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Correlation between Strategic and Operational Risk Mitigation Strategies in 
Supply Networks 

 
Abstract  
A supply network’s performance is affected by two types of risk: 1) risk of disruptions that distort the 

supply network’s topology by inactivating certain production facilities or transportation lanes; and 2) risk 

of variations in a facility’s performance that reduce the efficiency of the supply network’s flow planning 

for fulfilling demands. In this paper, we demonstrate that strategic and operational risk mitigation 

strategies, which neutralize the impacts of disruptions and variations, respectively, are correlated. We 

consider “Robustness” and “Resilience” at a strategic level to mitigate disruptions and “Reliability” at an 

operational level to mitigate variations.  

A mixed integer stochastic mathematical model is developed to simultaneously a) design a robust and 

resilient topology for supply networks; and b) plan a reliable flow throughout its topology. We solve the 

model using an example of a profit-based supply network that is constructed by relying on the 

assumptions that were primarily used in prior studies. A sensitivity analysis of the results from the model 

indicates that i) the correlation between robustness and resilience is negative; ii) the correlation between 

robustness and reliability is positive; and iii) the correlation between resilience and reliability is negative.       

Keywords: Supply Network; Robust Design; Disruption; Variation; Reliability; Resilience; Flexibility. 

1. Introduction 

Supply networks (SNs) are crucial components of competitive and globalized markets. Companies 

improve their competitive advantage by working as parts of a SN, which results in lower production 

costs, higher product quality, and greater responsiveness with respect to the customers’ rapidly changing 

needs and expectations (Chopra and Sodhi, 2004). Conversely, because SNs are globally distributed, they 

are vulnerable to risks in business and working environments (Schmitt and Snyder, 2010; Peng et al., 

2011; Baghalian et al., 2013; Farahani et al., 2014). Therefore, risk management is critical for successful 

SNs because many different types of risks exist.  

According to Sarkar et al. (2002), during the labor strike in 2002, 29 ports on the west coast of the 

United States were shut down, which led to the closure of the new United Motor manufacturing 

production factory (disruption in transportation facilities). During the destructive earthquake in Japan in 

2011, the Toyota Motor Company ceased production in twelve assembly plants to repair production 
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facilities, which resulted in a production loss of 140,000 automobiles (disruption in production facilities). 

In another instance, Ericsson lost 400 million Euros after their supplier’s semiconductor plant was 

damaged due to a fire in 2000 (disruption in production facilities). The Taiwan earthquake of 1999 

resulted in a supply shortage of DRAM chips for Apple that culminated in numerous order losses 

(variation in supply process). This supply variation has a cascading effect in multi-echelon SNs. For 

example1, consider an apparel supply network, as follows: a small variation in machine performance at a 

thread manufacturing plant in India can cause a four-day delivery delay to a knitter in Malaysia, which 

can result in a seven-day delivery delay to a dyer in Hong Kong and finally lead to a 10-day delivery 

delay of trendy, new apparel at a clothing manufacturer in Europe and a loss of sales worth millions of 

dollars (variation propagation in supply process). Hendricks and Singhal (2005) quantify the negative 

effects of risks in SNs through empirical analysis. Their results demonstrate that risks result in 33 to 40% 

lower stock returns, a 107% decrease in operating income, 7% lower sales growth, and an 11% increase in 

cost. 

Clearly, there are numerous sources of risk in SNs. In this paper, we demonstrate that risk mitigation 

strategies used by SNs for different risk sources (disruptions and variations) are not independent and 

important correlations exist among them. Therefore, compartmentalized decision making for the 

mitigation of variations and disruptions, as done in prior studies, results in suboptimal solutions.  

2. Literature Review       

Scholars have suggested numerous methods to classify the risks of SNs. Waters (2007) and Kar (2010) 

divide SN risk sources into internal risks and external risks based on their controllability. Internal risks 

are controllable and appear during normal operations, such as late deliveries, excess stock, poor 

forecasting, human error, and faults in IT systems. External risks are uncontrollable and come from 

outside of a supply network, such as earthquakes, hurricanes, industrial actions, wars, terrorist attacks, 

price increases, problems with trading partners, shortages of raw materials, and crime. Furthermore, 

                                                           
1 http://www.decisioncraft.com/dmdirect/variability.htm  
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Chopra and Sodhi (2004) categorize potential supply chain risks into nine categories, as follows: (a) 

Disruptions (e.g., natural disasters, terrorism, war, etc.), (b) Delays (e.g., inflexibility of the supply 

source), (c) Systems (e.g., information infrastructure breakdown), (d) Forecast (e.g., inaccurate forecast, 

bullwhip effect, etc.), (d) Intellectual property (e.g., vertical integration), (e) Procurement (e.g., exchange 

rate risk), (f) Receivables (e.g., number of customers), (g) Inventory (e.g., inventory holding cost, demand 

and supply uncertainty, etc.), and (h) Capacity (e.g., cost of capacity). These classification schemes are 

not adequate to analyze correlations among the different risk mitigation strategies of SNs. Therefore, we 

identify and use a different classification. For this classification, risks are categorized into two groups 

based on the nature of the SNs’ decisions that are affected, as follows:    

Disruptions in a SN: Disruptions refer to rare and unexpected events that have a significant impact and 

distort the topology2 of a SN by rendering certain facilities or connecting links inoperative. A SN’s 

topology is determined by strategic level network design decisions (see Figure 1). Network design 

decisions are related to determining the number, location and capacity of the facilities (Schmidt and 

Wilhelm, 2010). We summarize certain recent studies that have been conducted in this domain. Tomlin 

(2006) investigates the unavailability of a supplier in a two-echelon SN that includes one manufacturer 

and two suppliers. Chopra et al. (2007) analyze the appropriate selection of mitigation strategies for a 

two-echelon SN that includes one buyer that is serviced by two suppliers. One of these suppliers is 

reliable and the other is unreliable but less expensive. Peng et al. (2011) develop a model to design a 

SN topology that performs well under normal conditions and performs relatively well when unreliable 

facilities are disrupted. Baghalian et al. (2013) and Mohammaddust et al. (2017) propose a path-based 

approach to design a robust SN topology for which there is a possibility of disruption in facilities and 

connecting links. Recently, certain scholars have extended the concept of disruption management from 

companies and SNs to communities and human societies that are in danger of natural and man-made 

disasters. For example, Gian et al. (2010) believe that communities and human societies should be able 

                                                           
2 A SN’s topology is the way its individual facilities are organized and connected, and the resulting network structure 

(http://www.personal.psu.edu/faculty/a/x/axk41/IEEE-Sys-Oct2010.pdf).    
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to mitigate danger and achieve a tolerable level of protection against disruptions and disasters. These 

scholars provide a framework to quantify these features for societies and present two applications of the 

methodology to healthcare facilities. According to Zobel (2011), two primary measures that are 

important for the disaster management of societies include the initial impact of a disaster event and the 

subsequent time for recovery. The author presents a new analytic approach to represent the relationship 

between these two characteristics. These studies only focus on employing risk mitigation strategies to 

preserve the performance of SNs or communities against disruptions. Risk mitigation strategies that are 

utilized to address disruptions are referred to as “Strategic Risk Mitigation (SRM)” strategies in this 

paper because they include strategic network design decisions (see Figure 1).  

� Variations in a SN: Variations refer to frequent and expected events with less significant impacts that 

only reduce the efficiency of flow planning in SNs (see Figure 1). Flow planning in a SN refers to the 

production quantities in the SNs’ facilities and the quantities that are transported among the facilities 

(Schmidt and Wilhelm, 2010). Variations that occur in the performance of upstream facilities in a SN 

lead to changes in the quantities that flow from these facilities. This type of upstream variation is 

important because, in reality, the perfect production system does not exist. Furthermore, increasing the 

rate of production increases the likelihood of machinery and labor failures, which results in a higher 

rate of defective items that are produced (Sana, 2010). To the best of our knowledge, prior studies 

generally ignore variations in the performance of multi-echelon SNs (Rezapour et al., 2015).   

Network design 

decisions in SNs   

Flow planning 

decisions in SNs 

SRM 

ORM Performance 

in markets  

Availability 

of facilities 

Figure 1. Disruptions and variations in SNs.  

Strategic 

decisions 

Operational 

decisions 

Disruptions Variations 

SRM: Strategic Risk 

Management  

ORM: Operational Risk 

Management  
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Downstream variations also occur for market demands; these can be modeled by defining 

scenarios (Pan and Nagi, 2010; Georgiadis et al., 2011; Leung et al., 2007; Lin and Wang, 2011; Hasani 

and Khosrojerdi, 2016) or considering demand as a random variable (Shen and Daskin, 2005; Santoso 

et al., 2005; Dada et al., 2007; Schmitt et al., 2010; Baghalian et al., 2013). This type of variation is 

critical for managing the flow and service level estimation in a SN. Prior studies only focus on 

downstream variations in demand and assume that the performance of the SNs’ facilities is perfect. In 

this study, we demonstrate how upstream variations in the performance of facilities and their 

propagated impact should be managed in multi-echelon SNs. Prior studies only address variations and 

their corresponding risk mitigation strategies. Risk mitigation strategies that are utilized to address 

variations are referred to as “Operational Risk Mitigation (ORM)” strategies in this study because they 

include operational flow planning decisions (see Figure 1).  

As illustrated in Figure 1, SRM and ORM strategies are not independent. SRM strategies preserve 

the availability of facilities in a SN’s topology. Flow planning is conducted for the SNs’ available 

facilities. In addition, ORM strategies increase the efficiency of flow planning in a SN and improve its 

performance in markets; this performance is used for the economic evaluation of SRM strategies. The 

existing literature mostly ignores this mutual impact between ORM and SRM approaches. Therefore, 

we contribute to the SN risk management literature by answering the following question: What 

correlations exist between SRM and ORM strategies? Risk mitigation that includes either redundancy 

or flexibility ensures that SNs are robust, resilient, and reliable. The standard use of redundancy 

includes holding safety stock of material and finished goods (You and Grossmann, 2008; Park et al., 

2010; Schmitt, 2011) or multi-sourcing (Yu et al., 2009; Li et al., 2010; Schmitt and Snyder, 2010; 

Peng et al., 2011; Schmitt, 2011). Flexibility implies that facilities have adaptable capacities (Tomlin, 

2006). In this study, we focus on redundancy in ORM strategies and flexibility in SRM strategies.  

This study makes multifold contributions to the SN risk management literature as follows: 

1) Variation management: For a multi-echelon SN’s flow planning, we consider upstream variations 

in the performance of facilities in addition to downstream variations in market demands. We 
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demonstrate that local reliability as an ORM strategy should be assigned to each facility to control 

redundancy (extra production) in production systems against variation. In addition, we demonstrate 

that a SN’s service level is a function of these local reliabilities. Finally, we develop a mathematical 

model to determine the optimal local reliabilities (ORM strategies) and service levels for the SN (in 

Section 4). Prior studies have ignored upstream variations in flow planning for SNs.    

2) Disruption management: Considering flexibility as a SRM strategy, we demonstrate that the 

robustness of a SN’s topology for maintaining acceptable performance during and after a disruption 

depends on its facilities’ flexibility levels. The flexibility level of a facility indicates to what extent 

the capacity of that facility can be increased during a disruption. A SN’s resilience is how quickly its 

performance can be returned to an acceptable level after a disruption; hence, we demonstrate that the 

resilience of a SN depends on the speed of flexibility in its facilities. The flexibility speed of a 

facility is how rapidly the capacity of that facility can be increased during a disruption. Finally, we 

develop a mathematical model to determine the optimal flexibility levels and speeds (SRM 

strategies) to ensure that a SN’s facilities are robust and resilient against disruptions (in Section 5). 

In prior studies, the robustness and resilience of SNs against disruptions have been investigated 

separately.    

3) Integrated decision making for ORM and SRM strategies: The final model we develop in 

Section 5 facilitates concurrent decision making about reliability (and the facilities’ local reliabilities 

as ORM strategies), robustness and resilience (and the facilities’ flexibility levels and speeds as 

SRM strategies). Therefore, a sensitivity analysis of this integrated model helps us to determine if 

correlations exist between ORM and SRM strategies and their corresponding reliability, robustness, 

and resilience (in Section 5.5). In prior studies, decisions regarding SRM and ORM strategies are 

made independently.            

This paper is organized as follows. In Section 3, the details of the problem under normal (without 

disruption) and disrupted conditions are presented. The mathematical model, solution approach and 

computational results for a SN experiencing normal (without disruption) conditions are presented in 
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Section 4. In Section 5, the mathematical modeling, solution approach and computational results for a 

SN experiencing disrupted conditions are discussed. The paper is concluded with a summary in Section 

6.  

3. Problem Description 

Without loss of generality, we consider a simple SN that produces and supplies a product to target 

markets. This SN includes two manufacturers, M1 and M2, that produce products and four target markets 

that are serviced by these two manufacturers through retailers. M1 fulfills the demands of the first and 

second markets through the first retailer, R1, while M2 fulfills the demands of the third and fourth 

markets through the second retailer, R2. Two suppliers, S1 and S2, provide the components required by 

these two manufacturers, M1 and M2, respectively. In Figure 2, the existing network structure of the SN 

is illustrated. Product demand in a market is a stochastic function of the SN’s marketing factors, e.g., 

price and service level (downstream variations in the SN’s markets). Prior to the beginning of each sales 

period, retailers determine the quantities of the product that are required, and then issue orders to the 

corresponding manufacturers. The manufacturers receive these orders from the retailers and plan to 

produce the ordered products. 

 

                                            

Figure 2. The network structure of the SN. 
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We assume the performance of the manufacturers’ production systems are imperfect and they produce 

a stochastic percentage of defective units in their batches (upstream variations in the SN’s manufacturers). 

To compensate for these defective units, the manufacturers plan to produce extra products. To assemble 

the products, the manufacturers order the required components from their corresponding suppliers. The 

suppliers’ production systems (after initial setup) start producing components in an in-control state with 

almost zero defects. After a stochastic time, the suppliers’ production systems deteriorate to an out-of-

control state in which � percent of output is nonconforming (upstream variations in the SN’s suppliers). 

Similar to the manufacturers, the suppliers plan to produce some surplus components to compensate for 

the nonconforming output of their systems. 

In the literature, two approaches are mainly used to model imperfect production systems. Some 

researchers assume that the performance of the production system is always accompanied by a stochastic 

defective production rate (e.g., Sana, 2010; Sana et al., 2007; Rezapour et al, 2016a, b). Some researchers 

consider the case in which the production machinery starts to operate in an in-control state after setting 

up. In the in-control state, all output is nearly perfect. After a stochastic time, the machinery deteriorates 

to an out-of-control state and starts to have a stochastically impaired production rate (e.g., Sarkar 2012; 

Rosenblatt and Lee, 1986; Lee and Rosenblatt, 1987). In this paper, we consider both types of imperfect 

production systems. Without loss of generality, the former is assumed for manufactures and the latter 

approach is assumed for suppliers. This shows that the approach developed in this paper is able to handle 

both types of imperfect production systems.       

In a SN with multiple imperfect production facilities (multiple types of upstream variation), the 

conforming component/product quantity is reduced by moving from upstream to downstream in the SN. 

Modeling this flow reduction is necessary to quantify the conforming product volumes that can be 

supplied in the last echelon and to determine the best service level that balances the stochastic product 

demand (downstream variation) and product supply (upstream variation) in the most economical way. To 

preserve an appropriate service level in the markets, reliable flow planning throughout the SN is required 

to mitigate upstream and downstream variations. Increasing the reliability of facilities is an ORM strategy 
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used to neutralize the impacts of variations in flow planning. In Section 4, we develop a mathematical 

model to plan the most profitable reliable flow through the SN. In this paper, reliability in the SNs’ flow 

planning is defined as follows (see Figure 3):  

Definition 1: Reliable flow planning in SNs employs appropriate ORM strategies to mitigate upstream 

and downstream variations and their propagation and preserves appropriate service levels for 

customers in markets.     

In addition to variations that affect flow planning in a SN, we also consider the possibility that 

disruptions affect the availability of facilities in the SN. For the SN model in this study, M1 is always 

available, but M2 is prone to disruption. M2 may be unavailable to fulfill R2’s orders. There may be 

several reasons that explain why this occurs, e.g., the failure of its machinery or the inability of its 

supplier (S2) to fulfill its order on time. In the event that M2 is unavailable, the third and fourth markets 

cannot be served, and their sales are lost, which leads to a large loss in the SN’s profitability and brand 

reputation. To avoid this possible loss, we redesign the SN’s network (by adding extra capacity to its 

facilities) to simultaneously provide the following characteristics: 

� Robustness against disruptions: A robust SN is able to appropriately manage disruptions and 

maintain service continuity. To have a robust SN, we must modify the production capabilities of 

its undisrupted facilities (M1 and S1) to compensate for the unavailability of its disrupted facilities 

(M2 and S2). For this purpose, the production capacities of M1 and S1 must be flexible enough to 

increase production, when needed, to compensate for the unavailability of disrupted facilities and 

decrease production when those facilities become available again. For this problem, we seek to 

determine the flexibility level that is required for the undisrupted facilities, M1 and S1, to have a 

robust network. The flexibility level of a facility refers to the extent its capacity can be increased 

when it is needed.  

� Resilience against disruptions: The resilience of a SN is how quickly disruptions can be managed 

by that SN and depends on the speed of its facilities to increase their capacities after disruptions, 
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which are their flexibility speeds. The flexibility speed of a facility is how quickly its capacity can 

be increased when needed. Therefore, another important decision that must be made is to 

determine the optimal flexibility speeds for the undisrupted facilities, M1 and S1, to maintain the 

SN’s resilience.  

Because numerous definitions exist for the robustness and resilience of SNs in the risk management 

literature, the definitions for these terms used in this study are as follows (see Figure 3): 

 Definition 2: A robust SN has appropriate SRM strategies to reduce its decrease in performance when 

it is affected by disruptions. In Figure 3, we show how a SN’s robustness can be measured using this 

definition. After employing SRM strategies, if a SN’s performance returns to its nominal value (and 

the performance decrease is zero), this means that the SN is completely robust. Since complete 

robustness can be very costly for SNs, a relatively robust SN is sometimes preferred, wherein the 

performance returns to an acceptable level with a finite performance decrease.   

Definition 3: A resilient SN is able to rapidly use SRM strategies after disruptions to reduce the 

restoration time during which the SN’s performance returns to the acceptable level that is defined by 

its robustness. In Figure 3, it is shown that a SN’s resilience can be measured based on this definition. 

A SN’s resilience is measured by its average restoration rate (ratio of restored performance to 

restoration time).  

In this study, flexibility (including flexibility levels and speeds) in facilities is a SRM strategy that is 

used to neutralize the impacts of disruptions and to design a robust and resilient SN. Our definition of a 

facility’s flexibility is as follows: 

Definition 4: A flexible facility is able to increase its processing capacity when needed. The flexibility 

level of the facility is the maximum level to which its capacity can be increased. The flexibility speed 

of a facility is how quickly the capacity can be increased when needed.      
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Figure 3. Reliability, robustness, and resilience in SNs.  

Solving the problem of managing a SN’s variations and disruptions is done in the following two steps: 

i) in the first step, we ignore disruptions in the SN and solely focus on flow planning and use an ORM 

strategy against variations (Section 4); and ii) in the second step, we add disruptions to the problem and 

use a SRM strategy to alleviate these disruptions (Section 5).  

In this study, we consider a very simple SN with two supply paths: [�1 → �1 → �1] and [�2 →
�2 → �2] (see Figure 2). We demonstrate what changes are needed in the first supply path, [�1 → �1 →
�1], to substitute for the second supply path, [�2 → �2 → �2], when the latter is unavailable. We only 

consider two supply paths to simplify this analysis, but the problem is generalizable to more complicated 

SNs with more supply paths. For a SN with more supply paths, a subset of paths is unavailable during 

each disruption. To continue servicing customers, each unavailable path must be substituted by an 

available path and changes similar to those proposed in this study will need to be made in the available 

path.  

4. Employing ORM Strategies 

In conditions without disruption, all the facilities (M1, M2, S1 and S2) are available. This SN case 

includes two product supply paths, as follows (Figure 2): 
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I) [�1 → �1 → �1] represents the “first supply path,” in which the flow of components begins 

with the first supplier, S1. These components then pass through the SN and become finished 

products at the first manufacturer, M1 and are transported to the first retailer, R1, to supply 

the first and second markets and fulfill their demands.   

II)  [�2 → �2 → �2] represents the “second supply path,” in which the flow of components 

begins with the second supplier, S2. These components then pass through the SN and become 

finished products at the second manufacturer, M2 and are transported to the second retailer, 

R2, to supply the third and fourth markets and fulfill their demands.      

In this section, we discuss reliable flow planning of the first path against variations, in conditions 

without a disruption (in the second path, it is conducted in the same manner). In Section 5, we discuss 

how this flow planning changes during a disruption when the second supply path is unavailable.    

The first path includes three types of facilities: the supplier (S1), the manufacturer (M1) and the 

retailer (R1). Each of these facilities faces a specific type of variation. The retailer faces a stochastic 

demand in the markets. The supplier and manufacturer encounter stochastic nonconforming units in their 

production batches. For each of these facilities, a desired local reliability must be determined to manage 

its corresponding variation. As will be demonstrated later, the service level provided by the supply path in 

the first and second markets is a function of these local reliabilities. We assume that 
��
��, 
��
�� and 
��
�� 

represent the local reliabilities of the first supply path’s supplier, manufacturer and retailer, respectively, 

in conditions without any disruptions. In the remainder of this section, the performance of each facility 

when confronted with its corresponding variation is investigated from downstream to upstream along the 

supply path.  

4.1. Retailer in the first supply path, R1     

The first supply path services the first and second markets. The most important marketing factors in these 

markets are price, �, and service level, ��. The service level refers to the probability of fulfilling the 

realized demand from the retailer’s on-hand product inventory. Therefore, the expected demand during 
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each sale period of Market k (� = 1 and 2), ��(�, ����), is a function of these two factors. ���� 

represents the service level that is provided by the SN during normal conditions without disruptions. The 

retailer of the first supply path (R1) fulfills the total demand for the first and second markets. Therefore, 

the average demand for R1 is ∑ ��(�, ����)���
 . However, the actual demand is stochastic and varies 

around this mean value. This variation is treated as a random variable, �, with a cumulative distribution 

function	 �
(�) (variation in R1’s demand). The actual demand of R1 is ∑ ��(�, ����)���
 × �. Without 

loss of generality, we assume "(�) = 1, which implies "#∑ ��(�, ����)���
 × �$ = ∑ ��(�, ����)���
  

(Bernstein and Federgruen, 2004 and 2007).     

Prior to the beginning of each sales period, a decision must be made about the quantity of R1’s product 

stock, which is represented by %��, and an order must be issued to the corresponding manufacturer, M1. 

After realizing the actual demand, the unit holding cost, ℎ', and unit shortage cost, ℎ(, are paid by the 

retailers for each unit of the end-of-the period for inventory and lost sales. Therefore, the expected total 

cost of R1, )�
��, should be minimized as in Equation (1), as follows: 

�*+						)�
�� = ℎ'. "#%�� − ∑ ��(�, ����)���
 × �$' + ℎ(. "#∑ ��(�, ����)���
 × � − %��$'          (1) 

�. /.						Pr	[∑ ��(�, ����)���
 × � ≤ %��] ≥ 
��
��                                                                                   (2) 

The constraint in Equation (2) preserves R1's local reliability, which guarantees that in the 
��
�� 

percentage of time, R1's product stock can fulfill the actual demand. The first term in the objective 

function, Equation (1), represents the expected end-of-period inventory holding cost for R1 ([	]' is used 

to compute the expected value of %�� − ∑ ��(�, ����)���
 × � when it is positive). The second term in 

(1) is the expected cost of lost sales. %�� = #∑ ��(�, ����)���
 $.  �
(
( 4545'46) minimizes )�
�� (see 

Appendix D for further evidence). Conversely, to satisfy the constraint in Equation (2), we must have 

%�� ≥ #∑ ��(�, ����)���
 $.  �
(
(
��
��) (see Appendix D for evidence). Accordingly, the quantity of 

product that must be ordered for R1	is calculated as follows: 

%�� = #∑ ��(�, ����)���
 $.  �
(
 7�8%	 9
��
��, 4545'46:;                                                                           (3)  
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By substituting Equation (3) into (1), the least total cost for R1, )�
��∗, is as follows: 

)�
��∗ = =ℎ'. " > �
(
 7�8%	 9
��
��, 4545'46:; − �?'+ℎ(. " >� −  �
(
 7�8%	 9
��
��, 4545'46:;?'@ ×
														#∑ ��(�, ����)���
 $                                                                                                                                     (4) 

Ordering %�� product units from M1 enables R1 to fulfill the product demand for the next sales period 

with a probability of 
��
��. Maintaining local reliability, 
��
�� is an ORM strategy that is used by R1 to 

manage demand variations. In Section 4.2, we demonstrate how R1’s order must be increased by moving 

backward to M1. 

We assume that each facility either completely fulfills the order from its downstream facility or misses 

the order and sends nothing. This assumption is widely used in prior studies in the yield-uncertainty 

literature and is referred to as the Bernoulli supply process (Parlar et al., 1995; Swaminathan and 

Shanthikumar 1999; Dada et al., 2003; Tomlin and Wang, 2005). 

4.2. Manufacturer in the first supply path, M1      

M1 receives an order for %�� product units from R1. R1’s order is produced by M1 in A�
 production 

runs and includes B�� items for each production batch (Figure 4). M1’s production system is not perfect 

and always includes an amount of waste. M1’s wastage ratio, C�
, depends on the general conditions of 

its machinery and the skills of its labor force and is a random variable with cumulative distribution 

function  �
D  (a variation in M1’s production system). 

To compensate for waste in its production system, more products must be produced than R1’s order 

quantity (%��). This implies that M1’s extra production, represented by A�
. B�� − %��, should be 

positive. The batch size of each production run, B��, must be determined to preserve M1’s local 

reliability, 
��
�� (C�
E  represents the value of random variable C�
 realized in production run i = 1, 2,…, 
A�
), as follows:  


��
�� = PrGC�

 . B�� + C�
� . B�� + C�
H . B�� +⋯+ C�
JKL . B�� ≤ A�
. B�� − %��M                        
(5) 
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Figure 4. Production runs in M1. 

To preserve 
��
�� local reliability for M1, the number of defective items in all production runs 

(C�

 . B�� + C�
� . B�� + C�
H . B�� +⋯+ C�
JKL . B��) must be less than the extra production volume 

(A�
. B�� − %��) with 
��
�� probability, as noted in Equation (5). Without loss of generality, we 

assume that to manufacture one unit of product, one unit of component is required. Because M1 will 

produce A�
. B�� product units, M1 will issue an order for A�
. B�� component units from it supplier, 

S1. This implies that R1’s order is increased to A�
. B�� − %�� units in M1. Maintaining local 

reliability, 
��
��, is an ORM strategy that is used in M1 to manage variations in its production system. In 

Section 4.3, it is shown that M1’s order is further amplified by moving backward to the supplier.   

4.3. Supplier in the first supply path, S1 

In the first supply path, S1 receives an order for A�
. B�� units of components from M1. To fulfill this 

order, A�
 production runs are performed by S1 with N�� items in each production batch. After setting up 

S1’s machines to produce N�� items, all machines work in an in-control state and all the produced 

components are in perfect condition. Gradually, the machines deteriorate and after a stochastic time, they 

shift to an out-of-control state. ��
 is the percentage of the produced components that are defective. The 

deterioration time of the machines is represented by O, which is a random variable with a  �
DD  cumulative 

distribution function. When the production system shifts to an out-of-control state, it remains in that state 

until the end of the batch production because interrupting the machines is prohibitively expensive 

(Rosenblatt and Lee, 1986; Lee and Rosenblatt, 1987). P8��
�� represents the production capacity of S1 

. . .  

B��  B��  

B��  

A�
 	p
ro

d
u

ctio
n

 ru
n

s 

A�
. B�� %�� 
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during each production run with / time units. Therefore, the production rate of S1 is P8��
�� /Q  and it 

requires /. N�� P8��
��R  time units to produce each production batch. Before the production system 

deteriorates, all output units are sound, but after the production system deteriorates, ��
 percent are 

defective. Therefore, the total number of defective units in the product batch i (S = 1, 2, … , A�
) is equal 

to T/. N�� P8��
��R − OEU . G��
. P8��
��M. OE represents the value of random variable t in production run i 

(S = 1, 2, … , A�
). To preserve the local reliability of S1, the following constraint is needed: 


��
�� = Pr
VW
X∑ T/. N�� P8��
��R − OEU . G��
. P8��
��MJYLS=1 ≤ (A�
. N��)− (A�
. B��)

Z[
\	  

			      = Pr7G/. ��1 − 1M.A�1. N]� + A�1. B]� ≤ ��1. P8��1]�.∑ OSA�1E�
 ;                                          (6) 

Constraint (6) ensures that with 
��
�� probability, the total number of defective components produced 

by S1 will be less than its surplus production quantity, A�
. N�� − A�
. B��. The value of the N�� 

variable must ensure that the local reliability of S1 is preserved. Maintaining local reliability 
��
�� is an 

ORM strategy that is used to manage variations in S1’s production system.    

The component production batch size (N��) satisfies Constraint (6) and ensures the ability of S1 to 

fulfill M1’s entire order with 
��
�� probability. The production batch size (B��) satisfies Constraint (5) 

and guarantees the ability of M1 to fulfill R1’s order with 
��
�� probability. The product stock quantity 

(%��) satisfies Constraint (3) and assures the ability of R1 to fulfill the demand of the market during the 

next sale period with 
��
�� probability. In this case, the first supply path has a guaranteed probability of 


��
��. 
��
��. 
��
�� to fulfill the markets’ demand. In this problem, this probability of demand fulfillment is 

referred to as the service level. 
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���� = 
��
��. 
��
��. 
��
��                                                                                                                           (7) 

The relationship among the local reliabilities of the facilities in the first supply path and the SN’s 

service level in the markets that are serviced by that path is shown in Equation (7).    

In this problem, we assume that all variations (in R1’s demand, M1’s waste ratio, and S1’s 

deterioration time) are random variables with known distribution functions. Because these variations are 

related to the SNs’ short-term operational decisions (either weekly or monthly), in practice it is possible 

to gather historical data to fit an appropriate distribution function. Several statistical methods, e.g., 

goodness-of-fit, can be used to analyze historical data and fit an appropriate distribution function for 

variations.   

4.4. Mathematical model for ORM strategy selection during normal conditions without 

disruption      

In this section, a mathematical model is presented for planning reliable flow in the SN’s first supply path 

by using the analysis and relationships presented in Sections 4.1-4.3.          

Maximize 

Ψ�� = =� − ℎ'. " > �
(
 7�8%	 9����, 4545'46:; − �?'−ℎ(. " >� −  �
(
 7�8%	 9����, 4545'46:;?'@ ×
																														#∑ ��(�, ����)���
 $ − _�
. (A�
. N��) − _�
,�
. (A�
. B��) − _�
. (A�
. B��) −
																															_�
,�
. (%��)	                                                                                                                  (8) 

Subject to: 

A�
. N�� ≥ A�
. B��                                                                                                                                 (9) 

A�
. B�� ≥ %��                                                                                                                                      (10) 

%�� = #∑ ��(�, ����)���
 $.  �
(
 7�8%	 9
��
��, 4545'46:;                                                                         (11)     


��
�� = PrGC�

 . B�� + C�
� . B�� + C�
H . B�� +⋯+ C�
JKL . B�� ≤ A�
. B�� − %��M                     (12) 
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��
�� = Pr
VW
X∑ T/. N�� P8��
��R − OEU . G��
. P8��
��MJYLE�
 ≤ (A�
. N��) − (A�
. B��)

Z[
\

                       

(13) 

���� = 
��
��. 
��
��. 
��
��                                                                                                                         (14) 

B�� ≤ P8��
��                                                                                                                                          (15) 

`�� ≤ P8��
��                                                                                                                                          (16) 

0 ≤ 
��
��, 
��
��	and	
��
�� ≤ 1 and %��, B��	and	N�� ≥ 0                                                                  (17) 

The objective function, Equation (8), is used to maximize total profit during conditions without 

disruptions. The first term of Equation (8) is used to compute the capturable income after discarding the 

inventory holding cost for the end-of-period extra inventory and the shortage cost for end-of-period lost 

sales. The second term is the procurement and production cost of the components for S1. The third term is 

the cost of transporting the components from S1 to M1. The fourth term is the cost of manufacturing 

products in M1. The fifth term represents the cost of transporting products from M1 to R1. Based on the 

constraint in Equation (9), the number of components that are planned to be produced by S1 should be 

more than M1’s order quantity. According to the constraint in Equation (10), the product production 

quantity in M1 must be more than R1’s order quantity. The constraints in Equations (11), (12) and (13) 

represent the relationships between the order and production quantities in R1, M1 and S1 and their 

corresponding local reliabilities. The relationships between the service level during conditions without 

any disruptions and the local reliabilities of stochastic facilities are illustrated in Equation (14). Equations 

(15) and (16) are used to ensure that the production quantity for each run of M1 and S1 is less than its 

capacity, P8��
�� and P8��
��, respectively. Equation (17) is used to ensure that facilities’ local 

reliabilities are selected from the [0, 1] interval.   

4.5. Solution procedure for ORM strategy selection during conditions without disruptions           
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The mathematical model proposed in Section 4.4 is nonlinear. The objective function and certain 

constraints in this model (such as Equations (11) and (14)) are highly nonlinear. In addition, this model 

includes two chance constraints, Equations (12) and (13). Because of these chance constraints, our model 

belongs to the category of a Chance Constrained Problem (CCP). CCPs were first introduced by Charnes, 

et al. (1958). For the theoretical background of CCPs, please refer to Prékopa (1995). From an application 

perspective, CCPs have been used for water management (Dupacová et al., 1991), chemical process 

optimization (Henrion et al., 2001; Henrion et al., 2003), and others. Although CCPs were introduced 

almost 50 years ago, little progress has been made to date. A CCP is extremely difficult to solve even in 

its linear form because it requires multidimensional integration (Pagnoncelli et al., 2009).   

In prior studies, the two following approaches are used to solve CCPs: 1) in the first approach, the 

probability distribution of the chance constraints is discretized and the combinatorial problem thus 

obtained is solved sequentially (Dentcheva et al., 2000; Luedtke et al., 2008); and 2) in the second 

approach, the chance constraints are substituted by convex approximations (Nemirovski and Shapiro, 

2006). A well-known approximation approach used to address the CCP is the sample average 

approximation (SAA). The SAA is also referred to as the Monte Carlo method, the Sample Path 

Optimization (SPO) method, and the Stochastic Counterpart (Robinson, 1996; Pagnoncelli et al., 2009; 

Atlason et al., 2008; and Luedtke and Ahmed, 2008). The SAA approach replaces the actual distribution 

in chance constraints by an empirical distribution that corresponds to a random sample. Refer to 

Rusczynski and Shapiro (2003) for a comprehensive review of this approach. We use the SAA to 

approximate chance constraints. Then, we linearize the model by discretizing reliability variables. The 

final model is a Mixed Integer Linear Programming (MILP) model that is solved by using CPLEX 

software (for more details about linearizing the model, please refer to Appendix B).   

4.6. Computational result: Test Problem 

In this section, we assume that in the first supply path, [�1 → �1 → �1], the performances of the 

production systems for M1 and S1 are imperfect. After the equipment is set up in S1, the machinery works 
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in an in-control state and all of the produced components are in perfect condition. After a stochastic time 

that follows an exponential distribution with e = 2, the machinery shifts to an out-of-control state and 

��
 = 10% of the output is defective. For M1, the product assembly process always includes a stochastic 

percentage of defective products. This percentage is a random variable with a uniform distribution in the 

interval [0, g = 0.15]. The total demand for the first and second markets that should be fulfilled by R1 is 

a stochastic linear function of price, � = $14, and service level, ����: ∑ ��(�, ����)���
 . � =
[1000 − 150 × (� − 14) + 1000 × (���� − 0.85)]. �. � is a normally distributed random variable with a 

mean of 1 and a variance of 1. Prior regression studies of historical sales data demonstrated that a linear 

demand function fits very well for G∑ �����
 , �, ����M triples recorded for past sales periods (Bernstein 

and Federgruen, 2004, 2005, and 2007; Anderson and Bao, 2009). The biases of the real and estimated 

mean demand in these triples are analyzed by conducting a goodness-of-fit statistical test to determine the 

optimal distribution that represents these biases. The unit production cost for S1 is $1.40. The unit 

transportation cost for moving a component unit from S1 to M1 is $0.50. The unit assembly cost for M1 

and the unit transportation cost from M1 to R1 are $1.00 and $0.60, respectively. The unit extra inventory 

and unit shortage costs for R1 are $0.10 and $0.30, respectively. Demand for each period is fulfilled by 

A�
 = 3 and A�
 = 4 production runs.  

Formulating and solving the mathematical model for this problem leads to the following results: the 

optimal service level for conditions without any disruptions is 80 percent (corresponding to the highest 

profit in Figure 5). In Figure 5, each point on Line AB corresponds to a service level ���� =

��
��. 
��
��. 
��
�� = 0.8. Point A (red point) is the optimal G
��
�� , 
��
��, 
��
��M combination that 

maximizes the Model (Equations 8-17). Other points on Line AB (gray points) are feasible G
��
��, 
��
��,

��
��M combinations in the Model (Equations 8-17) that would result in a less than optimal profit for the 

SN. As illustrated in Figure 5, different combinations of local reliabilities for facilities can lead to the 

same service level, ���� = 
��
��. 
��
��. 
��
��. For all points on line AB, the service level is 0.8, but these 

correspond to different local reliability combinations and significantly different profit levels. Therefore, 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

21 

 

for a supply path with multiple stochastic facilities, determining the optimal service level is not sufficient. 

We must also determine the least costly local reliability combination that supports the required service 

level. The mathematical model of this problem helps us to determine the optimal local reliability 

combination, which is calculated as 
��
�� = 1, 
��
�� � 1 and 
��
�� � 0.8. To preserve the local 

reliability of R1, its product order quantity from M1 must equal %�� � 1748. The optimal production 

quantity for each production run of M1 is 496.15 which implies that M1 produces 236.6 extra units 

(4. B�� - %�� � 236.6). This extra production preserves its local reliability, which is equal to 1. The 

optimal component production quantity for each production run of S1 is 684.78. This production quantity 

leads to the extra production of 70 units for S1 (3. N�� - 4. B�� � 70). This extra production assures a 

local reliability of 1 for S1. 

    
 

Figure 5. Profit of the first supply path with respect to the service level.  

In the remainder of this section, we analyze the relationships among the local reliabilities of facilities 

in the supply path and the SN’s profitability. For this purpose, we solve the model for different values of 

local reliabilities. The results are illustrated in the graphs of Figure 6. Based on these graphs, we conclude 

the following: 

� For a given local reliability of R1, the patterns that determine the profit change with respect to S1’s 

local reliability are similar for all the local reliabilities of M1. This implies that for a given quantity of 

A 

B Service level 
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ordered product, the most profitable local reliabilities for S1 and M1 are almost independent. 

Therefore, determining the local reliability for these facilities separately leads to a workable and near-

optimal solution. This feature significantly decreases the size and computational burden of the 

mathematical model. Therefore, it is necessary to consider this feature for large-scale problems to 

reduce their computational time.   

� For a given local reliability of R1, the effects of the local reliabilities for M1 and S1 on the path’s 

profit are similar. For instance, if reductions in S1’s local reliability lead to profit reductions for the 

path, reductions in M1's local reliability also lead to profit reductions for the path and vice versa (see 


��
�� � 1.00 case in Figure 6). If reductions in S1's local reliability first increase the path's profit and 

then reduce it, reductions in M1's local reliability impose a similar pattern of changes on the path's 

profit (see 
��
�� = 0.95 case in Figure 6). Therefore, determining the optimal local reliability for one 

of these facilities provides a good estimate for the tentative local reliability of another facility. Using 

this feature significantly reduces the search interval for the local reliability of the other facility. 

Therefore, it is necessary that we consider this feature for large scale problems to reduce the 

computational time.  

In this section, we develop a mathematical model to determine the most profitable local reliability 

(ORM strategy) for the SN’s facilities against their variations. In Section 5, we consider the possibility of 

disruption and demonstrate how the model should be extended to incorporate SRM strategies.  
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Figure 6. Relationships among the local reliabilities of the facilities in the supply path and their profitability. 
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5. Employing SRM Strategies 

The SN is disrupted when M2 or S2 is unavailable. In this case, the second supply path, [�2 → �2 →
�2], is inoperative and unable to fulfill the demands of the third and fourth markets. Therefore, the only 

active supply path is [�1 → �1 → �1], which can be used to fulfill the demands of all markets (Figure 7).  

  

  

 

        
 

Figure 7. Network structure of the SN under disrupted conditions. 

To address this disruption, the first supply path must not only serve the first and second markets but 

must also fulfill the demands of the third and fourth markets. For this purpose, its facilities, S1 and M1, 

need flexible capacities. Following the onset of a disruption, the capacities of these facilities should 

increase to service both retailers and after the duration of the disruption, and they should decrease to only 

service R1. The measurement of the extent to which the capacity of a facility can be increased during 

disruptions is its flexibility level and the length of time that it takes to increase that capacity is its 

flexibility speed. The robustness of a SN is determined by its flexibility levels and the resilience of a SN 

is determined by its flexibility speeds. Determining the capacity of a production system is a strategic 

design problem and depends on factors such as the layout of its machinery. Adding capacity is generally a 

discrete process that involves adding machines to the system (Koren and Shpitalni, 2014). Figure 8 

provides examples of M1’s flexibility speed. In this figure, it is assumed that one period that includes four 

production runs, A�
 = 4, is the maximum time that is available to increase capacity, and the flexibility 

level of M1 is equal to ∆�
. These flexibility speed options imply the following: 

M1 

M2 

R1 

R2 

1 

2 

3 

4 

Suppliers Manufacturers 

Markets 

S1 

S2 

Retailers 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

25 

 

� For	the first flexibility speed option, which is indicated by qrss  in Figure 8: an amount of time 

that is equal to three production runs is provided to M1 to generate the extra capacity. In this 

extreme case, all of M1’s extra capacity, ∆�
, is added at the beginning of the last (fourth) 

production run. The time pattern for this flexibility speed option is 
�

 � �
1�

 = 0, 
2�

 =
	0, 
3�

 = 	0, 
4�

 = ∆�
), which implies that the capacity increases during the first (
1�

 ), 

second (
2�

 ), and third (
3�

 ) production runs are equal to 0 and for the last run (
4�

 ), it is 

equal to ∆�
;  
� For the second flexibility speed option, which is indicated by qrst  in Figure 8: 
�
� =

(
1�
� = 0, 
2�
� = 0, 
3�
� = ∆�
/2, 
4�
� = ∆�
/2);   
 

 

 

           

 

 

 

 

Figure 8. Sample resilience options for capacity ramp up in M1. 

 

� For the third flexibility speed option, indicated by qrsv  in Figure 8: 
�
H = (
1�
H =
∆�
/4, 
2�
H =	∆�
/4, 
3�
H = ∆�
/4, 
4�
H = ∆�
/4);    

� For the fourth flexibility speed option, indicated by qrsw  in Figure 8: 
�
x = (
1�
x =
∆�
/2, 
2�
x = ∆�
/2, 
3�
x = 0, 
4�
x = 0);  

� For the fifth flexibility speed option, indicated by qrsy  in Figure 8: 
�
z = G
1�
z =
∆�
, 
2�
z = 0, 
3�
z = 0, 
4�
z = 0M;        
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Therefore, we define a new set, �A�
 � {
�
|, which includes all flexibility speed options that are 

available for M1. Providing extra production capacity costs more during early production runs following a 

disruption. Acquiring additional machinery and labor to increase the capacity over a short time can be 

difficult and costly. Conversely, an early increment in capacity leads to the availability of increased 

capacity during future production runs and, subsequently, more feasible production plans will be available 

to select from and more uniform production quantities during future production runs are possible. 

Therefore, we assume that the unit capacity increment cost is higher for early production runs. This 

assumption is consistent with observations in manufacturing systems (Koren and Shpitalni, 2014). 

Assuming that parameter _8��
E  (S � 1, 2,… , A�
) represents the unit extra capacity cost for M1’s 

production run i, we have _8��

 ≥ _8��
� ≥ _8��
H ≥ ⋯	≥ _8��
JKL. To determine the flexibility speed 

option, the binary variables, }�
~KL  (
�
 ∈ �A�
), are used. Variable }�
~KL is 1 if the flexibility speed 

option 
�
 is selected for M1, and 0 otherwise. In the same manner, ∆�
 represents the flexibility level of 

S1, and different flexibility speed options are available that are included in the set, �A�
 = {
�
}. 
Assuming that parameter _8��
�  (� = 1, 2,… , A�
) represents the unit extra capacity cost for S1’s 

production run j, we have _8��

 ≥ _8��
� ≥ _8��
H ≥ ⋯	≥ _8��
JYL. To select the resilience option for S1, 

the binary variables, }�
~YL  (
�
 ∈ �A�
), are used. Variable }�
~YL is 1 if the resilience option 
�
 is selected 

for S1, and 0 otherwise.       

When a disruption occurs in the second supply path, the capacities of the first supply path’s facilities, 

M1 and S1, shifts from their without disruption values, P8��
�� and P8��
��, to the capacity values that are 

suitable for the disrupted condition, P8��
�  and P8��
� , based on the flexibility speed options that are 

selected. The time period in which the undisrupted capacity of a facility, P8��
�� or P8��
��, shifts to its 

disrupted condition capacity, P8��
�  or P8��
� , is referred to here as the ramp-up disruption period. The 

production capacities of M1 and S1 are not fixed during this ramp-up disruption period and may change 

for each production run. In Section 5.1, we elaborate on the production plan in the first supply path’s 

facilities in the ramp-up disruption period. After the ramp-up period, capacities P8��
�  and P8��
�  are 
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available for M1 and S1 for all production runs until the disruption dissipates. The disrupted periods that 

occur after the ramp-up period are referred to as normal-disruption periods. In Section 5.2, we elaborate 

on the production plan in the first supply path’s facilities for a normal-disruption period. When the 

disruption ends, the extra capacity is not needed in the facilities of the first supply path. Therefore, the 

capacities of M1 and S1 must be reduced from P8��
�  and P8��
�  to P8��
�� and P8��
��, respectively. 

The time period after the disruption is referred to as the ramp-down disruption period. The ramp-down 

disruption period is also the without disruption period; the only difference is that extra capacity is 

available. In Section 5.3, we elaborate on the production plan in the first supply path’s facilities for a 

ramp-down disruption period. In Figure 9, we illustrate these periods for 
�
H  (one of the flexibility speed 

options illustrated in Figure 8) when the disruption lasts for only two periods. In this case, there is one 

ramp-up, one normal, and one ramp-down disruption period. For longer disruptions, more than one 

normal disruption period would occur. 

 
 

 

 

 

 

 

Figure 9. Ramp-up, normal disruption, and ramp-down periods for a disruption lasting for two periods. 
 

5.1. Ramp-up disruption period (see Figure 9)  

The capacities of the facilities in the first supply path (S1 and M1) for each production run of the ramp-up 

disruption period depend on their selected flexibility speed options. Assume that the BE��� and NE��� 

variables represent the production quantities for the ramp-up disruption period’s production run S of M1 

and S1, respectively. 

Ramp-up disruption period Normal disruption period Ramp-down disruption period 
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During the ramp-up disruption period, each facility’s production quantity for each production run must 

be less than its available capacity. Therefore, the following restrictions are imposed on these facilities:  

BE��� ≤ P8��
�� + ∑ G∑ 
��
~KLE��
 M|�JKL|~KL�
 . }�
~KL                 �S = 1,2, … , A�
�                                          (31) 

NE��� ≤ P8��
�� + ∑ G∑ 
��
~YLE��
 M|�JYL|~YL�
 . }�
~YL                    �S = 1,2, … , A�
�                                          (32) 

It is clear that only one of the available options for the flexibility speed of each facility can be selected. 

Therefore: 

∑ }�
~KL|�JKL|~KL�
 � 1				                                                                                                                                  (33) 

∑ }�
~YL|�JYL|~YL�
 = 1                                                                                                                                       (34) 

During a disruption, the total product order received by M1, %�, is calculated as follows: 

%� = %
� + %��                                                                                                                                           (35) 

%
� = #∑ ����, �������
 $.  �
(
 7�8%	 9
��
� , 4545'46:;                                                                                (36) 

%�� � [∑ ����, ����x��H �.  ��(
 7�8%	 9
���� , 4545'46:;                                                                                (37)          

In these equations, %
� and %�� represent the orders issued by R1 and R2, respectively. As explained in 

Section 4.1, Equations (36) and (37) are used to determine the ordering quantities of the retailers in a way 

that preserves their local reliabilities during disruptions 
��
�  and 
���� . 

��� represents the service level that is provided by the SN during disruptions. To preserve the local 

reliabilities of M1 and S1 during a disruption, 
��
�  and 	
��
� , the following equations are necessary: 


��
� � PrG∑ C�
E . BE���JKLE�
 ≤ ∑ BE���JKLE�
 − %�M                                                                                   (38) 

	
��
� =
Pr =���
. / − 1�. ∑ NE���JYLE�
 + ∑ B����JKL��
 ≤ ∑ ��
. O� . 7P8��
�� +∑ G∑ 
��
~YLE��
 M|�JYL|~YL�
 . }�
~YL;JYL��
 @                                                                                                                   

(39) 
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Based on Equation (38), the sum of defective products for all production runs in the ramp-up 

disruption period is less than the added manufacturing quantity, ∑ BE���JKLE�
 − %�, with a probability of 


��
� . Equation (39) is used to ensure that the number of defective components for all production runs of 

S1 during the ramp-up disruption period is less than the added production quantity with a probability of 


��
� . Equation (39) is a simplified version of the following equation, which is the modified version of 

Equation (13): 


��
� = Pr�∑ � �.��������YL��'∑ 7∑ ~�YL�YL���L ;���YL��YL�L .�YL�YL − O�� . ��
. 7P8��
�� + ∑ G∑ 
��
~YL���
 M|�JYL|~YL�
 . }�
~YL;JYL��
 ≤

G∑ NE���JYLE�
 M − 7∑ B����JKL��
 ;�	                                                                                                                (40) 

Similar to the service level in conditions without disruption shown in Equation (14), the service levels 

provided by R1 and R2 to their markets during the ramp-up disruption period are 
��
� . 
��
� . 
��
�  and 


��
� . 
��
� . 
���� , respectively. Without loss of generality, we assume that identical service levels are 

provided for all markets, which implies that 
��
� = 
���� . Therefore, 
��� 	represents the local reliability of 

both retail facilities. Using a model that assumes similar service levels makes it easier to analyze the 

relationship between a SN’s ORM and SRM strategies. Using this assumption, the service level for all 

markets under disrupted conditions is as follows: 

 ��� = 
��
� . 
��
� . 
���                                                                                                                                 (41)        

The total profit that can be captured in the ramp-up disruption period is as follows: 

Ψ��� = �=� − ℎ'. " > �
(
 7�8%	 9��� , 4545'46:; - �?'-ℎ(. " >� −  �
(
 7�8%	 9���, 4545'46:;?'@ ×
																				#∑ ����, �������
 $ +
=� - ℎ'. " > ��(
 7�8%	 9���, 4545'46:; - �?'-ℎ(. " >� − 	 ��(
 7�8%	 9���, 4545'46:;?'@ ×
	[∑ ����, ����x��H ��  
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                    	−_�
. G∑ NE���JYLE�
 M − _�
,�
. G∑ BE���JKLE�
 M − _�
. G∑ BE���JKLE�
 M 
                   −	_�
,�
. %
� − 	_�
,��. %��    

                   −∑ _8��
E . 7∑ 
S�
~KL|�JKL|~KL�
 . }�
~KL;JKLE�
 − ∑ _8��
� . 7∑ 
��
~YL|�JYL|~YL�
 . }�
~YL;JYL��
  

                   −∑ ℎ�
E . 7P8��
�� + ∑ G∑ 
��
~KLE��
 M|�JKL|~KL�
 . }�
~KL − BE���;JKLE�
  

                   −∑ ℎ�
E . 7P8��
�� +∑ G∑ 
��
~YLE��
 M|�JYL|~YL�
 . }�
~YL − NE���;JYLE�
                                                  (42) 

Most of the terms in this function were explained in Section 4.4. However, the last four terms are new. 

