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A B S T R A C T

This paper considers Product Development (PD) project networks, which are characterized by stochastic activity
durations and activity rework or iteration (i.e., potential to repeat some activities several times during PD
execution). The Cycle Elimination (CE) approach presented in Nasr et al. (2016) reduces the computational
complexity of analyzing iterative PD project networks by considering an approximate network with no iteration.
We build on the CE approach to investigate practical scenarios which arise in real world PD projects which are
not accounted for by the CE approach. These scenarios include: (i) forward probabilities, (ii) dynamic rework
probabilities and proportions, (iii) multiple dependency relationships between activities, and (iv) different re-
work through indirect connections. We demonstrate these extensions using two case studies. The first case study
considers a software development process, where we collected the data by interviewing the managers of the
company. The second case study involves a hardware development process (adapted from Pinkett (1998)),
where the results show that the proposed method outperformed three existing techniques from the literature.
Both cases were solved using the proposed modification to the CE approach, and then simulated to gauge the
accuracy of the proposed method showing very promising results.

1. Introduction

Product development (PD) projects are notorious for their iterative
nature, where ignoring rework potential results in inaccurate estimates
of project duration (and cost) and can lead to misleading analysis and
managerial decisions (Browning & Yassine, 2016; Meier, Browning,
Yassine, & Walter, 2015). Iterative rework is denoted by a feedback
loop in an Activity on Node (AON) representation of the PD project
network, where the completion of a downstream activity may cause one
or more upstream activity to be reworked (Yassine & Braha, 2003). The
stochastic nature of the activity duration along with the probabilistic
occurrence of feedback loops, significantly increases the complexity of
estimating the duration of the PD project (Browning & Ramasesh, 2007;
Unger & Eppinger, 2009). Feedbacks are a typical characteristic of any
complex design and development project and a potential source of
design iterations, which can account for one-third to two-thirds of the
project duration and cost (Meier, Yassine, & Browning, 2007). This fact
makes the study of project management in the presence of iteration, as
suggested in this paper, a central issue for the PD community.

In the absence of stochastic feedback, the PD network reduces to a
classical project network where traditional and well-established

techniques can be utilized such as the critical path method (CPM) and
program evaluation and review technique (PERT) (Mantel, