
(Schmidt and Wilhelm, 2010). Variations that oceuthe performance of upstream facilities in a SN
lead to changes in the quantities that flow frorasth facilities. This type of upstream variation is
important because, in reality, the perfect proaductystem does not exist. Furthermore, increasiag t
rate of production increases the likelihood of niiaety and labor failures, which results in a higher
rate of defective items that are produced (San&QR0ro the best of our knowledge, prior studies

generally ignore variations in the performance oftrechelon SNs (Rezapour et al., 2015).

) Disruptions ., _ Variations N
Network design S RM Availability Strategic
decisions in SNs of facilities decisions SRM: Strategic Risk
Management
—_— ORM: Operational Risk
Flow planning Performance ORM Operational Management
decisions in SNs in markets decisions

Figure 1. Disruptions and variations in SNs



Downstream variations also occur for market demanidese can be modeled by defining
scenarios (Pan and Nagi, 2010; Georgiadis et@l];2.eung et al., 2007; Lin and Wang, 2011; Hasani
and Khosrojerdi, 2016) or considering demand aandam variable (Shen and Daskin, 2005; Santoso
et al., 2005; Dada et al., 2007; Schmitt et all®®Baghalian et al., 2013). This type of variatien
critical for managing the flow and service levetimation in a SN. Prior studies only focus on
downstream variations in demand and assume thaidtiermance of the SNs’ facilities is perfect. In
this study, we demonstrate how upstream variationghe performance of facilities and their
propagated impact should be managed in multi-eah8Ns. Prior studies only address variations and
their corresponding risk mitigation strategies. kRisitigation strategies that are utilized to addres
variations are referred to as “Operational Riskigdition (ORM)” strategies in this study becauseg/the
include operational flow planning decisions (seguFé 1).

As illustrated in Figure 1, SRM and ORM strategaes not independent. SRM strategies preserve
the availability of facilities in a SN's topology¥low planning is conducted for the SNs’ available
facilities. In addition, ORM strategies increase #fficiency of flow planning in a SN and improys i
performance in markets; this performance is usedh® economic evaluation of SRM strategies. The
existing literature mostly ignores this mutual imphetween ORM and SRM approaches. Therefore,
we contribute to the SN risk management literatbyeanswering the following question: What
correlations exist between SRM and ORM strategitisR mitigation that includes either redundancy
or flexibility ensures that SNs are robust, restlieand reliable. The standard use of redundancy
includes holding safety stock of material and fieid goods (You and Grossmann, 2008; Park et al.,
2010; Schmitt, 2011) or multi-sourcing (Yu et &Q09; Li et al., 2010; Schmitt and Snyder, 2010;
Peng et al., 2011; Schmitt, 2011). Flexibility inesl that facilities have adaptable capacities (Tmml
2006). In this study, we focus on redundancy in ORMtegies and flexibility in SRM strategies.

This study makes multifold contributions to the 8&k management literature as follows:
1) Variation management: For a multi-echelon SN’s flow planning, we considestream variations
in the performance of facilities in addition to dwstream variations in market demands. We
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2)

3)

demonstrate that local reliability as an ORM sggtshould be assigned to each facility to control
redundancy (extra production) in production systagainst variation. In addition, we demonstrate
that a SN's service level is a function of thesmlaeliabilities. Finally, we develop a mathematic
model to determine the optimal local reliabiliti€@RM strategies) and service levels for the SN (in
Section 4). Prior studies have ignored upstrearatians in flow planning for SNs.

Disruption management: Considering flexibility as a SRM strategy, we dewstoate that the
robustness of a SN’s topology for maintaining atalele performance during and after a disruption
depends on its facilities’ flexibility levels. THiexibility level of a facility indicates to whatxéent

the capacity of that facility can be increasedmyia disruption. A SN's resilience is how quickly i
performance can be returned to an acceptable déezla disruption; hence, we demonstrate that the
resilience of a SN depends on the speed of fléiikih its facilities. The flexibility speed of a
facility is how rapidly the capacity of that fatjlican be increased during a disruption. Finallg, w
develop a mathematical model to determine the a@ptiflexibility levels and speeds (SRM
strategies) to ensure that a SN's facilities almisb and resilient against disruptions (in Sectan

In prior studies, the robustness and resilienc&N$ against disruptions have been investigated
separately.

Integrated decision making for ORM and SRM strategés: The final model we develop in
Section 5 facilitates concurrent decision makinglailseliability (and the facilities’ local relialiles

as ORM strategies), robustness and resilience ttamdacilities’ flexibility levels and speeds as
SRM strategies). Therefore, a sensitivity analggighis integrated model helps us to determine if
correlations exist between ORM and SRM strategiestheir corresponding reliability, robustness,
and resilience (in Section 5.5). In prior studidscisions regarding SRM and ORM strategies are
made independently.

This paper is organized as follows. In Sectionh®, details of the problem under normal (without

disruption) and disrupted conditions are presentdek mathematical model, solution approach and

computational results for a SN experiencing norfmathout disruption) conditions are presented in
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Section 4. In Section 5, the mathematical modelsnfytion approach and computational results for a
SN experiencing disrupted conditions are discusBld.paper is concluded with a summary in Section

6.
3. Problem Description

Without loss of generality, we consider a simple #idt produces and supplies a product to target
markets. This SN includes two manufacturét4,andM2, that produce products and four target markets
that are serviced by these two manufacturers thraatnilers.M1 fulfills the demands of the first and
second markets through the first retailB, while M2 fulfills the demands of the third and fourth
markets through the second retailRe, Two suppliersS1andS2, provide the components required by
these two manufacturers|l andM2, respectively. In Figure 2, the existing netwonlusture of the SN

is illustrated. Product demand in a market is @hssetic function of the SN’s marketing factors,..e.g
price and service level (downstream variationshien $N’'s markets). Prior to the beginning of eadbssa
period, retailers determine the quantities of thedpct that are required, and then issue ordethdo
corresponding manufacturers. The manufacturersiveedbese orders from the retailers and plan to

produce the ordered products.

Upstream Downstream

A

»

Markets

Suppliers Manufacturers Retailers

Figure 2. The network structure of the SN.



We assume the performance of the manufacturerduptmn systems are imperfect and they produce
a stochastic percentage of defective units in thatiches (upstream variations in the SN’'s manufacgy
To compensate for these defective units, the matwiers plan to produce extra products. To assemble
the products, the manufacturers order the requicedponents from their corresponding suppliers. The
suppliers’ production systems (after initial setsfgrt producing components in an in-control steitd
almost zero defects. After a stochastic time, tiygpbers’ production systems deteriorate to anafut-
control state in whicly percent of output is nonconforming (upstream Vi in the SN’s suppliers).
Similar to the manufacturers, the suppliers plaprmduce some surplus components to compensate for
the nonconforming output of their systems.

In the literature, two approaches are mainly usednbdel imperfect production systems. Some
researchers assume that the performance of thegiro system is always accompanied by a stochastic
defective production rate (e.g., Sana, 2010; Saa&,&007; Rezapour et al, 2016a, b). Some rekees
consider the case in which the production machisgayts to operate in an in-control state aftetirgpt
up. In the in-control state, all output is neargrfpct. After a stochastic time, the machinery detates
to an out-of-control state and starts to have ahststically impaired production rate (e.g., Sark@t2;
Rosenblatt and Lee, 1986; Lee and Rosenblatt, 198This paper, we consider both types of imperfec
production systems. Without loss of generality, themer is assumed for manufactures and the latter
approach is assumed for suppliers. This showsttleaspproach developed in this paper is able tdlban
both types of imperfect production systems.

In a SN with multiple imperfect production faciis (multiple types of upstream variation), the
conforming component/product quantity is reducedrmwing from upstream to downstream in the SN.
Modeling this flow reduction is necessary to quignthe conforming product volumes that can be
supplied in the last echelon and to determine #s bervice level that balances the stochasticugtod
demand (downstream variation) and product supggtéeam variation) in the most economical way. To
preserve an appropriate service level in the marketiable flow planning throughout the SN is rieed
to mitigate upstream and downstream variationsehlming the reliability of facilities is an ORM atiegy
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used to neutralize the impacts of variations inwfljglanning. In Section 4, we develop a mathematical
model to plan the most profitable reliable flowdtgh the SN. In this paper, reliability in the SKew
planning is defined as follows (see Figure 3):
Definition 1: Reliable flow planning in SNs employs appropri@i@M strategies to mitigate upstream
and downstream variations and their propagation prabserves appropriate service levels for

customers in markets.

In addition to variations that affect flow plannirig a SN, we also consider the possibility that
disruptions affect the availability of facilities the SN. For the SN model in this studl§] is always
available, butM2 is prone to disruptionM2 may be unavailable to fulfilR2s orders. There may be
several reasons that explain why this occurs, ¢hg.,failure of its machinery or the inability dki
supplier 62 to fulfill its order on time. In the event thEt2 is unavailable, the third and fourth markets
cannot be served, and their sales are lost, wietisl to a large loss in the SN'’s profitability dmwend
reputation. To avoid this possible loss, we redesite SN’s network (by adding extra capacity to its

facilities) to simultaneously provide the followietaracteristics:

= Robustnessagainst disruptions: A robust SN is able to appad@ly manage disruptions and
maintain service continuity. To have a robust SH, must modify the production capabilities of
its undisruptedacilities (M1 andS1) to compensate for the unavailability of its diged facilities
(M2 andS2. For this purpose, the production capacitieMafandS1must be flexible enough to
increase production, when needed, to compensatbdannavailability of disrupted facilities and
decrease production when those facilities beconadladle again. For this problem, we seek to
determine the flexibility level that is required fihe undisrupted facilitiedl andS1, to have a
robust network. The flexibility level of a facilisefers to the extent its capacity can be increased

when it is needed.

= Resilienceagainst disruptions: The resilience of a SN is lypiekly disruptions can be managed

by that SN and depends on the speed of its faglih increase their capacities after disruptions,



which are their flexibility speeds. The flexibiligpeed of a facility is how quickly its capacitynca
be increased when needed. Therefore, another iemgodecision that must be made is to
determine the optimal flexibility speeds for thedigmupted facilitiesM1 andS1, to maintain the

SN's resilience.

Because numerous definitions exist for the robsstraad resilience of SNs in the risk management
literature, the definitions for these terms usethia study are as follows (see Figure 3):

Definition 2: A robust SN has appropriate SRM strategies toaedts decrease in performance when
it is affected by disruptions. In Figure 3, we shiosw a SN’s robustness can be measured using this
definition. After employing SRM strategies, if a SNberformance returns to its nominal value (and
the performance decrease is zero), this meansthieaSN is completely robust. Since complete
robustness can be very costly for SNs, a relativebust SN is sometimes preferred, wherein the
performance returns to an acceptable level wiihigefperformance decrease.
Definition 3: A resilient SN is able to rapidly use SRM strategadter disruptions to reduce the
restoration time during which the SN’s performanetirns to the acceptable level that is defined by
its robustness. In Figure 3, it is shown that asSigsilience can be measured based on this definiti
A SN's resilience is measured by its average restor rate (ratio of restored performance to

restoration time).

In this study, flexibility (including flexibility évels and speeds) in facilities is a SRM stratbgy is
used to neutralize the impacts of disruptions andesign a robust and resilient SN. Our definitdra

facility’s flexibility is as follows:

Definition 4: A flexible facility is able to increase its procegscapacity when needed. The flexibility
level of the facility is the maximum level to whidis capacity can be increased. The flexibilityesbe

of a facility is how quickly the capacity can bereased when needed.
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Figure 3. Reliability, robustness, and resilienceni SNs.

Solving the problem of managing a SN'’s variationd disruptions is done in the following two steps:
i) in the first step, we ignore disruptions in t88l and solely focus on flow planning and use an ORM
strategy against variations (Section 4); and iij)hia second step, we add disruptions to the prolledn
use a SRM strategy to alleviate these disruptiSest{on 5).

In this study, we consider a very simple SN witho teupply paths{S1 - M1 — R1] and[S2 —
M2 — R2] (see Figure 2). We demonstrate what changes adedén the first supply patff1 - M1 -
R1], to substitute for the second supply pgfiz, - M2 — R2], when the latter is unavailable. We only
consider two supply paths to simplify this analysist the problem is generalizable to more comf@idta
SNs with more supply paths. For a SN with more Buppths, a subset of paths is unavailable during
each disruption. To continue servicing customeegheunavailable path must be substituted by an
available path and changes similar to those prapos¢his study will need to be made in the avddab

path.

4. Employing ORM Strategies
In conditions without disruption, all the faciliieMM1, M2, S1 and S2 are available. This SN case

includes two product supply paths, as follows (FégR):
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) [S1- M1 - R1] represents the “first supply path,” in which thenf of components begins
with the first supplierS1 These components then pass through the SN amdneefinished
products at the first manufacturdil and are transported to the first retailed, to supply
the first and second markets and fulfill their denis

) [S2 > M2 — R2] represents the “second supply path,” in which ftbev of components
begins with the second suppli&2 These components then pass through the SN aodieec
finished products at the second manufactuvit,and are transported to the second retailer,
R2, to supply the third and fourth markets and fLtfieir demands.

In this section, we discuss reliable flow plannimfgthe first path against variations, in conditions
without a disruption (in the second path, it is dacted in the same manner). In Section 5, we déscus
how this flow planning changes during a disruptidren the second supply path is unavailable.

The first path includes three types of facilitiése supplier $1), the manufacturerM1) and the
retailer R1). Each of these facilities faces a specific typevariation. The retailer faces a stochastic
demand in the markets. The supplier and manufactmeounter stochastic nonconforming units in their
production batches. For each of these facilitiedesired local reliability must be determined tonage
its corresponding variation. As will be demonstdatger, the service level provided by the supgthgn
the first and second markets is a function of thesal reliabilities. We assume that;?, r1}y? andri}?
represent the local reliabilities of the first slyppath’s supplier, manufacturer and retailer, extipely,
in conditions without any disruptions. In the rendgr of this section, the performance of each ifgcil

when confronted with its corresponding variatiomnigestigated from downstream to upstream along the

supply path.

4.1. Retailer in thefirst supply path, R1
The first supply path services the first and seamiatkets. The most important marketing factorhase
markets are pricey, and service levelsl. The service level refers to the probability offifing the

realized demand from the retailer's on-hand prodioeentory. Therefore, the expected demand during

12



each sale period of Markdt (k =1 and 2),Dx(p,sl"P), is a function of these two factorsl"?
represents the service level that is provided BySN during normal conditions without disruptiombe
retailer of the first supply patiR(Q) fulfills the total demand for the first and sedamarkets. Therefore,
the average demand f&1is Y2_, D, (p,sl"P). However, the actual demand is stochastic andesari
around this mean valug&his variation is treated as a random variabjeyith a cumulative distribution
functionGg, (¢) (variation inR1s demand). The actual demandRitis Y2_; Dy (p, sI"?) x . Without
loss of generality, we assunie) = 1, which impliesE[X2_; Dy (p, sl"P) X e] = $2_, Dy (p, sI"P)
(Bernstein and Federgruen, 2004 and 2007).

Prior to the beginning of each sales period, asiatimust be made about the quantitiRafs product
stock, which is represented bY/'?, and an order must be issued to the correspomiargifacturerMi.
After realizing the actual demand, the unit holdawgt, h*, and unit shortage cost;, are paid by the
retailers for each unit of the end-of-the periodifoventory and lost sales. Therefore, the expetdtal

cost ofR1,IT¥P, should be minimized as in Equation (1), as fodow

MIN P = h* E[x"P — ¥%_; Di(p, s"P) x e]+ + R E[X%_1 Di(p,sI"P) x e — xWD]+ (1)

S.T. Pr[¥2_, Dy(p,sl"P) x e < x"P] > ri¥P (2)
The constraint in Equation (2) preservieds local reliability, which guarantees that in thi{;”
percentage of timeRR1s product stock can fulfill the actual demand. Thst term in the objective
function, Equation (1), represents the expectedoéfriod inventory holding cost faR1 ([ ]* is used
to compute the expected valuexdf? — ¥2_, D, (p, sI"P) x € when it is positive). The second term in
(1) is the expected cost of lost sale¥? = [¥7_, Dk(p,SlWD)].GEf(#) minimizes ITY° (see
Appendix D for further evidence). Conversely, tdisfg the constraint in Equation (2), we must have
xWP > [¥2_; Di(p, sI"P)]. Gri(r1¥P) (see Appendix D for evidence). Accordingly, theantity of

product that must be ordered ftis calculated as follows:

WP = [£2_, De(p, sI"P)]. Gt (Max {rifp, 1) ®

13



By substituting Equation (3) into (1), the leagat@ost forR1, TP, is as follows:

myp” = <h+. E [G;ll (Max {rl%D,#}) - £]+ +h™.E [e — Gpt (Max {rl%D,#})r) X

[X%=1 Dic(p, s1"P)] (4)

Orderingx"? product units fronM1 enablesR1to fulfill the product demand for the next salesipd
with a probability ofri%°. Maintaining local reliabilityrI%;” is an ORM strategy that is used R to
manage demand variations. In Section 4.2, we detradahowR1s order must be increased by moving
backward tav1.

We assume that each facility either completelhyilfalthe order from its downstream facility or mess
the order and sends nothing. This assumption iglwidsed in prior studies in the yield-uncertainty
literature and is referred to as the Bernoulli dypmrocess (Parlar et al., 1995; Swaminathan and

Shanthikumar 1999; Dada et al., 2003; Tomlin anchiy2005).

4.2. Manufacturer in thefirst supply path, M1

M1 receives an order for? product units fronR1 RIs order is produced b1 in 0,,, production
runs and includeg"? items for each production batch (Figure M)L's production system is not perfect
and always includes an amount of waddéd's wastage ratiog,,;, depends on the general conditions of
its machinery and the skills of its labor force amda random variable with cumulative distribution
functionGy,, (a variation inM1’s production system).

To compensate for waste in its production systewrenproducts must be produced thRis order
quantity ¢"P?). This implies thatM1's extra production, represented By,;.y"? — x"P, should be
positive. The batch size of each production ru?, must be determined to preserMd’s local

WD

reliability, ri}yP (al,, represents the value of random variajg realized in production run= 1,2, ...,

Oum1), as follows:

0
rify? = Pr(atn. y"P + afy.y"P + ag. yWP + -+ ap L y"P < 0y yWP — xWP)
(5)
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Figure 4. Production runs inM1.

To preserverlly? local reliability for M1, the number of defective items in all productiams

(ks YW + adr. y"P + ayy.yWP + - + ag¥. yWP) must be less than the extra production volume
(Op1-y"P — xWP) with rI}¥P probability, as noted in Equation (5). Without dosf generality, we
assume that to manufacture one unit of product, wrieof component is required. Becaugdé will
produce0,,;.y"? product unitsM1 will issue an order fo0,,,.y"? component units from it supplier,
S1 This implies thatRIs order is increased t@,;.y"? —x"? units in M1. Maintaining local

reliability, rI}VP, is an ORM strategy that is used\ii to manage variations in its production system. In

Section 4.3, it is shown thit1's order is further amplified by moving backwardtbhe supplier.

4.3. Supplier in thefirst supply path, S1

In the first supply pathS1receives an order fa?,,;.y"? units of components fromil1. To fulfill this
order, O, production runs are performed Bgwith z"? items in each production batch. After setting up
SIs machines to produce”? items, all machines work in an in-control statel al the produced
components are in perfect condition. Gradually,tftaehines deteriorate and after a stochastic tineg,
shift to an out-of-control statgg, is the percentage of the produced componentsatiatiefective. The
deterioration time of the machines is representet] twhich is a random variable with@; cumulative
distribution function. When the production systemifts to an out-of-control state, it remains inttetate
until the end of the batch production because rapting the machines is prohibitively expensive

Rosenblatt and Lee, 1986; Lee and Rosenblatt,)188p% " represents the production capacit
S1
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WD
during each production run with time units. Therefore, the production rateSifis Caps: /T and it

requiresT-ZWD/CapWD time units to produce each production batch. Befitre production system
S1

deteriorates, all output units are sound, but after production system deterioratgg, percent are

defective. Therefore, the total number of defectinés in the product batdh(i = 1,2, ..., O¢¢) is equal
wp — ti .(y51. CapS“{D). t; represents the value of random varidhite production run
S1

(i=1,2,..,04,). To preserve the local reliability &f1, the following constraint is needed:

WD
WD _ Pr| Zfzsi T.z

rlgy” = wp — L .(y51.Cap¥'{D) < (051-ZWD) - (OM1-)’WD) |
Capgy

= Pr ((T Vo1 — 1). 051.2"P 4+ 041 Y"P <y, Cap?iD.Z?ZSll ti) (6)

Constraint (6) ensures that witlfy? probability, the total number of defective compaiseproduced
by S1 will be less than its surplus production quanti®y;.z"? — 0y,.y"P. The value of thes"?
variable must ensure that the local reliabilitySifis preserved. Maintaining local reliability?;° is an
ORM strategy that is used to manage variatior&lis production system.

The component production batch siz&'?) satisfies Constraint (6) and ensures the abilit§31 to
fulfil M1's entire order withrI%/? probability. The production batch sizg(P) satisfies Constraint (5)
and guarantees the ability bfL to fulfill R1s order withri}¥? probability. The product stock quantity
(x"P) satisfies Constraint (3) and assures the alfitR1 to fulfill the demand of the market during the
next sale period withl¥;P probability. In this case, the first supply patista guaranteed probability of
rIP. WP %P to fulfill the markets’ demand. In this problerhig probability of demand fulfillment is

referred to as the service level.
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SIWP = ¢ [P rI¥P rI¥P (7

The relationship among the local reliabilities bé tfacilities in the first supply path and the SN's

service level in the markets that are servicechay path is shown in Equation (7).

In this problem, we assume that all variations Rd's demand,M1's waste ratio, andS1s
deterioration time) are random variables with knadistribution functions. Because these variatiors a
related to the SNs’ short-term operational decwsi@ither weekly or monthly), in practice it is pilde
to gather historical data to fit an appropriatetribgtion function. Several statistical methodsy. e.
goodness-of-fit, can be used to analyze histoiedh and fit an appropriate distribution functiam f

variations.

4.4. Mathematical model for ORM strategy selection during normal conditions without
disruption
In this section, a mathematical model is presefaeglanning reliable flow in the SN'’s first supphath

by using the analysis and relationships presem&#ctions 4.1-4.3.

Maximize

YywD — (p —h*.E [G,ﬁl (Max {leD,h_h_;h+}) - £]+ —h™.E [8 — Gii (Max {SlWD,h_hJ:m})r) X

[lec=1 Dk(P.SlWD)] — Cs1- (051-ZWD) — Cs1,M1- (OM1-}’WD) — CMm1- (0M1-yWD) -

CM1,R1: (x"P) 8)
Subject to:
0s1.2"P = 0y, y"P )
Op1.y"P = xWP (10)
xWP = [¥2_; Di(p, s"P)]. Gt (Max {rl%D,#}) (11)
rify? = Pr(at. y"P + afy.y"P + apgy . yWP + - + a,e,’fl.yWD < Opp.y"P — xWP) (12)
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0 WD \
rI¥P = Pr (Ziﬁi T.z Cap¥P -4 -(Vs1- CapgliD) < (051.2"P) = (Oy1.y"™P)

(13)
sIWP = r WP r 1P rI¥P (14)
y"P < Capif? (15)
Z"D < Cap¥P (16)
0 <ri¥P,r1i}yP and r1}P < 1 andx"?,y"P and z"? > 0 (17)

The objective function, Equation (8), is used toximdze total profit during conditions without
disruptions. The first term of Equation (8) is useccompute the capturable income after discarthiieg
inventory holding cost for the end-of-period eximaentory and the shortage cost for end-of-perax |
sales. The second term is the procurement and gtiodicost of the components 84 The third term is
the cost of transporting the components fr8ito M1. The fourth term is the cost of manufacturing
products inM1. The fifth term represents the cost of transpgrpinoducts fronM1 to R1 Based on the
constraint in Equation (9), the number of composéhat are planned to be producedSiyshould be
more thanM1's order quantity. According to the constraint iguation (10), the product production
guantity inM1 must be more thaR1s order quantity. The constraints in Equations),(112) and (13)
represent the relationships between the order aaduption quantities irR1, M1 and S1 and their
corresponding local reliabilities. The relationghipetween the service level during conditions witho
any disruptions and the local reliabilities of stastic facilities are illustrated in Equation (1Eyuations
(15) and (16) are used to ensure that the productimntity for each run dfll andS1is less than its

WD WD

capacity, Capyy and Cap{”, respectively. Equation (17) is used to ensure fhailities’ local

reliabilities are selected from the [0, 1] intecval

4.5. Solution procedure for ORM strategy selection during conditions without disruptions
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The mathematical model proposed in Section 4.4oslimear. The objective function and certain
constraints in this model (such as Equations (i) @4)) are highly nonlinear. In addition, this cebd
includes two chance constraints, Equations (12)(281 Because of these chance constraints, oueimod
belongs to the category of a Chance Constraineolétro(CCP). CCPs were first introduced by Charnes,
et al. (1958). For the theoretical background oPE(blease refer to Prékopa (1995). From an apiplica
perspective, CCPs have been used for water managdepacova et al., 1991), chemical process
optimization (Henrion et al., 2001; Henrion et &003), and others. Although CCPs were introduced
almost 50 years ago, little progress has been nmadate. A CCP is extremely difficult to solve evian

its linear form because it requires multidimensiaongegration (Pagnoncelli et al., 2009).

In prior studies, the two following approaches ased to solve CCPs: 1) in the first approach, the
probability distribution of the chance constraimgsdiscretized and the combinatorial problem thus
obtained is solved sequentially (Dentcheva et 20Q0; Luedtke et al., 2008); and 2) in the second
approach, the chance constraints are substitutedobyex approximations (Nemirovski and Shapiro,
2006). A well-known approximation approach used amdress the CCP is the sample average
approximation (SAA). The SAA is also referred to the Monte Carlo method, the Sample Path
Optimization (SPO) method, and the Stochastic Gapatt (Robinson, 1996; Pagnoncelli et al., 2009;
Atlason et al., 2008; and Luedtke and Ahmed, 200Bg SAA approach replaces the actual distribution
in chance constraints by an empirical distributibiat corresponds to a random sample. Refer to
Rusczynski and Shapiro (2003) for a comprehensixéew of this approach. We use the SAA to
approximate chance constraints. Then, we lineahizemodel by discretizing reliability variables. erh
final model is a Mixed Integer Linear ProgrammingIll(P) model that is solved by using CPLEX

software (for more details about linearizing thedelpplease refer to Appendix B).

4.6. Computational result: Test Problem

In this section, we assume that in the first suppdyh, [S1 - M1 — R1], the performances of the

production systems favi1l andS1are imperfect. After the equipment is set uginthe machinery works
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in an in-control state and all of the produced congmts are in perfect condition. After a stochatitne
that follows an exponential distribution with= 2, the machinery shifts to an out-of-control statel a
¥s1 = 10% of the output is defective. Fdf1, the product assembly process always includeschastic
percentage of defective products. This percentagerandom variable with a uniform distributiontfire
interval [0, = 0.15]. The total demand for the first and second martetsshould be fulfilled bR1is

a stochastic linear function of prices = $14, and service levelsi"?: Y2_ D, (p,sl"P).e =
[1000 — 150 X (p — 14) + 1000 X (sI"P — 0.85)].¢. ¢ is a normally distributed random variable with a
mean of 1 and a variance of 1. Prior regressiodiestuof historical sales data demonstrated thatead
demand function fits very well fc(rZilek,p,leD) triples recorded for past sales periods (Bernstein
and Federgruen, 2004, 2005, and 2007; AndersorBand 2009). The biases of the real and estimated
mean demand in these triples are analyzed by ctindue goodness-of-fit statistical test to deterertine
optimal distribution that represents these bia3é® unit production cost foBl is $1.40. The unit
transportation cost for moving a component unitrfi®1to M1 is $0.50. The unit assembly cost i

and the unit transportation cost fravii to R1are $1.00 and $0.60, respectively. The unit értrantory
and unit shortage costs f&1 are $0.10 and $0.30, respectively. Demand for gaciod is fulfilled by

Os1 = 3 and0,,; = 4 production runs.

Formulating and solving the mathematical modeltfas problem leads to the following results: the
optimal service level for conditions without anymiptions is 80 percent (corresponding to the hEghe
profit in Figure 5). In Figure 5, each point on &imMB corresponds to a service levdl? =
ri&P.riff? . ri¥P = 0.8. Point A (red point) is the optima(ri¥”, ri}¥?, rif?) combination that
maximizes the Model (Equations 8-17). Other poamtd.ine AB (gray points) are feasib{el¥,”, rij?,
rlelD) combinations in the Model (Equations 8-17) thatldaesult in a less than optimal profit for the
SN. As illustrated in Figure 5, different combimais of local reliabilities for facilities can ledd the
same service leves]"? = rIP.r 1P . r1¥P. For all points on line AB, the service level i8 0but these

correspond to different local reliability combimats and significantly different profit levels. Théore,
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for a supply path with multiple stochastic fac#ii determining the optimal service level is ndficent.

We must also determine the least costly local béiig combination that supports the required sesvi
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level. The mathematical model of this problem helsto determine the optimal local reliability
combination, which is calculated as¥? =1, rily? =1 and ri}®? = 0.8. To preserve the local
reliability of R1, its product order quantity froml1l must equak"? = 1748. The optimal production
quantity for each production run o1 is 496.15 which implies tha¥ll produces 236.6 extra units
(4.y"P — xWP = 236.6). This extra production preserves its local religh which is equal to 1. The
optimal component production quantity for each piaizbn run ofS1lis 684.78. This production quantity
leads to the extra production of 70 units &ir(3.z"? — 4.y"P = 70). This extra production assures a

local reliability of 1 forS1

Figure 5. Profit of the first supply path with respect to the service level.

In the remainder of this section, we analyze thatimnships among the local reliabilities of faids
in the supply path and the SN’s profitability. Ebis purpose, we solve the model for different ealof
local reliabilities. The results are illustratedfie graphs of Figure 6. Based on these graphspnaude

the following:

= For a given local reliability oR1, the patterns that determine the profit changé waspect t&1s

local reliability are similar for all the local iabilities of M1. This implies that for a given quantity of
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ordered product, the most profitable local relitibt for S1 and M1 are almost independent.
Therefore, determining the local reliability forede facilities separately leads to a workable azd-n
optimal solution. This feature significantly decsea the size and computational burden of the
mathematical model. Therefore, it is necessaryotusider this feature for large-scale problems to

reduce their computational time.

= For a given local reliability oR1, the effects of the local reliabilities fddl andS1on the path’s
profit are similar. For instance, if reductionsSds local reliability lead to profit reductions fane
path, reductions iM1's local reliability also lead to profit reductiofts the path and vice versa (see
rlI¥P = 1.00 case in Figure 6). If reductions 81's local reliability first increase the path's jiraind
then reduce it, reductions M1's local reliability impose a similar pattern ofactyes on the path's
profit (seerl¥? = 0.95 case in Figure 6). Therefore, determining therogtilocal reliability for one
of these facilities provides a good estimate fertdntative local reliability of another facilitysing
this feature significantly reduces the search uatiefor the local reliability of the other facility
Therefore, it is necessary that we consider th&ufe for large scale problems to reduce the

computational time.

In this section, we develop a mathematical modaldgtermine the most profitable local reliability
(ORM strategy) for the SN'’s facilities against thetriations. In Section 5, we consider the po§sjlof

disruption and demonstrate how the model shouleixbended to incorporate SRM strategies.
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riI¥P = 0.95 andrl}yP = 0.80

elationships among the local reliabilites of the facilities in the supply path and their pfitability.
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5. Employing SRM Strategies
The SN is disrupted whelM2 or S2is unavailable. In this case, the second supplly,pdi2 - M2 —
R2], is inoperative and unable to fulfill the demaidghe third and fourth markets. Therefore, theyonl

active supply path igS1 - M1 — R1], which can be used to fulfill the demands of alrkets (Figure 7).

Markets

Suppliers Manufacturers Retailers 1

4

Figure 7. Network structure of the SN under disruptd conditions.

To address this disruption, the first supply patistmot only serve the first and second markets but
must also fulfill the demands of the third and thumarkets. For this purpose, its faciliti&l andM1,
need flexible capacities. Following the onset oflisruption, the capacities of these facilities dtiou
increase to service both retailers and after thatoiun of the disruption, and they should decréasmly
serviceR1l The measurement of the extent to which the cpa€ia facility can be increased during
disruptions is its flexibility level and the lengtif time that it takes to increase that capacitytss
flexibility speed. The robustness of a SN is deteedh by its flexibility levels and the resiliencéa SN
is determined by its flexibility speeds. Determipithe capacity of a production system is a strategi
design problem and depends on factors such aaybatlof its machinery. Adding capacity is gengrall
discrete process that involves adding machineheosystem (Koren and Shpitalni, 2014). Figure 8
provides examples &fl1's flexibility speed. In this figure, it is assumttht one period that includes four
production runs@,,; = 4, is the maximum time that is available to increaapacity, and the flexibility

level of M1 is equal ta\,,;. These flexibility speed options imply the follow:
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= For thefirst flexibility speed option, which is indicated by 1, in Figure 8: an amount of time
that is equal to three production runs is provitled/1 to generate the extra capacity. In this
extreme case, all df11's extra capacityA,,, is added at the beginning of the last (fourth)
production run. The time pattern for this flexibjlispeed option iy, = (r1},; = 0,72}, =
0,73}, = 0,74}, = Ay4), which implies that the capacity increases dutimg first ¢1%,),
second £2};;), and third £3};;) production runs are equal to 0 and for the last@r4l,,), it is
equal toAy;

= For the second flexibility speed option, which is indicated by r%, in Figure 8 14, =

(7”112v11 =0, 7‘212v11 =0, 7”312v11 =Ay1/2, 7‘412\41 =Am1/2);

A
apacity under disrupted
4 conditions
, A
Extra capacity =
in M1
AMl
4
Capacity under without A
disruption conditions %
™1 Tyq 2

r
ML T Ty o

»
»

Period (time
Figure 8. Sample resilience options for capacity rap up in M1.

= For the third flexibility speed option, indicated by r3, in Figure 8 13, = (r13, =
Ay1/471201 = Ay1 /4733 = Bur /4 T43 = Dy /4);

= For the fourth flexibility speed option, indicated by 74, in Figure 8 ry; = (rly; =
Ay1/2,7251 = Dy1 /2,735 = 0,745, = 0);

= For the fifth flexibility speed option, indicated by 13, in Figure 8 rg, = (11}, =

Ay, 72351 = 0,733, = 0,743, = 0);
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Therefore, we define a new s&,,, = {ry.}, which includes all flexibility speed options thete
available foM1. Providing extra production capacity costs morerdpearly production runs following a
disruption. Acquiring additional machinery and lalto increase the capacity over a short time can be
difficult and costly. Conversely, an early incremém capacity leads to the availability of incredise
capacity during future production runs and, subsatiy, more feasible production plans will be aabié
to select from and more uniform production quassitiduring future production runs are possible.
Therefore, we assume that the unit capacity incnéraest is higher for early production runs. This
assumption is consistent with observations in maetufing systems (Koren and Shpitalni, 2014).

Assuming that parametenpl,, (i =1,2,...,0,,) represents the unit extra capacity costNtr's
production ruri, we havecapl;; = capl, = capy, = - = cap*. To determine the flexibility speed
option, the binary variable:&;«(,’\;"{1 (ry1 € ROy4), are used. Variabltz‘y]\}‘f1 is 1 if the flexibility speed
optionry is selected foM1, and O otherwise. In the same managy, represents the flexibility level of
S1, and different flexibility speed options are avhi& that are included in the se&®0g; = {151}
Assuming that parameterapé'1 (G=1,2,..,05;) represents the unit extra capacity cost &ffs
production rurj, we havecapd, > cap? > cap3, = = capgfl. To select the resilience option 84,
the binary variableswsrf1 (rs1 € ROg,), are used. Variablwsrf1 is 1 if the resilience optiory; is selected
for S1,and O otherwise.

When a disruption occurs in the second supply phthcapacities of the first supply path’s facktj
M1 andS1, shifts from their without disruption valueggp}y? andCap¥P?, to the capacity values that are
suitable for the disrupted conditioGapl; andCapZ;, based on the flexibility speed options that are
selected. The time period in which the undisrugtagacity of a facilityCaply? or Cap¥/?, shifts to its
disrupted condition capacitf,aply, or Cap?2,, is referred to here as the ramp-up disruptiomogeThe

production capacities dfl1 andS1are not fixed during this ramp-up disruption pdremd may change

for each production run. In Section 5.1, we elatsoan the production plan in the first supply path’
facilities in the ramp-up disruption period. Aftdre ramp-up period, capaciti€apl); and Cap?, are
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available forM1 andS1for all production runs until the disruption digaies. The disrupted periods that
occur after the ramp-up period are referred toamal-disruption periods. In Section 5.2, we elab®r
on the production plan in the first supply path&ifities for a normal-disruption period. When the
disruption ends, the extra capacity is not needeithé facilities of the first supply path. Therefpthe
capacities oM1 and S1 must be reduced frofiap}; andCap?, to Cap}y? andCap¥P, respectively.
The time period after the disruption is referredatothe ramp-down disruption period. The ramp-down
disruption period is also the without disruptionripg; the only difference is that extra capacity is
available. In Section 5.3, we elaborate on the getidn plan in the first supply path’s facilitiesrfa
ramp-down disruption period. In Figure 9, we ilhast these periods feg, (one of the flexibility speed
options illustrated in Figure 8) when the disruptiasts for only two periods. In this case, ther@rne
ramp-up, one normal, and one ramp-down disruptieriod. For longer disruptions, more than one

normal disruption period would occur.

Disruption
ends

. Sos=omemabamesamos| basccamaslizssamssadimasemesatesomamesd fioemssasdbememeses I

Capacity

Disruption ?._._._._.;_._._._._1? _________ T 1' ......... %._._._._.E_ ....... I U ;_._._._._g _________ '
starts @ : : : : : ; i

P
<

Figure 9. Ramp-up, normal disruption, and ramp-downperiods for a disruption lasting for two periods.

5.1. Ramp-up disruption period (see Figure 9)
The capacities of the facilities in the first supphth S1andM1) for each production run of the ramp-up
disruption period depend on their selected fleitipispeed options. Assume that thg"” and z*VP

variables represent the production quantities Herramp-up disruption period’s production riuaf M1

andS1,respectively.
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During the ramp-up disruption period, each facsityroduction quantity for each production run must

be less than its available capacity. Thereforefdtewing restrictions are imposed on these ftiesi:

YO < Caplip + N (Sjea i) Wit (=12, 0m) 1)
270 < CaplP + 2,70 (T mig}?) Wi (i=12..,05) (32)

It is clear that only one of the available optidmsthe flexibility speed of each facility can belected.

Therefore:
nywalnilll 7”M1 =1 (33)
ZL};(;Slll rs1 _ =1 (34)

During a disruption, the total product order reeéiboyM1, x°, is calculated as follows:

1P = [£h_y Di(p,s1P)] Gt (Max {riRy, 1) 0
x5 = [Ti=3 Dk (p, sIP)]. Gz} (Max {Tlgz’_h‘h;h*'}) o7

In these equations? andx? represent the orders issuedRiy andR2, respectively. As explained in
Section 4.1, Equations (36) and (37) are usedterméne the ordering quantities of the retailera iway
that preserves their local reliabilities duringrdjgtionsri2, andri,.

sIP represents the service level that is providedhaySN during disruptions. To preserve the local
reliabilities ofM1 andS1during a disruption;l5);, and rI2,, the following equations are necessary:
ri = Pr(Z ajyy y£UP < T2 yFYP - xP) (38)
rlSD1 =
Pr ((m —1). 575 2R + 591 yRUP < 3054 iyt (CaplP + TR (TL_, 7igs) . w ))

(39)
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Based on Equation (38), the sum of defective prisddior all production runs in the ramp-up
disruption period is less than the added manufegfuguantity,y>** yRP — xP, with a probability of
r15,. Equation (39) is used to ensure that the numbdefective components for all production runs of
S1during the ramp-up disruption period is less tf@added production quantity with a probability of

rl2,. Equation (39) is a simplified version of the éslling equation, which is the modified version of

Equation (13):

T'ls% = Pr Os1 ( T.z8UD _ tk> Vs1 (Capgl{D + Z|R051|(Zlg 17,,]7”51) rs1)
k=1 -Vs1- re1=1\4j s1
CapliP+3ROSil(sk_ rjist)wist St
0 0
(Z 51 RUD (Z}Mll y]RUD) (40)

Similar to the service level in conditions withalisruption shown in Equation (14), the service Igve
provided byR1 andR2 to their markets during the ramp-up disruptioniqubrarerl?,.rl%,.r18; and
rl2.ri5,.71R,, respectively. Without loss of generality, we assuthat identical service levels are
provided for all markets, which implies thdf; = rI%,. ThereforeyI2 represents the local reliability of
both retail facilities. Using a model that assursisilar service levels makes it easier to analyee t
relationship between a SN's ORM and SRM stratediksing this assumption, the service level for all

markets under disrupted conditions is as follows:

siP = r12.rif,.ri2 (41)
The total profit that can be captured in the ramysisruption period is as follows:
WRUD — {(p n*E |Gt (Max {517,221 - e] ~h~.E e~ Gzt (Max fs1?, +'h+})]+) x
271 Dic(p, s1P)] +
(P n*.E [Grd (Max {s1°,2=1) —e] ~h".E e~ Gg} (Max {517, +'h+})]+) x

[Stos Ditp st}
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D D
— CM1,R1-X1 — CM1,R2-X2

_ vOoMm1 |ROM1l ,.:Tm1 , TM1) _ v O0s1 |ROs1| ..Ts1  Ts1
i1 capiy;. (Zer—l Ty Wi Z; 1cap51 Zr51—1 TJs1 -Ws1

0] i |ROp1 | i r r RUD
— 200 higy. (CapliP + Zys (Shoy i) ittt — yRUP)

— 2058 . (Cap$i® + e (hy migst) - wist — 2877 244

Most of the terms in this function were explainediection 4.4. However, the last four terms are.new
The first two new terms represent the cost of agldispacity to the production runs MfL andS1 The

last two new terms are related to the unused cigpeasts forM1 andS1

5.2. The normal disruption period (see Figure9)

A disruption that continues after the ramp-up disian period results in at least one normal disarpt
period. The capacities df11 and S1 for all production runs during a normal disruptiperiod are
calculated a€aph); = Capiy? + Ayy andCap®, = CapP + Ag,, respectively. The total product order

received byM1 during a normal disruption period is similar te ttamp-up period.

xP =xP +xP (43)
xP = [Z3o1 Di(p, s1P)]. Gt (Max iR, ==}) (44)
xz = [Zk 3Dk(p151 )1 GRZ (Max {TlR'h +_h+}) (45)

Variablesy™? andz"P represent the production quantities for the prtdocruns during a normal
disruption period foM1 andS1,respectively. The amount of production for each ofithese facilities

must be less than their available capacities. Toerethe following restrictions are imposed on the

facilities:
yNP < Capy? + Ay (46)
zND < Capgl{D + Agy 47)
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As discussed in Section 5.1, it is assumedtHat ri%, andri? represent the local reliabilities of the
first supply path’s supplier, manufacturer anditets, respectively, during disruptions. To presettvese

local reliabilities during normal disruption pergdhe following equations become necessary:

rib, = Pr(zo"”1 1 YVP < 0. ¥NP — xD) (48)
D = p os, (12" Can”P + Aci) < (0er.zNPY — (O ND
rlgy = Pr{ Y21 cap?P+hs, t -Vs1-( aps;” + 51) < (051.2"7°) = (Opy1.¥™7)
= Pr ((T- ¥s1— 1). 051.2VP 4 0. yVP < 1. (Cap51 + Agy). ZOSI t; ) (49)

The total profit that can be captured during themra disruption period is calculated as follows:

YD {(p h*.E [Gm (Max {stp, 2—1}) - e] —h~.E [e — Gyt (Max {stP,— +_h+})]+) x

[X%-1 Dk (0, sID)] +
(P h*.E [GR2 (Max {le — +_h+}) - e] —h™.E [e - Gpp (Max {le = +_h+})]+> X

(ko5 Dilp st}

—Cs1- (051-ZND) — Cs1,M1- (0M1-)’ND) — CMm1- (0M1-3’ND)
- CM1,R1-xf - CMl,RZ-xZD
ZOMl higi. (Capfi? + Ayy — yVP)

2051 hiy. (Cap51 + A5 — 2z D) (50)
5.3. The ramp-down disruption period (see Figure 9)

During the ramp-down disruption period, the disiuptis terminated, and the second supply path is
available again to service its corresponding markeuring this period, the production plan is saniio
normal periods that do not have a disruption, asudised in Section 4. The only difference is teatam
extra production capacities have been added todihedisrupted facilitiesM1 andSl. Therefore, the

total profit during the ramp-down disruption perisctalculated as follows:
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TS1 rs1
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(51)

YWD is the solution of the model without disruptiorattis given in Equations 8-17 and represents

the highest profit that can be achieved during geeriod that does not have a disruption. The seeoid

third terms of Equation (51) represent the unusgrhcity costs foM1 andS1,respectively.

5.4. Mathematical model for ORM and SRM strategy selection under disrupted conditions

We define different scenarios by the lengths ofdiseuptions. The number of normal disruption pesio

is different for each scenario. S&CE = {s} includes all possible scenarios. In Figure 10,S¢H is

assumed to include four scenarios, &, s,, s3,S4}. Scenarias; represents the without disruption case.

The remaining scenarios are described below.

v' In Scenario s,: the disruption continues for only one period. Theme there is no normal

disruption period. In this case, the planning hamizpanning four sales periods has one ramp-up

disruption, one ramp-down disruption, and two withdisruption sales periods.

v" In Scenario s3: the disruption continues for two periods. Therefathere is only one normal

disruption period. In this case, the planning hmmizncludes one ramp-up disruption, one ramp-

down disruption, one normal disruption, and onénaiitt disruption period.

v In Scenario s4: the disruption continues for three periods andetha@e two normal disruption

periods. In this case, the planning horizon inctlud®me ramp-up disruption, one ramp-down

disruption, and two normal disruption periods.
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»

a) One period disruptior(sz)'

Time

Capacity
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b) Two period disruptionéss)

Time

)

Three period disruptior(s, )

Time
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Figure 10. Sample scenarios for the length of disption.

Each of the disruption scenariesc SCE, occurs with a probability gir;. It is clear that,

IS¢l oy, =1 (52)

Parametersaum??, numBY? numYPandnum®? show the number of without disruption, ramp-up
disruption, normal disruption and ramp-down disiuptperiods in scenari® € SCE, respectively. The
flexibility level decisions (represented by thg,; and Ay, variables) and flexibility speed decisions
(represented byv,r\}f1 and wsrfl) for the first supply path’s facilities should loeade in a manner that
maximizes the expected profit for all possible dligion scenarios. Therefore, the objective functibn

the SN under disrupted conditions is as follows:

Maximize Y= ngchlprs. [num?P. $WP” 4 numBYUP WRUD 4 nymNP WD 4 nyumBP, WRP| (53)
Subject to: (31-39), (42) and (46-49)
(54)
Ay, Asy, yFUP, 2FVP, yNP, 2NP P, xP,x2, sIP, rid), vl IR = 0
(i=1,2..,0y; and j=1,2,..,05) (55)
wyMt, west € {0,1} (Vry1 € ROy, V751 € ROgy) (56)

The mathematical model of disrupted conditions 3GP similar to the model that was developed in
Section 4 for normal conditions without any disiaps (the Model in Equations 8-17). The objective
function of the model and the constraints thatpmesented in Equations 36, 37, and 41 are nonlifidwer
constraints in Equations (38), (39), (48) and (48 chance constraints. This model can be linahrize
using the approach described in Section 4.5. Apgebgrovides more information about the size @& th
problems that can be solved by this model.
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This model is used to simultaneously determinentiost profitable (1) local reliabilities for the S\’
facilities against their corresponding variatio@RM strategies) and (2) flexibility levels and sgedor
its non-disrupted facilities that can compensatetie unavailability of its disrupted facilities Giensure
the SN remains robust and resilient (SRM strat@gidss concurrent determination makes it possible
determine what correlations exist between optimaMOand SRM strategies in SNs. These correlations

are investigated in Section 5.5.

5.5. Computational result: Extension of the Test Problem

In this section, we extend the test problem that imaestigated in Section 4.6. We assume that plism

is possible in the second supply path, for which thtal demand of the third and fourth markets is
calculated asyj_z; Dy (p,slP).e =[850— 150 x (p — 14) + 900 x (sl — 0.85)].¢, and should be
fulfilled by the first supply patte is a normal random variable with a mean of 1 amdraance of 1. Four
different scenarios for the length of disruptioa possible in this problerSCE = {s,, s,, 53,54} There is

no disruption in Scenariqg. Scenarioss,, s; and s, represent disruptions with zero, one, and two
normal disruption periods, respectively. The proltes of these scenarios are as follows; = .83,

ps, = .04, ps, = .10 andp,, = .03.

The costs of adding extra capacity for each prodaatun of M1 are capy; = $1, capy, = $0.8,
capy, = $0.65, and capy;; = $0.55, respectively. The costs of adding extra capaaity the first,
second, and third production runs 81 are capd; = $1, cap?, = $0.7 and cap?; = $0.5. The extra
capacity cost forS1 and M1 in all production runs ishi, = h,{'“ =%$010(=1,..,05;andj =
1, ...,041). The production and transportation cost componargssimilar to those in Section 4.6. The
only new cost component ég4 z, = $0.70 (the cost of transporting a unit of product frdsi to R2).
Based on the optimal production quantities thatendetermined for the production runs of the test
problem in Section 4.6, we assurfiep?,” = 800 andCap}y? = 500. Five different options foM1's

flexibility speed are assumed, as followsy, = (r1%; = 0,723, = 0,73%,, = 0, r4},, = Ay,

34



App A A

2 _ (.12 _ 2 _ 2 Ama 3 _(,13 _ A1 3 _Ami
M1 = (7”1M1 =0, r2y; =073y = _2 4M1 == ), 1 = (7”1M1 = 2y =,

Am1

4 4

Ay, 7231 = 0,733, = 0,745, = 0).

Supplie (S1) Manufacturer M1)
1355.2 , _ L6580 o n | xP=1748] R1
Ll First run o
ﬁ
I&I Second run Second run
976.2 .
1355.2 Third run L l2:4 Third run Py, R2
|_|1134"9 Fourth run

Figure 11. Flow dynamics in the first supply path dring the ramp-up disruption period.
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Figure 12. Flow dynamics in the first supply path diring the normal disruption period.
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As1
3

) = (r1d =22 r2d =%r38 = 0) and 7 = (r1f; = Ay, 72§, = 0, 735, =0). We
solved this model using CPLEX Concert Technologyaobell laptop computer with Windows 10, an
Intel i7 processor, and 8 GB of installed RAM. Tduenputational time was less than 6 minutes.

Solving the model of this problem leads to thedwihg results. The optimal service level for the
disrupted condition is 80 percent and the bestauimg local reliability combination isl?;, = 1, ri5; =
1and i} = 0.8. To preserve these local reliabilities, the reeiflexibility levels ofS1andM1 are
Ag1=555.2 and Ay, = 634.9, respectively. The optimal flexibility speed fddl is w3, = 1, which
implies that uniform capacity scalability is prefst for this facility. The optimal flexibility speefor S1
iswg, = 1, which implies that all extra capacity is addethat beginning of the first production run after
disruption. The ordering and production quantities the production runs of the first supply path's
facilities during the ramp-up and normal disruptipariods are represented in Figures 11 and 12,
respectively.

The average profit of the first supply path, widspect to the disrupted condition’s service leigel,
displayed in Figure 13. When comparing Figures & &8, it can be noted that the profit reduction on
both sides of the most profitable service levééss during the disrupted condition than for thedition
without disruption. This gentler reduction is doel) the higher potential demand that is assigoetis
path during the disrupted condition in which thestfisupply path services the first, second, third a
fourth markets and 2) the decreased sensitivithefthird and fourth markets with respect to thwise

level (the service level sensitivity parameteriese markets is 900).
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Figure 13. Average profit of the first supply pathwith respect to the service level under disruption.

This study’'s example was constructed using assomptthat are often used in prior studies

regarding SNs. We tried to be as comprehensiveoasilje by considering different common options.

Here, we summarize the assumptions (and their eefes) and options that were considered in our

example.

Density function for variations: we consider three different density functions ¥ariations in the

SN, as follows:

- Normal distribution for the market's demands (Bésits and Federgruen, 2004 and 2007;
Santoso et al., 2005; Shen and Daskin, 2005; Bizghat al., 2013; Rezapour et al., 2016a and

2016b; Mohammaddust et al., 2017);

- Uniform distribution for the manufacturers’ wastagéio (Rezapour et al., 2015; Rezapour et al.,
2016a and b); and

- Exponential distribution for the suppliers’ detestion time (Rosenblatt and Lee, 1986; Lee and
Rosenblatt, 1987).

Demand functions. we assume that the markets’ demand is a lineadyedsing function of price

and a linearly increasing function of service levihis assumption is widely used in prior studies

regarding SNs, such as Bernstein and Federgruéd @@d 2007), Carr and Karmarkar (2005), Ha et

al. (2003), Jiang and Wang (2009), Zzhang and Ruas{2008), Rezapour and Farahani (2014), and

Rezapour et al. (20164, b, and c).

Duration of the disruption: we consider different scenarios for the duratiorthef disruption in the

SN (Schmitt, 2011; Klibi and Martel, 2012).

Extra capacity costs: we assume that providing extra production capasityostlier during the early

production runs following a disruption. This asstdimp is consistent with observations in

manufacturing systems (Koren and Shpitalni, 2014).
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In this problem, there are three important riskigaiion strategies (one ORM and two SRM
strategies) that determine the behavior of the &dn/faced with variations and disruptions:
)] Robustnessof the SN’s structure/topology against disruptiotiis feature of the SN's
structure/topology depends on the levels of flditibihat are assigned to its facilities (SRM);
1)) Resilience of the SN’s structure/topology against disruptiottsis feature of the SN'’s
structure/topology depends on the flexibility speadsigned to its facilities (SRM);
1)} Reliability of the SN’s flow planning against variations: tleature of the SN’'s flow
dynamics depends on the local reliabilities assignets facilities (ORM).
In the remainder of this section, the correlatiam®ong the ORM and SRM strategies are investigated.
For this purpose, we solve the model for our exangpid conduct a sensitivity analysis to analyze the

correlations.

Correlation between robustness and resilience

First, we analyze the relationship between theSRM strategies, i.e., the flexibility levels andxibility
speeds that are assigned to the SN's facilifiés &nd S1). We solve the mathematical model (Model
Equations 53-56) for 3 scenarios for the disruptionation and use 5 different values for the retal
local reliability to change order quantities in tBN, 5 different values for the local reliability M1, and

5 different values for the local reliability &1to provide more variety in the markets’ serviceels. We
solved 375 problems and summarize their resultigures 14, 15, and 16. By increasing the local
reliability of the retailer in the model, more prmtis are ordered from the first supply path and,
consequently, greater extra capacity or a higlexitility level is needed in its facilities to adds the
disruptions. Therefore, the flexibility levels thate assigned to the facilities increase in the eti®d
solution. In addition, we follow the trend of chasgin the flexibility speeds that are assignedht® t
facilities to determine whether there is a coriefabetween the flexibility levels and flexibilitspeeds.
These results are summarized in Figure 14.

Supplier S1) Manufacture (M1) ﬂef(';'g!},ty

d
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Figure 14. Correlation between flexibility levels ad speeds.
(Each color corresponds to one flexibility speed djpn).

In Figure 14, the changes in the flexibility speefi$1andM1 with respect to their flexibility levels
are shown for different values eff. For instance, iml? = 0.80, when the flexibility level ofS], Ag4, is
less than 70 (capacity units), the flexibility spesssigned by the model to this facility7i&,. This
implies that the most rapid increase, or the higfiesibility speed, is selected for this facilithowever,
in the case that0 < Ag;< 153, the flexibility speed of this facility reducesittf;. By increasing\g, to
more than 153, the flexibility speed reduces furtbel3;. The other bars of this figure can be interpreted

similarly. Based on the results that are summariaddgure 14, we conclude the following:

= For a given product order quantityg), when a facility’s flexibility level is low, a gh flexibility
speed is generally preferred for that facility. §hmplies that when a low extra capacity is needed
a facility, it is primarily added during the eagyoduction runs after disruptions. However, when th
required extra capacity increases, part of thiseimse should be postponed to later productiontauns
avoid high costs. Therefore, a negative correlagivists between the flexibility level and flexiti

speed of each facility. For all the facilities et SN,higher robustness leads to lower resilience in
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profit-based SNsThis tradeoff between robustness and resilierteauld be considered when
designing/redesigning profit—-based SNs.

= By increasing the product order quantity (causedirmyeasingri?), the flexibility level values
differentiate two subsequent pairs of flexibilifyeed options. The red numbers in Figure 14 reptesen
these differentiating flexibility level values. A example, forl} = 0.80, the flexibility level value
of Slthat differentiates thel?, andrld, flexibility speed options is equal to 70 (capadityits).
However, by increasingl? to 0.85, this differentiating flexibility level vaé increases to 105
(capacity units). This implies thdtigh production rates stabilize the facilities’ Xilaility speeds
against changes in their flexibility levels. Torifig to reduce the flexibility speed of facilitiea
greater increase in the flexibility level is reaudr For all the facilities in the SN, larger SNdhwi
higher production rates are able to absorb grdatesls of flexibility in their facilities without
reducing their flexibility speeds. Greater flexityillevels and lower flexibility speeds in faciés
result in higher robustness and lower resiliencénSN. Thereforeghe tradeoff between robustness
and resilience is more stable in large SNs witthhpgoduction ratesThis tradeoff is more fragile for

low production rates.

Correlations between Robustness, Resilience, and Reliability

Figures 15 and 16 represent the flexibility leveldM1 and S1, respectively, with respect to the local
reliabilities of the first supply path’s facilitie®\nalyzing Figures 15 and 16 leads to insights tra
summarized below.
= Based on Figures 15 and 16, increasing the retalteral reliabilities leads to higher flexibility
levels in M1 and S1 The retailers’ increased reliabilities lead to ianrease in the product
ordering quantities in the first supply path. Tdfifluthese larger orders, greater capacities are

needed in the supply path’s facilities.
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= Based on Figures 15 and 16, increasing the lod&lbilities in S1 and M1 leads to higher
flexibility levels for M1 andS1 This implies that there is a positive correlatimiween the local
reliability of each facilityand the flexibility level of other factories.

Based on theseesults, we conclude that for SNs, there is a pesitorrelation between the flow
reliability against variations (ORM) and the sturel robustness against disruptions (SRM). We have
presented evidence for a negative correlation hEtwebustness and resilience; therefore, a negative
correlation exists between the flow reliability aga variations (ORM) and structural resilience inga

disruptions (SRM).

5.6. Extension to more complicated supply networks

In the previous subsections, we consider a verplsilBN with only two supply pathg§1 - M1 - R1]
and [S2 » M2 — R2], to avoid unnecessary complication in modeling. ¥¢sumed that when Path
[S2 » M2 — R2] is disrupted, PathiS1 - M1 — R2] substitutes for the disrupted path. Pagh —
M1 — R2] is selected for substitution because capacityresipa is needed in botil andS1. However,
other substitutions are also possible. Hath— M1 — R2] can substitute for Pafl§1 - M1 - R1] if
disruption only occurs iM2. In this case, capacity expansion would be needédin M1. Path[S1 —
M2 — R2] can be used to substitute for P&t - M1 — R1] if disruption only occurs i$2. In this
case, capacity expansion would be needed onl§1lin By considering PatjS2 - M2 — R2] for

substitution, we consider the more complicated @dsen capacity expansion is needed in two fadlitie

In this section, we show that the method for depielp the model above can be used for more
complicated SNs with a higher number of suppliengnufacturers, retailers, and markets. Figure 17

shows a more complicated SN with 3 suppliers, 2ufaturers, 7 retailers, and 14 markets.
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Figure 17. A more complicated SN with sample substite paths.

The black paths are used in the normal conditioprtmuce and supply products to the markets.
However, if a disruption occurs iR, Paths[S2 - M2 — R4] and [S2 - M2 — R5] would be
inoperative for a while. There are four potentiaths that can substitute for P42 - M2 — R4] and
service Markets 7 and 8 after the disruption: Pigth —» M1 — R4], Path[S1 » M2 — R4], Path
[S3 » M2 - R4] and PatHS3 - M1 — R4] (substitute PatiiS1 - M1 — R4] is denoted by a dashed
red arrow in Figure 17). To select the most prbfaasubstitution, we define new binary variableghs
asv,, v,, v3 andv,. Variablev, is 1 if the first potential path, Pafl§1 - M1 — R4], is selected to
substitute for inoperative Paff2 - M2 — R4]. Similarly, variablev,, v; orv, is 1 if the second, third

or fourth potential path is selected for substitatirespectively.
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Additionally, there are four potential paths thahsubstitute for Pafl§2 - M2 — R5] and service
Markets 9 and 10 after the disruption: Pgith - M1 — R5], Path[S1 - M2 — R5], Path[S3 - M2 —
R5] and PathHS3 - M1 — R5] (substitute PatiiS3 - M2 — R5] is denoted by a dashed red arrow in
Figure 17). To select the most profitable substitytwe define another set of new binary varialdesh
asv,, Uy, v3 and?v,. Variablev, is 1 if the first potential path, Pafl§1 - M1 — R5], is selected to
substitute for inoperative Pafi2 - M2 — R5]. Similarly, variablev,, v; or v, is 1 if the second, third

or fourth potential path is selected for substitatirespectively.

Only one of the potential paths should be selettesiibstitute for each inoperative pailf., v; =
1 and Zj*zl v; = 1. Function wvi¥j shows the average profit of the SN if the poténpaths
corresponding to Variables and?; are selected to substitute for the inoperativépathe objective

function of the SN would be as follows:

Maximize X WL v
(57)
Subject to: =1
(58)

Yicit=1
(59)

v; and v; € {01} 6=123 and 4) and j(=1,2,3 and 4)
(60)

In Model (57)-(60),%*Vi¥i shows the optimal average profit that can be tafed using Model
(53)-(56) after a few small modifications. Consttai (36) and (37) should be calculated for seven
retailers instead of two. The total orders receibgananufacturersil andM2 (x5, andxf,) should be

revised as follows (Constraint (35)):
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Xi1 = XR1 + Xy + xR + xR (v1 + vy) + xR5 (01 + Dy) (61)
Xi12 = XRe + xRy + xR4 (V2 + v3) + xR5 (0, + ¥3) (62)

The service levelssl?, in Markets 1-6 and Markets 11-14 are equalrt8.ri5,.rI2 and

ri.rib,.r12, respectively. For the markets served by R4 andNRdrkets 7-10), the service level is

modified by the binary variables, as follows (Coastt (41)):

sIP = (I vl rIR). vy + (12 Dy TIR) vy + (1B 1, TIR) . vg + (1Bl TIR) . v,

(63)

SIP = (P2 15, r1R). 0y + (IR 18, rIR). Oy + (1B 115, TR Ug + (rlEs. 71 . TIR). D,

(64)

Additionally, the revenue of all retailers and tast components of all SN entities should be added

to Functions (42), (50) and (51), used to calculdté’i. Models (57)-(60) select the most profitable

potential paths that should be substituted foiiribperative paths.

In more complicated SNs, more flexible facilitiese aisually needed to manage disruptions and
variations. However, the correlations among theilfiéity level, flexibility speed, and local relidlity are
similar for all the flexible facilities. Thereforéhe size of the SN does not affect the correlatidaimed

in the paper.