The first two new terms represent the cost of adding capacity to the production runs of M1 and S1. The 

last two new terms are related to the unused capacity costs for M1 and S1.  

5.2. The normal disruption period (see Figure 9) 

A disruption that continues after the ramp-up disruption period results in at least one normal disruption 

period. The capacities of M1 and S1 for all production runs during a normal disruption period are 

calculated as P8��
� = P8��
�� + ∆�
 and P8��
� = P8��
�� + ∆�
, respectively. The total product order 

received by M1 during a normal disruption period is similar to the ramp-up period.       

%� � %
� + %��                                                                                                                                           (43) 

%
� � #∑ ����, �������
 $.  �
(
 7�8%	 9
���, 4545'46:;                                                                                  (44) 

%�� � [∑ ����, ����x��H �.  ��(
 7�8%	 9
���, 4545'46:;                                                                                  (45)         

Variables B�� and N�� represent the production quantities for the production runs during a normal 

disruption period for M1 and S1, respectively. The amount of production for each run of these facilities 

must be less than their available capacities. Therefore, the following restrictions are imposed on the 

facilities:  

B�� ≤ P8��
�� + ∆�
                                                                                                                        								(46) 

N�� ≤ P8��
�� + ∆�
                                                                                                                                 (47) 
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As discussed in Section 5.1, it is assumed that 
��
� , 
��
�  and 
��� represent the local reliabilities of the 

first supply path’s supplier, manufacturer and retailers, respectively, during disruptions. To preserve these 

local reliabilities during normal disruption periods, the following equations become necessary: 


��
� = PrG∑ C�
E . B��JKLE�
 ≤ A�
. B�� − %�M                                                                                        (48) 


��
� = Pr �∑ = �.������YL��'∆YL − OE@ . ��
. GP8��
�� + ∆�
MJYLE�
 ≤ �A�
. N��� − �A�
. B����    

								= Pr 7�/. ��
 − 1�. A�
. N�� + A�
. B�� ≤ ��
. GP8��
�� + ∆�
M.∑ OEJYLE�
 ;                                     (49)  

The total profit that can be captured during the normal disruption period is calculated as follows: 

Ψ�� = �=� − ℎ'. " > �
(
 7�8%	 9���, 4545'46:; - �?'-ℎ(. " >� −  �
(
 7�8%	 9���, 4545'46:;?'@ ×
																	#∑ ����, �������
 $ +
=� - ℎ'. " > ��(
 7�8%	 9���, 4545'46:; - �?'-ℎ(. " >� − 	 ��(
 7�8%	 9���, 4545'46:;?'@ ×
	[∑ ����, ����x��H ��  
                -_�
. �A�
. N��� − _�
,�
. �A�
. B��� − _�
. �A�
. B��� 
                −	_�
,�
. %
� − 	_�
,��. %��    

                −∑ ℎ�
E . �P8��
�� + ∆�
 − B���JKLE�
  

                −∑ ℎ�
E . GP8��
�� + ∆�
 − N��MJYLE�
                                                                                           (50) 

5.3. The ramp-down disruption period (see Figure 9)  

During the ramp-down disruption period, the disruption is terminated, and the second supply path is 

available again to service its corresponding markets. During this period, the production plan is similar to 

normal periods that do not have a disruption, as discussed in Section 4. The only difference is that certain 

extra production capacities have been added to the non-disrupted facilities, M1 and S1. Therefore, the 

total profit during the ramp-down disruption period is calculated as follows:     
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Ψ�� = Ψ��∗ −�ℎ�
E .   � � � 
��
~KL
JKL(�E(
�

��
 �|�JKL|
~KL�


. }�
~KL¡JKL

E�
 −�ℎ�
E .   � � � 
��
~YL
JKL(�E(
�

��
 �|�JYL|
~YL�


. }�
~YL¡
JYL
E�
  

                                                                                                                                                                   (51) 

 Ψ��∗ is the solution of the model without disruption that is given in Equations 8-17 and represents 

the highest profit that can be achieved during each period that does not have a disruption. The second and 

third terms of Equation (51) represent the unused capacity costs for M1 and S1, respectively.     

5.4. Mathematical model for ORM and SRM strategy selection under disrupted conditions      

We define different scenarios by the lengths of the disruptions. The number of normal disruption periods 

is different for each scenario. Set �P" = {�| includes all possible scenarios. In Figure 10, set �P" is 

assumed to include four scenarios, i.e., {�
, ��, �H, �x|. Scenario �
 represents the without disruption case. 

The remaining scenarios are described below.  

� In Scenario ¢t: the disruption continues for only one period. Therefore, there is no normal 

disruption period. In this case, the planning horizon spanning four sales periods has one ramp-up 

disruption, one ramp-down disruption, and two without disruption sales periods. 

� In Scenario ¢v: the disruption continues for two periods. Therefore, there is only one normal 

disruption period. In this case, the planning horizon includes one ramp-up disruption, one ramp-

down disruption, one normal disruption, and one without disruption period. 

� In Scenario ¢w: the disruption continues for three periods and there are two normal disruption 

periods. In this case, the planning horizon includes one ramp-up disruption, one ramp-down 

disruption, and two normal disruption periods. 
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�  
�  
�  
�   

 

Figure 10. Sample scenarios for the length of disruption. 

 

Each of the disruption scenarios, � ∈ �P", occurs with a probability of �
£. It is clear that, 

∑ �
£|��¤|£�
 = 1                                                                                                                                       (52) 

Parameters ¥¦§£��, ¥¦§£���, ¥¦§£��and ¥¦§£�� show the number of without disruption, ramp-up 

disruption, normal disruption and ramp-down disruption periods in scenario � ∈ �P", respectively. The 

flexibility level decisions (represented by the ∆�
 and ∆�
 variables) and flexibility speed decisions 

(represented by }�
~KL and }�
~YL) for the first supply path’s facilities should be made in a manner that 

maximizes the expected profit for all possible disruption scenarios. Therefore, the objective function of 

the SN under disrupted conditions is as follows: 

Maximize          Ψ = ∑ �
£. #¥¦§£��. Ψ��∗ + ¥¦§£���. Ψ��� + ¥¦§£��. Ψ�� + ¥¦§£��. Ψ��$|��¤|��
  (53)  

Subject to:     (31-39), (41) and (46-49)                                                                                                      

(54) 

                       ∆�
, ∆�
, BE���, N����, B��, N��, %�, %
�, %�� , ��� , 
��
� , 
��
� , 
��� ≥ 0   

                                                                                     �S = 1,2, … , A�
			8¥¨				� � 1,2, … , A�
�          (55)     

                       }�
~KL , }�
~YL ∈ {0,1|                                �∀
�
 ∈ �A�
, ∀
�
 ∈ �A�
�                             (56) 

The mathematical model of disrupted conditions is a CCP similar to the model that was developed in 

Section 4 for normal conditions without any disruptions (the Model in Equations 8-17). The objective 

function of the model and the constraints that are presented in Equations 36, 37, and 41 are nonlinear. The 

constraints in Equations (38), (39), (48) and (49) are chance constraints. This model can be linearized 

using the approach described in Section 4.5. Appendix C provides more information about the size of the 

problems that can be solved by this model.  
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This model is used to simultaneously determine the most profitable (1) local reliabilities for the SN’s 

facilities against their corresponding variations (ORM strategies) and (2) flexibility levels and speeds for 

its non-disrupted facilities that can compensate for the unavailability of its disrupted facilities and ensure 

the SN remains robust and resilient (SRM strategies). This concurrent determination makes it possible to 

determine what correlations exist between optimal ORM and SRM strategies in SNs. These correlations 

are investigated in Section 5.5.       

5.5. Computational result: Extension of the Test Problem  

In this section, we extend the test problem that was investigated in Section 4.6. We assume that disruption 

is possible in the second supply path, for which the total demand of the third and fourth markets is 

calculated as ∑ ����, ����x��H . � = �850 − 150 × �� − 14� + 900 × ���� − 0.85��. �, and should be 

fulfilled by the first supply path. � is a normal random variable with a mean of 1 and a variance of 1. Four 

different scenarios for the length of disruption are possible in this problem, �P" = {�
, ��, �H, �x|. There is 

no disruption in Scenario	�
. Scenarios ��, �H	and	�x represent disruptions with zero, one, and two 

normal disruption periods, respectively. The probabilities of these scenarios are as follows: �£L � .83, 

�£ª = .04, �£« = .10 and �£¬ = .03.   

The costs of adding extra capacity for each production run of M1 are _8��

 = $1, _8��
� = $0.8, 

_8��
H = $0.65, and _8��
x = $0.55, respectively. The costs of adding extra capacity for the first, 

second, and third production runs of S1 are _8��

 � $1, _8��
� = $0.7 and _8��
H = $0.5. The extra 

capacity cost for S1 and M1 in all production runs is ℎ�
E = ℎ�
� = $0.10	�S = 1, … , A�
	and	� �
1, … , A�
�. The production and transportation cost components are similar to those in Section 4.6. The 

only new cost component is	_�
,�� � $0.70 (the cost of transporting a unit of product from M1 to R2). 

Based on the optimal production quantities that were determined for the production runs of the test 

problem in Section 4.6, we assume P8��
�� = 800 and P8��
�� = 500. Five different options for M1’s 

flexibility speed are assumed, as follows: 
�

 = �
1�

 = 0, 
2�

 = 	0, 
3�

 = 	0, 
4�

 = ∆�
�, 
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�
� = 7
1�
� = 0, 	
2�
� = 0, 
3�
� = ∆KL� , 
4�
� = ∆KL� ;, 
�
H = 7
1�
H = ∆KLx , 
2�
H = ∆KLx , 
3�
H =
∆KLx , 
4�
H = ∆KLx ;, 
�
x = 7
1�
x = ∆KL� , 
2�
x = ∆KL� , 
3�
x = 0, 
4�
x = 0;, and 
�
z = G
1�
z =
∆�
, 
2�
z = 0, 
3�
z = 0, 
4�
z = 0M.   

 

 

 

 

 

 

 

 

 

 

Figure 11. Flow dynamics in the first supply path during the ramp-up disruption period.  

 

 

 

  

 

 

Figure 12. Flow dynamics in the first supply path during the normal disruption period.  

  

In addition, for S1, five flexibility speed options are considered, as follows: 
�

 = �
1�

 = 0, 
2�

 =
0, 
3�

 = ∆�
�, 
�
� = 7
1�
� = 0, 
2�
� = ∆YLH , 
3�
� = 2 ∆YLH ;, 
�
H = 7
1�
H = ∆YLH , 
2�
H = ∆YLH , 
3�
H =

Manufacturer (M1) 
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∆YLH ;, 
�
x = 7
1�
x = 2 ∆YLH , 
2�
x = ∆YLH , 
3�
x = 0; and 
�
z = G
1�
z = ∆�
, 
2�
z = 0, 
3�
z = 0M. We 

solved this model using CPLEX Concert Technology on a Dell laptop computer with Windows 10, an 

Intel i7 processor, and 8 GB of installed RAM. The computational time was less than 6 minutes.  

Solving the model of this problem leads to the following results. The optimal service level for the 

disrupted condition is 80 percent and the best supporting local reliability combination is 
��
� = 1, 
��
� �
1	and	
��� = 0.8. To preserve these local reliabilities, the required flexibility levels of S1 and M1 are 

∆�
= 555.2 and ∆�
= 634.9, respectively. The optimal flexibility speed for M1 is }�
H � 1, which 

implies that uniform capacity scalability is preferred for this facility. The optimal flexibility speed for S1 

is }�
z � 1, which implies that all extra capacity is added at the beginning of the first production run after 

disruption. The ordering and production quantities for the production runs of the first supply path's 

facilities during the ramp-up and normal disruption periods are represented in Figures 11 and 12, 

respectively.  

The average profit of the first supply path, with respect to the disrupted condition’s service level, is 

displayed in Figure 13. When comparing Figures 5 and 13, it can be noted that the profit reduction on 

both sides of the most profitable service level is less during the disrupted condition than for the condition 

without disruption. This gentler reduction is due to 1) the higher potential demand that is assigned to this 

path during the disrupted condition in which the first supply path services the first, second, third and 

fourth markets and 2) the decreased sensitivity of the third and fourth markets with respect to the service 

level (the service level sensitivity parameter in these markets is 900).  

Service level 

P
ro

fit
 (

$)
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Figure 13. Average profit of the first supply path with respect to the service level under disruption. 

 

This study’s example was constructed using assumptions that are often used in prior studies 

regarding SNs. We tried to be as comprehensive as possible by considering different common options. 

Here, we summarize the assumptions (and their references) and options that were considered in our 

example. 

� Density function for variations: we consider three different density functions for variations in the 

SN, as follows: 

- Normal distribution for the market’s demands (Bernstein and Federgruen, 2004 and 2007; 

Santoso et al., 2005; Shen and Daskin, 2005; Baghalian et al., 2013; Rezapour et al., 2016a and 

2016b; Mohammaddust et al., 2017);  

- Uniform distribution for the manufacturers’ wastage ratio (Rezapour et al., 2015; Rezapour et al., 

2016a and b); and  

- Exponential distribution for the suppliers’ deterioration time (Rosenblatt and Lee, 1986; Lee and 

Rosenblatt, 1987). 

� Demand functions: we assume that the markets’ demand is a linearly decreasing function of price 

and a linearly increasing function of service level. This assumption is widely used in prior studies 

regarding SNs, such as Bernstein and Federgruen (2004 and 2007), Carr and Karmarkar (2005), Ha et 

al. (2003), Jiang and Wang (2009), Zhang and Rushton (2008), Rezapour and Farahani (2014), and 

Rezapour et al. (2016a, b, and c).   

� Duration of the disruption: we consider different scenarios for the duration of the disruption in the 

SN (Schmitt, 2011; Klibi and Martel, 2012).  

� Extra capacity costs: we assume that providing extra production capacity is costlier during the early 

production runs following a disruption. This assumption is consistent with observations in 

manufacturing systems (Koren and Shpitalni, 2014). 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

38 

 

In this problem, there are three important risk mitigation strategies (one ORM and two SRM 

strategies) that determine the behavior of the SN when faced with variations and disruptions: 

I) Robustness of the SN’s structure/topology against disruptions: this feature of the SN’s 

structure/topology depends on the levels of flexibility that are assigned to its facilities (SRM);  

II)  Resilience of the SN’s structure/topology against disruptions: this feature of the SN’s 

structure/topology depends on the flexibility speeds assigned to its facilities (SRM);  

III)  Reliability  of the SN’s flow planning against variations: this feature of the SN’s flow 

dynamics depends on the local reliabilities assigned to its facilities (ORM). 

In the remainder of this section, the correlations among the ORM and SRM strategies are investigated. 

For this purpose, we solve the model for our example and conduct a sensitivity analysis to analyze the 

correlations. 

Correlation between robustness and resilience 

First, we analyze the relationship between the two SRM strategies, i.e., the flexibility levels and flexibility 

speeds that are assigned to the SN’s facilities (M1 and S1). We solve the mathematical model (Model 

Equations 53-56) for 3 scenarios for the disruption duration and use 5 different values for the retailer’s 

local reliability to change order quantities in the SN, 5 different values for the local reliability of M1, and 

5 different values for the local reliability of S1 to provide more variety in the markets’ service levels. We 

solved 375 problems and summarize their results in Figures 14, 15, and 16. By increasing the local 

reliability of the retailer in the model, more products are ordered from the first supply path and, 

consequently, greater extra capacity or a higher flexibility level is needed in its facilities to address the 

disruptions. Therefore, the flexibility levels that are assigned to the facilities increase in the model’s 

solution. In addition, we follow the trend of changes in the flexibility speeds that are assigned to the 

facilities to determine whether there is a correlation between the flexibility levels and flexibility speeds. 

These results are summarized in Figure 14.  

 

Supplier (S1) Manufacturer (M1) 


���=1.00 


���=0.95 

High 

flexibility 

speed 
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Figure 14. Correlation between flexibility levels and speeds. 
(Each color corresponds to one flexibility speed option).  

In Figure 14, the changes in the flexibility speeds of S1 and M1 with respect to their flexibility levels 

are shown for different values of 
���. For instance, in 
��� = 0.80, when the flexibility level of S1, ∆�
, is 

less than 70 (capacity units), the flexibility speed assigned by the model to this facility is 
��

z . This 

implies that the most rapid increase, or the highest flexibility speed, is selected for this facility. However, 

in the case that 70 2 ∆�
­ 153, the flexibility speed of this facility reduces to 
��

x . By increasing ∆�
 to 

more than 153, the flexibility speed reduces further to 
��

H . The other bars of this figure can be interpreted 

similarly. Based on the results that are summarized in Figure 14, we conclude the following: 

� For a given product order quantity (
��
�), when a facility’s flexibility level is low, a high flexibility 

speed is generally preferred for that facility. This implies that when a low extra capacity is needed in 

a facility, it is primarily added during the early production runs after disruptions. However, when the 

required extra capacity increases, part of this increase should be postponed to later production runs to 

avoid high costs. Therefore, a negative correlation exists between the flexibility level and flexibility 

speed of each facility. For all the facilities in the SN, higher robustness leads to lower resilience in 
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profit-based SNs. This tradeoff between robustness and resilience should be considered when 

designing/redesigning profit–based SNs.           

� By increasing the product order quantity (caused by increasing 
���), the flexibility level values 

differentiate two subsequent pairs of flexibility speed options. The red numbers in Figure 14 represent 

these differentiating flexibility level values. As an example, for 
��� = 0.80, the flexibility level value 

of S1 that differentiates the 
��
z  and 
��
x  flexibility speed options is equal to 70 (capacity units). 

However, by increasing 
��� to 0.85, this differentiating flexibility level value increases to 105 

(capacity units). This implies that high production rates stabilize the facilities’ flexibility speeds 

against changes in their flexibility levels. To clarify, to reduce the flexibility speed of facilities, a 

greater increase in the flexibility level is required. For all the facilities in the SN, larger SNs with 

higher production rates are able to absorb greater levels of flexibility in their facilities without 

reducing their flexibility speeds. Greater flexibility levels and lower flexibility speeds in facilities 

result in higher robustness and lower resilience in the SN. Therefore, the tradeoff between robustness 

and resilience is more stable in large SNs with high production rates. This tradeoff is more fragile for 

low production rates.    

Correlations between Robustness, Resilience, and Reliability 

Figures 15 and 16 represent the flexibility levels of M1 and S1, respectively, with respect to the local 

reliabilities of the first supply path’s facilities. Analyzing Figures 15 and 16 leads to insights that are 

summarized below. 

� Based on Figures 15 and 16, increasing the retailers’ local reliabilities leads to higher flexibility 

levels in M1 and S1. The retailers’ increased reliabilities lead to an increase in the product 

ordering quantities in the first supply path. To fulfill these larger orders, greater capacities are 

needed in the supply path’s facilities.  
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� Based on Figures 15 and 16, increasing the local reliabilities in S1 and M1 leads to higher 

flexibility levels for M1 and S1. This implies that there is a positive correlation between the local 

reliability of each facility and the flexibility level of other factories.   

Based on these results, we conclude that for SNs, there is a positive correlation between the flow 

reliability against variations (ORM) and the structural robustness against disruptions (SRM). We have 

presented evidence for a negative correlation between robustness and resilience; therefore, a negative 

correlation exists between the flow reliability against variations (ORM) and structural resilience against 

disruptions (SRM).   

5.6. Extension to more complicated supply networks 

In the previous subsections, we consider a very simple SN with only two supply paths, ��1 → �1 → �1� 
and ��2 → �2 → �2�, to avoid unnecessary complication in modeling. We assumed that when Path 

��2 → �2 → �2� is disrupted, Path ��1 → �1 → �2� substitutes for the disrupted path. Path ��1 →
�1 → �2� is selected for substitution because capacity expansion is needed in both M1 and �1. However, 

other substitutions are also possible. Path ��2 → �1 → �2� can substitute for Path ��1 → �1 → �1� if 
disruption only occurs in �2. In this case, capacity expansion would be needed only in �1. Path ��1 →
�2 → �2� can be used to substitute for Path ��1 → �1 → �1� if disruption only occurs in �2. In this 

case, capacity expansion would be needed only in �1. By considering Path ��2 → �2 → �2� for 

substitution, we consider the more complicated case when capacity expansion is needed in two facilities.  

In this section, we show that the method for developing the model above can be used for more 

complicated SNs with a higher number of suppliers, manufacturers, retailers, and markets. Figure 17 

shows a more complicated SN with 3 suppliers, 2 manufacturers, 7 retailers, and 14 markets.   
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Figure 17. A more complicated SN with sample substitute paths.  

The black paths are used in the normal condition to produce and supply products to the markets. 

However, if a disruption occurs in S2, Paths ��2 → �2 → �4� and ��2 → �2 → �5� would be 

inoperative for a while. There are four potential paths that can substitute for Path ��2 → �2 → �4� and 

service Markets 7 and 8 after the disruption: Path ��1 → �1 → �4�, Path ��1 → �2 → �4�, Path 

��3 → �2 → �4� and Path ��3 → �1 → �4� (substitute Path ��1 → �1 → �4� is denoted by a dashed 

red arrow in Figure 17). To select the most profitable substitution, we define new binary variables, such 

as ®
, ®�, ®H and ®x.	Variable ®
 is 1 if the first potential path, Path ��1 → �1 → �4�, is selected to 

substitute for inoperative Path ��2 → �2 → �4�. Similarly, variable ®�, ®H or ®x is 1 if the second, third 

or fourth potential path is selected for substitution, respectively.  
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Additionally, there are four potential paths that can substitute for Path ��2 → �2 → �5� and service 

Markets 9 and 10 after the disruption: Path ��1 → �1 → �5�, Path ��1 → �2 → �5�, Path ��3 → �2 →
�5� and Path ��3 → �1 → �5� (substitute Path ��3 → �2 → �5� is denoted by a dashed red arrow in 

Figure 17). To select the most profitable substitution, we define another set of new binary variables, such 

as ®́
, ®́�, ®́H and ®́x. Variable ®́
 is 1 if the first potential path, Path ��1 → �1 → �5�, is selected to 

substitute for inoperative Path ��2 → �2 → �5�. Similarly, variable ®́�, ®́H or ®́x is 1 if the second, third 

or fourth potential path is selected for substitution, respectively.  

Only one of the potential paths should be selected to substitute for each inoperative path: ∑ ®ExE�
 =
1 and ∑ ®́�x��
 = 1. Function Ψ°±,°́� shows the average profit of the SN if the potential paths 

corresponding to Variables ®E and ®́� are selected to substitute for the inoperative paths. The objective 

function of the SN would be as follows: 

Maximize       ∑ ∑ Ψ∗°±,°́� . ®E . ®́�x��
xE�
                                                                                                    

(57) 

Subject to:      ∑ ®ExE�
 = 1                                                                                                                       

(58) 

                       ∑ ®́�x��
 = 1                                                                                                                          

(59)       

               ®E and ®́� ∈ {0,1|      (S = 1,2,3 and 4) and (� = 1,2,3 and 4)                                          

(60)       

In Model (57)-(60), Ψ∗°± ,°́� shows the optimal average profit that can be calculated using Model 

(53)-(56) after a few small modifications. Constraints (36) and (37) should be calculated for seven 

retailers instead of two. The total orders received by manufacturers M1 and M2 (%�
�  and %��� ) should be 

revised as follows (Constraint (35)): 
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%�
� = %�
� + %��� + %�H� + %�x� �®
 + ®x� + %�z� �®́
 + ®́x�                                                                       (61) 

%��� = %�²� + %�³� + %�x� �®� + ®H� + %�z� �®́� + ®́H�                                                                                 (62) 

The service levels, ���, in Markets 1-6 and Markets 11-14 are equal to 
��
� . 
��
� . 
��� and 


��H� . 
���� . 
���, respectively. For the markets served by R4 and R5 (Markets 7-10), the service level is 

modified by the binary variables, as follows (Constraint (41)): 

��� = �
��
� . 
��
� . 
����. ®
 + �
��
� . 
���� . 
����. ®� + �
��H� . 
���� . 
����. ®H + �
��H� . 
��
� . 
����. ®x	             
(63) 

��� = �
��
� . 
��
� . 
����. ®́
 + �
��
� . 
���� . 
����. ®́� + �
��H� . 
���� . 
����. ®́H + �
��H� . 
��
� . 
����. ®́x	             
(64)  

Additionally, the revenue of all retailers and the cost components of all SN entities should be added 

to Functions (42), (50) and (51), used to calculate Ψ°±,°́�. Models (57)-(60) select the most profitable 

potential paths that should be substituted for the inoperative paths.       