6. Conclusions

In this study, we classify SN risks into two groupsvariations that affect flow planning decisiarxd 2)
disruptions that affect the topology design decisiof the SN. We develop a model in Section 4 & gl
reliable flow for SNs to manage downstream andrepsh variations by assigning the optimal local
reliabilities to facilities (ORM strategies). Weterd the model constructed in Section 4 in Sediday
considering the possibility of disruptions. Thisaebredesigns a robust and resilient network atredby

adding flexibility levels and flexibility speeds tacilities (SRM strategies). Finally, we analyzeet
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correlations among reliability, robustness, andieese. Our results demonstrate that in profitdthSNs
1) the correlation between robustness and resdiénnegative; 2) the correlation between robustaesl

reliability is positive; and 3) the correlation feen resilience and reliability is negative.
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Figure 15. Flexibility level inM1 with respect to the local reliabilities of faciliies.
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Figure 16. Flexibility level in S1 with respect to the local reliabilities of faciliies.
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Appendix A
Nomenclature.
Sett
J={} Set of samples used in S,
RL ={rl} Set ofdiscretized values that can be taken by reliabil#tsiable:
ROy = {ru1} Set of all flexibility speed options available M1
ROg;, = {151} Set of all flexibility speed options available ‘S1
SCE = {s} Set of allpossible scenarios for the length of disrupt
Paramete|
D Price
€ Random deviation of the actidemand from its mean val
Gr1 Cumulative distribution function far in R1
ht Unit holding cost paid by the retailers for eaclit ohenc-of-period extre
inventory
h~ Unit shortage cost paid by the retailers for eathaf lost sale
O Number of production runs M1
A1 M1’s random wastage ra
G Cumulative distribution function fag,,
aky, Value of random variable,,; realized in production ruin= 1, 2, ..., Op1
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Os1 Number of production runs IS1

Ys1 Nonconforming production rate whiSl's machinery is iranout-of-control
state

t Random deterioration time SI's machiner

Gy Cumulative distribution function far

Cap¥P Productiol capacity oISl in each production ru

CaplP Productiol capacity oiM1 in each production rt

T Number of time units in each production

t; Value of random variablerealized in production ruin= 1, 2, ..., Os,

Cs1 Cost of procuring and producing a component urSl

Cs1,M1 Cost of transporting a component unit frS1 to M1

Cm1 Cost of manufacturing a product unitM1

CM1R1 Cost of transporting a product unit frcM1 to R1

capl Unit extra capacity cost iM1’'s production runi = 1,2, ..., Oy

Capél Unit extra capacity cost i81s production ruj = 1,2, ..., Og4

rjml Capacity ramp-up quantity in production ruof M1 if flexibility speed
optionry, is selected for itYry; € ROy andj = 1,2, ..., 0y4)

rjsrfl Capacity ramp-up quantity in production ruaf S1if flexibility speed option
151 IS selected for itrg; € ROg; andj = 1,2, ..., 054)

his, Unused capacity cost M1's production ruri = 1,2, ..., O

h, Unused capacity cost Bl's production run =1, 2, ..., Os;

prs Occurrence probability of scenatice SCE

num?P Number of without disruption periods in scenaria SCE

numRUD Number of ramp-up disruption periods in scenar®SCE

numbP Number of normal disruption periods in scenari® SCE

numRP Number of ramp-down disruption periods in scenar®SCE

Variable:

sl Service leve

ALY Service level provided by the SN under withoutwigion condition

xWDb Number of products ordered R1from M1

rifP Local reliability forR1 under without disruption conditio

yWpb Number of products produced M1 in each production rt

riyp Local reliability forM1 under without disruption conditio

zWP Number of components producedS1in each production rt

ridP Local reliability for S1under without disruption conditio

rlyy 1 if the term(0yy;.y"P — xWP) — yWP. 3:9M1 gi | is positive based on the
realized values atl,, (Vi = 1,...,0,,) in samplej € J, and O otherwise

rigyh 1 if the termyg;. Cap¥?. (T51 t;) — Osy. (V51 — 1).2"P = Opy1.y"P is
positive based on the realized values;d¥i = 1, ..., 044) in samplg € J,
and 0 otherwise

gs"{["” 1 if reliability optionrl € RL is selected foS1,and 0 otherwise

oD, r’ 1 if reliability optionrl’ € RL is selected foM1, and 0 otherwise

@%D.rl" 1 if reliability optionrl” € RL is selected foR1,and O otherwise

uDrlrlirl 1if all three variable!”™, gP™"  ande?’P™" are equal to 1, and 0
otherwise

w&’;’l 1 if flexibility speed optiorny,, is selected foM1, and O otherwiser(,, €

ROy,)
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W;fl 1 if flexibility speed optiorr, is selected fo61,and 0 otherwiser{; €
ROs,)

Ay Flexibility level inM1

Agq Flexibility level in S1

RUD Production quantity in the ramp-up disruption péisgoroduction run of

M1Gi=1,2..,0.)

zRUD Production quantity in the ramp-up disruption péisgoroduction run of S1
(i=1,2,..,05)

xP Total product order received IM1 in disrupted perioc

xP Orderissued byR1 from M1 in disrupted perioc

x? Ordelissued byR2 from M1 in disrupted perioc

iR, Local reliabilityfor R1under disrupted conditio

riB, Local reliabilityfor Rz under disrupted conditio

siP Service level provided by the SN under disrupteatda@mns

rid, Local reliabilityfor M1 under disrupted conditio

ri2 Local reliabilityfor S1under disrupted conditio

riR Local reliabilityfor R1andRz if the same service level is provided to ¢
markets under disrupted conditions

yNP Production quantity in the production runs of nordiaruption period irM1

zND Production quantity in the production runs of nofrdiaruption period i S1

Function:

Dy (p,sI™P) Expected demand in each sale period in maklet= 1 and 2) under without
disruption conditions

>2_ Dy(p,si™P) Average demand R1under without disruption conditio

Y2_ Di(p,sl”P) x e Actual demand i R1under without disruption conditio

nyp Expecteitotal cost irR1 under without disruption conditio

ywb Total profit in the first supply path under withalisruption conditior

Dy (p, sIP) Expected demand in each sale period in mdklet= 1 and 2) under
disrupted conditions

Y2_. Dp(p,slP) Average demand R1under disrupted conditio

Y2 _Di(pslP) xe Actual demand i R1under disrupted conditio

WRUD Total profit that can be captured in the re-up disruption peric

WND Total profit that can be captured in the normal disrupperioc

WRD Total profit that can be capturdn the ramj-down disruption peric

Capl, Capacity needed tM1 in disrupted conditior

Cap?, Capacity needed tS1in disrupted conditior

Y Expected profit of the SN under disrupted condd

Appendix B: Linearizing Approach

The model (Equations 8-17) is linearized in threps as follows:
= First, the chance constraints, Equations (12) 48) @re linearized by using the SAA approach,
= Second, the nonlinear constraints, Equations (d)(44), and the objective functions, Equation

(8), are linearized by discretizing reliability \etles,
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= Third, the multiplication of binary variables isifiarized by defining a new variable.
The steps are explained in detail below.

Step 1: Chance constraints linearization

In this step, we explain how the SAA approach Edu® approximate the chance constraints in thesinod

(Equations 8-17). The SAA for Equation (12) is alfofvs:

P
rlP = Pr(XoM aby. y"P < Oy yWP — xP) = %M“ (57)

In Equation (57), the probability of the event tisatlefined as theléft-hand side of the inequality in
Equation (57) is less than or equal to its rightadaside }]l by < 04y y"P —xWPY s
replaced by the ratio of its occurrence in a sarttpé includeg = {j} observations. Increasing the size
of the sample]/|, increases the accuracy of this statistical appration. To determine the number of
times in which term(0,,.y"? — x"?) —yWD.ZO"“ ajyy is positive, a new binary variabtey?; is
defined and the following constrains are addedi¢omode:

BM.(rlyp; — 1) < (Opp.y"P —x"P) — yWP YoMl < BM. iy
Vj=1,..,JandVi=1,..,0y) (ak1~Gi1) (58)
riyD; €{0,1} vVji=1,..)) (59)

According to Constraint (58), variabiéy?; is 1 if the term(0y,.y"? — x"?) — yWD.Z?Mf aly, is
positive based on the realized valuestyf (Vi = 1,...,0,;) in samplej € J, and 0 otherwiseBM is a
large constant value; refer to Appendix E for mor®rmation about théBM value). Increasing the
accuracy of this approximation increases the nunadfghese new variables. Therefore, selecting the
smallest/| that ensures an acceptable accuracy is necessary.

The chance constraint in Equation (13) is approihan the same manner. First, it is simplified
algebraically and rewritten as follows:
rif? = Pr(ys;. Capgi® (2051 t;) = Os1. (¥s1 — 1).2"P + Op1.y"P) 0J6

Then, it is approximated with the following congtita:
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J . WD
Y1 7ls1)

; (61)

)
rigP = Pr(ySI.Capgl{D. (Ziii ti) > Os1.(¥s1 — 1).2"P + 0M1-3’WD) =

To determine the number of times in which tepgy. Cap¥P. (251 t;) — Osy. (ys1 — 1). 2P —
Oum1.y"P is positive, a new binary variablel?{f}, is defined and the following constrains should be
added to the model:

BM. (r1¥0 — 1) < yg;. Cap¥P. (Z251 t;) — Ogy. (V51 — 1).2"P — 041 y"P < BM.7I%D

(Vj=1,...Jand Vi =1,...,05;) (t;~G&, (62)
rigy ; € {0,1} (vj=1,..))
(63)

Variable ri¥%? is 1 if the termyg;. Cap¥?.(Z0%i t;) — Ogy. (¥sy — 1).2"P — 04y y"P is positive
based on the realized values tpf(Vi = 1, ..., 0y4) in samplej € J, and 0 otherwise. To verify the
accuracy of this approximation and suggest appatgialues for the sample sizf, we conducted a
numerical analysis and compute the average errtimigfapproximation for different density functions

The results are summarized in Table B.1.

Table B.1Average error for different density functions.

Normal Density Function Uniform Density Function Exponential Density Function

J Average J Average J Average J Average J Average J Average

error error error error error error
1 0.220 60 0.034 1 0.230 60 0.033 1 0.210 60 0.032
5 0.129 65 0.033 5 0.134 65 0.031 5 0.131 65 0.030
10 0.084 70 0.031 10 0.082 70 0.029 10 0.085 70 0.030
15 0.065 75 0.029 15 0.067 75 0.028 15 0.064 75 0.029
20 0.061 80 0.028 20 0.061 80 0.028 20 0.060 80 0.028
25 0.051] 85 0.02¢ 25 0.05( 85 0.023 25 0.05( 85 0.023
30 0.048 90 0.026 30 0.049 90 0.025 30 0.048 90 0.026
35 0.045 95 0.025 35 0.043 95 0.025 35 0.043 95 0.026
40 0.041 100 0.025 40 0.041 100 0.024 40 0.039 100 0.025
45 0.039 120 0.023 45 0.039 120 0.022 45 0.037 120 0.023
50 0.038 140 0.020 50 0.036 140 0.019 50 0.036 140 0.022
55 0.03¢t 15C 0.01¢ 55 0.03¢ 15C 0.01¢ 55 0.03¢ 15C 0.01¢

Based on these results, whighis in the[25,30] interval, the average error of the approximatisns
less than or equal to 5 percent. To reduce the wress than 4, 3, and 2 percdpt,should be selected

from the[40, 45], [65,70], and[140, 150] intervals, respectively.
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Step 2: Nonlinear objective function and constraints linearization

To linearize the objective function in Equation @)d the constraints in Equations (11) and (14), we
discretize the facilities’ local reliability varitds, 12, rI}yP and ri¥°. These variables only assume
values in the [0, 1] interval. The service levefuaction of these local reliabilities, generallysames a
value that is greater than or equal to 50 perd&ntestricting the feasibility range of the localiabilities

to [0.8, 1], we ensure that the SN's service ldgelthe markets is greater than 50 perc€@3(> 0.5).
This very restricted feasible range justifies thasibility of their discretization (Rezapour et &015).
SetRL = {rl} includes all discrete values that can be assumeldse variables. For example, if we use
step size 0.05 to discretize the [0.8, 1] interwad,obtainRL = {0.80,0.85,0.90, 0.95, 1} (the notatiornr!

is used to represent the discretized values irRBetin this case, the variable&”, r}y? and ri§;? can
only assume a value from Set = {0.80, 0.85,0.90,0.95, 1} rather than assuming any value from [0.8,

1]. To select one of these reliability options &ach facility, we define new binary variabl@é"l’D'”,

O 2™ and 62>, Variable 6P is 1 if the reliability optionrl € RL is selected forS1, and 0

otherwise. Only one of the options availabl&®inhcan be selected f&1

Ttk 6Pt =1 (64)
Variable@,‘(l"f' " is 1 if the reliability optionrl’ € RL is selected foM1, and 0 otherwise. Only one of

the options available iRL can be selected fdA1:

Z|RL| Hnlill/ll),rl’ -1 (65)

ri’'=1
Variable@,‘{'{D'”" is 1 if the reliability optionl" € RL is selected foR1,and 0 otherwise. Only one of

the options available iRL can be selected f&1
ZlRLI Q}I?/I;D,rl” -1 (66)

ri'=1

By defining these new variables, the objective fiom; Equation (8), is rewritten as follows:
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ri'=147l"= "h—+ht

Max YWD = yIRH $IRH $IRL Wbt gDt gwDirt [(p —h*.E|Giit (Max {rLrtrl’, - 2)) -

£]+ —h™.E [e — Gpt (Max {rl.rl’.rln,h_h;th})r) X [%2_1 D (p, rl.rl’.rl")]]

(67)

After defining these new binary variables, the ¢a@ist in Equation (11) can be rewritten as follows

WP = yIRL ZL};,LLIE‘,'R"“ L0510 9,\%["”’.6%1)’”". [(Zi=1 Di(p,rl.rl'.71")).Git (Max {rl" S })]

rl= "h™+n*
(68)
The constraint in Equation (14) is rewritten;
SIWD = yRU SIRLL SR WDl gDl gWDTT 1 oyt p'] (69)

The accuracy of this linearization depends on tiseretizing step of the reliability variables. To
reduce complexity, we begin with a large step ttewine a rough approximation of the optimal
solution. Then, we can make the steps finer ardhedrough approximation to improve the solution’s

accuracy.

Step 3: Linearizing multiplication of binary variables

The objective function in Equation (67) and the staaints in Equation (68) and (69) are still noein
because there is a multiplication of binary vamabin these equations. These multiplications can be

easily linearized by defining a new binary variamgﬁﬂﬁ"” , and substituting as follows:

wp,rlrl' v’ _ qWDrl WDl WDl
G)51,1\/11,11?1 =051 Oy -Opp 0f7

We must add the following constraints to the mdade¢nsure that variab[eg'f}([f;;ll' ™ is equal to 1,

. . ! "
only if all three variableg >, o/*>"" , ando’>™" are equal to 1:

. " wDrl, sWwDrl! | pwDrl’
pworl | gwnrl | pwDrl _ 5 _ qwDirlrl'sl’ _ Os1 " 460y1 " +6Ry (71)
51 M1 R1 SOgmir1” = 3
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@WD,rl,rl’,rl'

S1,M1,R1

@WD,rl,rl’,rl'

S1,M1,R1

G)WD,rl,rl',rl'

S1,M1,R1

G)WD,rl,rl',rl
S1,M1,R1

(75)

< BM.oJP™
"< BM.glPT
‘< BM.g¥P™

e (0,1}

(72)

(73)

(74)

After these steps, our model becomes a MILP. Theien time of a MILP primarily depends on the

number of binary variables that are equalRd|3 + 3.|RL| + 2.|J|. We solve this model using CPLEX

Concert Technology on a Dell laptop computer witinfféws 10, an Intel i7 processor, and 8 GB of

installed RAM. The computational time for the TBsbblem (in Section 4.6) is less than 4 minutes.

Given that the test problem is not complicated veefy the computational capability of the solution

method by solving more complicated SNs with lang@mbers of suppliers, manufacturers, and retailers.

The features of these SNs and their computatiomaistare summarized in Table B.2. In these prohlems

we assume that the local reliability of the fawmt in each echelon is selected from Rét=

{0.8,0.85,0.90,0,95, 1} and the sample size used in SAAJis= 25.

Table B.2.Computational capability for the model developed fowithout disruption conditions.

Features of SN Computational time
Problem| Number of Number of Number of Number of
) : (second)
suppliers manufacturers  retailers paths

1 2 2 2 2 227
2 2 3 6 8 612
3 2 4 9 12 2990
4 2 5 12 16 10411
5 3 6 15 21 25965
6 3 7 18 26 57323
7 4 8 22 32 104711
8 4 9 26 38 > 172800

Decisions about the SN’'s risk mitigation strategée types of strategic level decisions. These

decisions are not made on a daily basis and doew short computation times. As noted in Table B.2
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for Problem 8 and problems larger than Problemh8, computational time is more than 48 hours.
Therefore, for this type of problem, we can use asfeduristic approaches to solve the MILP and

determine a good suboptimal solution in a rati@eshputational time rather than the global optimum.

Appendix C: Computational Times

The model developed in Section 5.4 is a MILP. Toleit®on time of a MILP primarily depends on the
number of binary variables that are equal KRL|3+ 3.|RL|+ 2.|J| +|ROy4| + |ROs1|. The
computational time for the test problem (in Sectob) is less than 6 minutes. Given that the testlpm

is not complicated, we verify the computational afaifity of the model and solution method by solving
the first 7 problems that are summarized in Takie Zhe number of disrupted paths considered isghe
SNs and their computational times are summarizetalle C.1. In these problems, we assume that the
numbers of flexibility speed options available fordisrupted suppliers and manufactures are 3 and 4,
respectively. In addition, the facilities’ localliebility in each echelon is selected from d&t =
{0.8,0.85,0.90, 0,95, 1} and the sample size used in the SAHjis= 25.

Table C.1.Computational capability for the model developed fodisrupted conditions.

Features of SN Computational
Problem| Number of Number of Number of Number of Number of time
suppliers | manufacturers retailers paths disrupted paths (second)
1 2 2 2 2 1 314
2 2 3 6 8 3 2439
3 2 4 9 12 4 5937
4 2 5 12 16 6 26462
5 3 6 15 21 8 58413
6 3 7 18 26 8 103847
7 4 8 22 32 9 > 172800

As noted in Table C.1, for Problem 7 and probleangdr than Problem 7, the computational time is
more than 48 hours. Therefore, for this type obprm, we suggest using meta-heuristic approaches to
solve the MILP and determine a good suboptimaltsmiun a rational computational time rather thae t

global optimum.

Appendix D: Fubini's Theorem
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According to Fubini’'s Theorem, it is possible tolotdate the mean of a random function, such as
x"WP —¥2_ Di(p,sI"P) x g, using its cumulative distribution function (forone information about this

relationship refer to Hajek (2015) — Equation (3)11

XWD

+ ¥2__Dy(psIWD
E[x"P — 32_, Dy (p, ") x ] = [P 6o (6). de
(76)

E(x"P — ¥2_, Dy (p,sI"P) x €)+ —E(X2_1 Di(p,sI"P) x & — xWD)+ =x"P — ¥ % _1 Di(p,sIP)
(77)

Therefore, we can manipulate the objective functigras follows:

+ 2 +

2
VP — % D (p,si"P)xe| +h™.E Dy (p,s1"P) x g — xWP

k=1 k=1
*WD *WD

7 Do(p WD) 371 Di(psWD)
= h+.f02"=1Dk(p' : )GRI(E).dE +h™ | X2, Dy (p, sIVP) — xWP+ .foz"“Dk(p : )GRl(s).ds

MIN nyP =h*E

(78)

Therefore, to compute the minimurl’?, we should compute the derivative of Equation (#@h
respect toc"?, as follows:

Ll S (R — R (R A (S — ) Py
oxWD = " " HRINZZ_ Dr(psIWD) ' RISk De@s"P)) | —
(79)

xWD h™ -1, h™
GR1 (Zi:le(valWD)) = (h=+h*) - xWD = ZIZC=1 Dk(P: SlWD) . GR1 (m) (80)

Furthermore, Constraint (2) can be simplified do¥es:

xWD
Pr[Y2_, Dp(p, sl"P) x e <x"P| = rl}ffP - Pr[e < W] > rigP (81)
xWD
Gr (Eizl Dk(p,leD)) > rlgy” (82)
1 WD 1
Gr1 (TI%D) < W - x"P > [ZiﬂDk(P;SlWD)]-Gm (TI%D (83)

Appendix E: BM Value
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Equation(0y;.y"P — x"P) — yWP. 329M1 ol is used to demonstrate the difference betweerextra

production inM1 (0y;.y"P — x"P) and the total waste in its production rumé"f’.zg);”ll als). The
extra production irM1 cannot be greater thah,,.y"?.Max(a,;) and the total waste i1 cannot be

less thar0,,,.y"?.Min(a,,,). Therefore, we can claim the following:

-1x (OMl-yWD(Max(aMl) - Min(aMl))) < (0M1-)’WD - XWD) - }’WD-ZELMf 0‘11;41 =
OMl'yWD(Max(aMl) - Min(aMl)) (84)

Furthermore, the maximum value that can be assumgep’? corresponds to a case for which

Oy, =1 and at most is equal t©"?(Max(ay,) + 1). Because the maximum value fal? is

h-

[X2_, D (p, sI"P = 1)]. Gz (Max {rl}’{f’ = 1m}) the BM in Equation (58) must satisfy the

following inequality:

BM = Oy;. [$2, Di(p, 1)]. Gt (Max {1#}) (Max(ay,) + 1). (Max(ay,) — Min(ay,)) (85)
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