In more complicated SNs, more flexible facilities are usually needed to manage disruptions and 

variations. However, the correlations among the flexibility level, flexibility speed, and local reliability are 

similar for all the flexible facilities. Therefore, the size of the SN does not affect the correlations claimed 

in the paper.   

6. Conclusions 

In this study, we classify SN risks into two groups: 1) variations that affect flow planning decisions and 2) 

disruptions that affect the topology design decisions of the SN. We develop a model in Section 4 to plan a 

reliable flow for SNs to manage downstream and upstream variations by assigning the optimal local 

reliabilities to facilities (ORM strategies). We extend the model constructed in Section 4 in Section 5 by 

considering the possibility of disruptions. This model redesigns a robust and resilient network structure by 

adding flexibility levels and flexibility speeds to facilities (SRM strategies). Finally, we analyze the 
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correlations among reliability, robustness, and resilience. Our results demonstrate that in profit-based SNs 

1) the correlation between robustness and resilience is negative; 2) the correlation between robustness and 

reliability is positive; and 3) the correlation between resilience and reliability is negative.       
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Figure 15. Flexibility level in M1 with respect to the local reliabilities of facilities. 
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Figure 16. Flexibility level in S1 with respect to the local reliabilities of facilities. 
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Appendix A 

Nomenclature. 
Sets ´ = {�| Set of samples used in SAA �µ = {
�| Set of discretized values that can be taken by reliability variables �A�
 = {
�
| Set of all flexibility speed options available for M1 �A�
 = {
�
| Set of all flexibility speed options available for S1 �P" = {�| Set of all possible scenarios for the length of disruptions 
Parameters � Price � Random deviation of the actual demand from its mean value  �
 Cumulative distribution function for � in R1 ℎ' Unit holding cost paid by the retailers for each unit of end-of-period extra 

inventory ℎ( Unit shortage cost paid by the retailers for each unit of lost sales A�
 Number of production runs in M1 C�
 M1’s random wastage ratio  �
D  Cumulative distribution function for C�
  C�
E  Value of random variable C�
 realized in production run i = 1, 2, …, A�
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A�
 Number of production runs in S1  ��
 Nonconforming production rate when S1’s machinery is in an out-of-control 
state O Random deterioration time in S1’s machinery  �
DD  Cumulative distribution function for O P8��
�� Production capacity of S1 in each production run P8��
�� Production capacity of M1 in each production run / Number of time units in each production run OE Value of random variable O realized in production run i = 1,2, …, A�
 _�
 Cost of procuring and producing a component unit in S1 _�
,�
 Cost of transporting a component unit from S1 to M1 _�
 Cost of manufacturing a product unit in M1 _�
,�
 Cost of transporting a product unit from M1 to R1 _8��
E  Unit extra capacity cost in M1’s production run S � 1,2, … , A�
 _8��
�   Unit extra capacity cost in S1’s production run � � 1,2, … , A�
 
��
~KL Capacity ramp-up quantity in production run � of M1 if flexibility speed 
option 
�
 is selected for it (∀
�
 ∈ �A�
 and � � 1,2, … , A�
) 
��
~YL Capacity ramp-up quantity in production run � of S1 if flexibility speed option 
�
 is selected for it (∀
�
 ∈ �A�
 and � � 1,2, … , A�
) ℎ�
E  Unused capacity cost in M1’s production run S � 1,2, … , A�
 ℎ�
E  Unused capacity cost in S1’s production run S � 1,2, … , A�
 �
£ Occurrence probability of scenario � ∈ �P" ¥¦§£�� Number of without disruption periods in scenario � ∈ �P" ¥¦§£��� Number of ramp-up disruption periods in scenario � ∈ �P" ¥¦§£�� Number of normal disruption periods in scenario � ∈ �P" ¥¦§£�� Number of ramp-down disruption periods in scenario � ∈ �P" 

Variables �� Service level ���� Service level provided by the SN under without disruption conditions %�� Number of products ordered by R1 from M1  
��
�� Local reliability for R1 under without disruption conditions B�� Number of products produced by M1 in each production run 
��
�� Local reliability for M1 under without disruption conditions N�� Number of components produced by S1 in each production run 
��
�� Local reliability for S1 under without disruption conditions 
��
,���  1 if the term �A�
. B�� − %��� − B��. ∑ C�
EJKLE�
   is positive based on the 
realized values of C�
E  (∀S = 1, … , A�
) in sample  � ∈ ´, and 0 otherwise  
��
,���  1 if the term ��
. P8��
�� . G∑ OEJYLE�
 M − A�
. ���
 − 1�. N�� − A�
. B�� is 
positive based on the realized values of OE (∀S = 1, … , A�
) in sample � ∈ ´, 
and 0 otherwise ¶�
��,~· 1 if reliability option 
� ∈ �µ is selected for S1, and 0 otherwise ¶�
��,	~·¸ 1 if reliability option 
�′ ∈ �µ  is selected for M1, and 0 otherwise 

¶�
��,~·" 1 if reliability option 
�" ∈ �µ is selected for R1, and 0 otherwise 

Θ�
,�
,�
��,~·,~·¸ ,~·" 1 if all three variables ¶�
��,~· , ¶�
��,~·¸, and ¶�
��,~·" are equal to 1, and 0 
otherwise }�
~KL  1 if flexibility speed option 
�
 is selected for M1, and 0 otherwise (
�
 ∈�A�
� 
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}�
~YL  1 if flexibility speed option 
�
 is selected for S1, and 0 otherwise (
�
 ∈�A�
� ∆�
 Flexibility level in M1 ∆�
 Flexibility level in S1 BE��� Production quantity in the ramp-up disruption period’s production run S of 
M1 (S = 1,2, … , A�
) NE��� Production quantity in the ramp-up disruption period’s production run S of S1 
(S � 1,2, … , A�
) %� Total product order received by M1 in disrupted periods %
� Order issued by R1 from M1 in disrupted periods  %�� Order issued by R2 from M1 in disrupted periods  
��
�  Local reliability for R1 under disrupted conditions 
����  Local reliability for R2 under disrupted conditions ��� Service level provided by the SN under disrupted conditions 
��
�  Local reliability for M1 under disrupted conditions 	
��
�  Local reliability for S1 under disrupted conditions 
��� Local reliability for R1 and R2 if the same service level is provided to all 
markets under disrupted conditions B�� Production quantity in the production runs of normal disruption period in M1 N�� Production quantity in the production runs of normal disruption period in S1 

Functions ����, ����� Expected demand in each sale period in market k (� � 1 and 2) under without 
disruption conditions ∑ ����, ��������
   Average demand in R1 under without disruption conditions ∑ ����, ��������
 × �  Actual demand in R1 under without disruption conditions )�
�� Expected total cost in R1 under without disruption conditions Ψ�� Total profit in the first supply path under without disruption conditions ����, ���� Expected demand in each sale period in market k (� � 1 and 2) under 
disrupted conditions ∑ ����, �������
   Average demand in R1 under disrupted conditions ∑ ����, �������
 × �  Actual demand in R1 under disrupted conditions Ψ��� Total profit that can be captured in the ramp-up disruption period Ψ�� Total profit that can be captured in the normal disruption period Ψ�� Total profit that can be captured in the ramp-down disruption period P8��
�  Capacity needed by M1 in disrupted conditions P8��
�  Capacity needed by S1 in disrupted conditions Ψ Expected profit of the SN under disrupted conditions 

 

Appendix B: Linearizing Approach 

The model (Equations 8-17) is linearized in three steps as follows: 

� First, the chance constraints, Equations (12) and (13), are linearized by using the SAA approach, 

� Second, the nonlinear constraints, Equations (11) and (14), and the objective functions, Equation 

(8), are linearized by discretizing reliability variables,  
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� Third, the multiplication of binary variables is linearized by defining a new variable.  

The steps are explained in detail below.  

Step 1: Chance constraints linearization   

In this step, we explain how the SAA approach is used to approximate the chance constraints in the model 

(Equations 8-17). The SAA for Equation (12) is as follows: 


��
�� = PrG∑ C�
E . B��JKLE�
 ≤ A�
. B�� − %��M = ∑ ~·KL,���¼��L½                                                                (57) 

In Equation (57), the probability of the event that is defined as the “left-hand side of the inequality in 

Equation (57) is less than or equal to its right-hand side (∑ C�
E . B��JKLE�
 ≤ A�
. B�� − %��)” is 

replaced by the ratio of its occurrence in a sample that includes ́= {�| observations. Increasing the size 

of the sample, |´|, increases the accuracy of this statistical approximation. To determine the number of 

times in which term �A�
. B�� − %��� − B��. ∑ C�
EJKLE�
  is positive, a new binary variable 
��
,���  is 

defined and the following constrains are added to the mode:  

¾�. G
��
,��� - 1M ≤ �A�
. B�� − %��� − B�� . ∑ C�
EJKLE�
 ≤ ¾�. 
��
,���           

                                                                   �∀� � 1, … , ´	8¥¨	∀S � 1, … , A�
�     GC�
E ~ �
D M              (58) 


��
,��� ∈ {0,1|                                            �∀� = 1, … , ´�                                                                         (59) 

According to Constraint (58), variable 
��
,���  is 1 if the term �A�
. B�� − %��� − B��. ∑ C�
EJKLE�
  is 

positive based on the realized values of C�
E  (∀S = 1, … , A�
) in sample � ∈ ´, and 0 otherwise (BM is a 

large constant value; refer to Appendix E for more information about the BM value). Increasing the 

accuracy of this approximation increases the number of these new variables. Therefore, selecting the 

smallest |´| that ensures an acceptable accuracy is necessary.       

The chance constraint in Equation (13) is approximated in the same manner. First, it is simplified 

algebraically and rewritten as follows: 


��
�� � PrG��
. P8��
��. G∑ OEJYLE�
 M ≥ A�
. ���
 − 1�. N�� + A�
. B��M                                                 (60) 

Then, it is approximated with the following constraints: 
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��
�� = PrG��
. P8��
�� . G∑ OEJYLE�
 M ≥ A�
. ���
 − 1�. N�� + A�
. B��M = ∑ ~·YL,���¼��L½                              (61) 

To determine the number of times in which term ��
. P8��
��. G∑ OEJYLE�
 M − A�
. ���
 − 1�. N�� −
A�
. B�� is positive, a new binary variable, 
��
,���, is defined and the following constrains should be 

added to the model:  

¾�. G
��
,��� - 1M ≤ ��
. P8��
��. G∑ OEJYLE�
 M − A�
. ���
 − 1�. N�� − A�
. B�� ≤ ¾�. 
��
,���          

                                                                   �∀� � 1, … , ´	8¥¨	∀S � 1, … , A�
�     �OE~ �
DD �       (62) 


��
,�� ∈ {0,1|                                                            �∀� = 1, … , ´�                                                      

(63) 

Variable 
��
,��� is 1 if the term ��
. P8��
�� . G∑ OEJYLE�
 M − A�
. ���
 − 1�. N�� − A�
. B�� is positive 

based on the realized values of OE (∀S = 1, … , A�
) in sample � ∈ ´, and 0 otherwise. To verify the 

accuracy of this approximation and suggest appropriate values for the sample size, |´|, we conducted a 

numerical analysis and compute the average error of this approximation for different density functions. 

The results are summarized in Table B.1.  

Table B.1 Average error for different density functions.   

Normal Density Function Uniform Density Function Exponential Density Function 

À Average 
error 

À Average 
error 

À Average 
error 

À Average 
error 

À Average 
error 

À Average 
error 

1 0.220 60 0.034 1 0.230 60 0.033 1 0.210 60 0.032 
5 0.129 65 0.033 5 0.134 65 0.031 5 0.131 65 0.030 
10 0.084 70 0.031 10 0.082 70 0.029 10 0.085 70 0.030 
15 0.065 75 0.029 15 0.067 75 0.028 15 0.064 75 0.029 
20 0.061 80 0.028 20 0.061 80 0.028 20 0.060 80 0.028 
25 0.051 85 0.028 25 0.050 85 0.027 25 0.050 85 0.027 
30 0.048 90 0.026 30 0.049 90 0.025 30 0.048 90 0.026 
35 0.045 95 0.025 35 0.043 95 0.025 35 0.043 95 0.026 
40 0.041 100 0.025 40 0.041 100 0.024 40 0.039 100 0.025 
45 0.039 120 0.023 45 0.039 120 0.022 45 0.037 120 0.023 
50 0.038 140 0.020 50 0.036 140 0.019 50 0.036 140 0.022 
55 0.035 150 0.019 55 0.034 150 0.018 55 0.034 150 0.019 

Based on these results, when |´| is in the [25,30� interval, the average error of the approximations is 

less than or equal to 5 percent. To reduce the error to less than 4, 3, and 2 percent, |´| should be selected 

from the �40,45�, �65,70�, and �140,150� intervals, respectively.      
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Step 2: Nonlinear objective function and constraints linearization   

To linearize the objective function in Equation (8) and the constraints in Equations (11) and (14), we 

discretize the facilities’ local reliability variables, 
��
��, 
��
��	and	
��
��. These variables only assume 

values in the [0, 1] interval. The service level, a function of these local reliabilities, generally assumes a 

value that is greater than or equal to 50 percent. By restricting the feasibility range of the local reliabilities 

to [0.8, 1], we ensure that the SN’s service level for the markets is greater than 50 percent (0.8H ≥ 0.5). 

This very restricted feasible range justifies the feasibility of their discretization (Rezapour et al., 2015). 

Set �µ = {
�| includes all discrete values that can be assumed by these variables. For example, if we use 

step size 0.05 to discretize the [0.8, 1] interval, we obtain �µ = {0.80,0.85,0.90, 0.95,1| (the notation 
� 
is used to represent the discretized values in Set �µ). In this case, the variables 
��
��, 
��
��	and	
��
�� can 

only assume a value from Set �µ � {0.80,0.85,0.90,0.95,1| rather than assuming any value from [0.8, 

1]. To select one of these reliability options for each facility, we define new binary variables, ¶�
��,~·, 
¶�
��,~· and ¶�
��,~·. Variable ¶�
��,~· is 1 if the reliability option 
� ∈ �µ is selected for S1, and 0 

otherwise. Only one of the options available in �µ can be selected for S1: 

∑ ¶�
��,~·|�Á|~·�
 � 1                                                                                                                                       (64) 

Variable ¶�
��,	~·¸ is 1 if the reliability option 
�′ ∈ �µ is selected for M1, and 0 otherwise. Only one of 

the options available in �µ can be selected for M1: 

∑ ¶�
��,~·¸|�Á|~·¸�
 � 1                                                                                                                                    (65) 

Variable ¶�
��,~·" is 1 if the reliability option 
�" ∈ �µ is selected for R1, and 0 otherwise. Only one of 

the options available in �µ can be selected for R1: 

∑ ¶�
��,~·"|�Á|~·"�
 � 1                                                                                                                                     (66) 

By defining these new variables, the objective function, Equation (8), is rewritten as follows:  
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Max Ψ�� = ∑ ∑ ∑ ¶�
��,~·|�Á|~·"�
|�Á|~·¸�
 . ¶�
��,~·¸ . ¶�
��,~·" . Â=� − ℎ'. " > �
(
 7�8%	 9
�. 
�D. 
�", 4545'46:; -|�Á|~·�


�?'-ℎ(. " >� −  �
(
 7�8%	 9
�. 
�D. 
�", 4545'46:;?'@ × #∑ ��G�, 
�. 
�D. 
�"M���
 $Ã                                      
(67) 

After defining these new binary variables, the constraint in Equation (11) can be rewritten as follows: 

 %�� = ∑ ∑ ∑ ¶�
��,~· . ¶�
��,~·¸ . ¶�
��,~·" . >G∑ ��G�, 
�. 
�D. 
�"M���
 M.  �
(
 7�8%	 9
�", 4545'46:;?|�Á|~·"�
|�Á|~·¸�
|�Á|~·�
               

                                                                                                                                                                   (68) 

The constraint in Equation (14) is rewritten: 

���� � ∑ ∑ ∑ ¶�
��,~· . ¶�
��,~·¸ . ¶�
��,~·" . #
�. 
�D. 
�"$|�Á|~·"�
|�Á|~·¸�
|�Á|~·�
                                                             (69) 

The accuracy of this linearization depends on the discretizing step of the reliability variables. To 

reduce complexity, we begin with a large step to determine a rough approximation of the optimal 

solution. Then, we can make the steps finer around the rough approximation to improve the solution’s 

accuracy. 

Step 3: Linearizing multiplication of binary variables   

The objective function in Equation (67) and the constraints in Equation (68) and (69) are still nonlinear 

because there is a multiplication of binary variables in these equations. These multiplications can be 

easily linearized by defining a new binary variable, Θ�
,�
,�
��,~·,~·¸,~·", and substituting as follows:  

Θ�
,�
,�
��,~·,~·¸ ,~·" � ¶�
��,~· . ¶�
��,~·¸ . ¶�
��,~·"                                                                                                    (70) 

We must add the following constraints to the model to ensure that variable Θ�
,�
,�
��,~·,~·¸,~·" is equal to 1, 

only if all three variables ¶�
��,~· , ¶�
��,~·¸, and ¶�
��,~·" are equal to 1:  

¶�
��,~· + ¶�
��,~·¸ + ¶�
��,~·" - 2 ≤ Θ�
,�
,�
��,~·,~·¸,~·" ≤ ÄYL��,�Å'ÄKL��,�Å¸'Ä�L��,�Å"
H                                                (71) 
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Θ�
,�
,�
��,~·,~·¸ ,~·" ≤ ¾�. ¶�
��,~·                                                                                                                       (72) 

Θ�
,�
,�
��,~·,~·¸ ,~·" ≤ ¾�. ¶�
��,~·¸                                                                                                                       (73) 

Θ�
,�
,�
��,~·,~·¸ ,~·" ≤ ¾�. ¶�
��,~·"                                                                                                                      (74) 

Θ�
,�
,�
��,~·,~·¸ ,~·" ∈ {0,1|                                                                                                                                   

(75) 

After these steps, our model becomes a MILP. The solution time of a MILP primarily depends on the 

number of binary variables that are equal to |�µ|H + 3. |�µ| + 2. |´|. We solve this model using CPLEX 

Concert Technology on a Dell laptop computer with Windows 10, an Intel i7 processor, and 8 GB of 

installed RAM. The computational time for the Test Problem (in Section 4.6) is less than 4 minutes.  

Given that the test problem is not complicated, we verify the computational capability of the solution 

method by solving more complicated SNs with larger numbers of suppliers, manufacturers, and retailers. 

The features of these SNs and their computational times are summarized in Table B.2. In these problems, 

we assume that the local reliability of the facilities in each echelon is selected from set �µ =
{0.8,0.85,0.90,0,95,1| and the sample size used in SAA is |´| = 25.  

 

Table B.2. Computational capability for the model developed for without disruption conditions.  

Problem 
Features of SN 

Computational time 
(second) Number of 

suppliers 
Number of 

manufacturers 
Number of 
retailers 

Number of 
paths 

1 2 2 2 2 227 
2 2 3 6 8 612 
3 2 4 9 12 2990 
4 2 5 12 16 10411 
5 3 6 15 21 25965 
6 3 7 18 26 57323 
7 4 8 22 32 104711 
8 4 9 26 38 > 172800 

 

Decisions about the SN’s risk mitigation strategies are types of strategic level decisions. These 

decisions are not made on a daily basis and do not need short computation times. As noted in Table B.2, 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

62 

 

for Problem 8 and problems larger than Problem 8, the computational time is more than 48 hours. 

Therefore, for this type of problem, we can use meta-heuristic approaches to solve the MILP and 

determine a good suboptimal solution in a rational computational time rather than the global optimum.      

Appendix C: Computational Times 

The model developed in Section 5.4 is a MILP. The solution time of a MILP primarily depends on the 

number of binary variables that are equal to |�µ|H + 3. |�µ| + 2. |´| + |�A�
| + |�A�
|. The 

computational time for the test problem (in Section 5.5) is less than 6 minutes. Given that the test problem 

is not complicated, we verify the computational capability of the model and solution method by solving 

the first 7 problems that are summarized in Table 2.B. The number of disrupted paths considered in these 

SNs and their computational times are summarized in Table C.1. In these problems, we assume that the 

numbers of flexibility speed options available for undisrupted suppliers and manufactures are 3 and 4, 

respectively. In addition, the facilities’ local reliability in each echelon is selected from set �µ =
{0.8,0.85,0.90,0,95,1| and the sample size used in the SAA is |´| = 25. 

Table C.1. Computational capability for the model developed for disrupted conditions. 

Problem 
Features of SN Computational 

time  
(second) 

Number of 
suppliers 

Number of 
manufacturers 

Number of 
retailers 

Number of 
paths 

Number of 
disrupted paths 

1 2 2 2 2 1 314 
2 2 3 6 8 3 2439 
3 2 4 9 12 4 5937 
4 2 5 12 16 6 26462 
5 3 6 15 21 8 58413 
6 3 7 18 26 8 103847 
7 4 8 22 32 9 > 172800 

 

As noted in Table C.1, for Problem 7 and problems larger than Problem 7, the computational time is 

more than 48 hours. Therefore, for this type of problem, we suggest using meta-heuristic approaches to 

solve the MILP and determine a good suboptimal solution in a rational computational time rather than the 

global optimum. 

Appendix D: Fubini’s Theorem 
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According to Fubini’s Theorem, it is possible to calculate the mean of a random function, such as 

%�� − ∑ ����, ����� × ����
 , using its cumulative distribution function (for more information about this 

relationship refer to Hajek (2015) – Equation (1.11)): 

 "#%�� -∑ ����, ����� × ����
 $' � Æ  �
���. ¨�Ç��∑ ��GÈ,ÉÅ��Mª��LÊ                                                              

(76) 

 "G%�� -∑ ����, ����� × ����
 M' - "G∑ ����, ����� × ����
 - %��M' � %�� - ∑ ����, ��������
          

         (77) 

Therefore, we can manipulate the objective function (1) as follows:  

 

�*+										)�
�� � ℎ'. " Ë%�� −�����, ����� × ��
��
 Ì' + ℎ(. " Ë�����, ����� × ��

��
 - %��Ì' 

         � ℎ'. Æ  �
���. ¨�Ç��∑ ��GÈ,ÉÅ��Mª��LÊ + ℎ(  ∑ ����, ��������
 - %��+	. Æ  �
���. ¨�Ç��∑ ��GÈ,ÉÅ��Mª��LÊ ¡	 
(78) 
 
Therefore, to compute the minimum %��, we should compute the derivative of Equation (78) with 
respect to %��, as follows: 
 

          
ÍÎ�L��
ÍÏ�� � ℎ'.  �
 = Ï��∑ ����,£·���ª��L @ + ℎ(. �−1 +  �
 = Ï��∑ ����,£·���ª��L @� � 0                                  

(79) 
                  

         �
 = Ï��∑ ����,£·���ª��L @ � 45�45'46� 								→ 								 %�� � ∑ ����, ��������
 .  �
(
� 4545'46�                 (80) 

 

Furthermore, Constraint (2) can be simplified as follows: 

     Pr#∑ ����, ��������
 × � ≤ %��$ ≥ 
��
�� 							→ 								Pr	[� ≤ Ï��∑ ����,£·���ª��L � ≥ 
��
��                   (81) 

       �
 = Ï��∑ ����,£·���ª��L @ ≥ 
��
��                                                                                                              (82)    

       �
(
�
��
��� ≤ Ï��∑ ����,£·���ª��L 											→ 									 %�� ≥ #∑ ����, ��������
 $.  �
(
�
��
���                (83) 

 

Appendix E: BM Value 
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Equation �A�
. B�� − %��� − B��. ∑ C�
EJKLE�
  is used to demonstrate the difference between the extra 

production in �1 (A�
. B�� − %��) and the total waste in its production runs (B��. ∑ C�
EJKLE�
 ). The 

extra production in �1 cannot be greater than A�
. B��.�8%�C�
� and the total waste in �1 cannot be 

less than A�
. B��.�S¥�C�
�. Therefore, we can claim the following: 

−1 × 7A�
. B��G�8%�C�
� − �S¥�C�
�M; ≤ �A�
. B�� − %��� − B��. ∑ C�
EJKLE�
 ≤
																																																									A�
. B��G�8%�C�
� −�S¥�C�
�M                                                     (84) 

Furthermore, the maximum value that can be assumed by B�� corresponds to a case for which 

A�
 = 1 and at most is equal to %����8%�C�
� + 1�. Because the maximum value for %�� is 

#∑ ����, ���� � 1����
 $.  �
(
 7�8%	 9
��
�� = 1, 4545'46:;, the ¾� in Equation (58) must satisfy the 

following inequality: 

¾� ≥ A�
. #∑ ����,1����
 $.  �
(
 7�8%	 91, 4545'46:; . ��8%�C�
� + 1�. G�8%�C�
� −�S¥�C�
�M  (85) 

 


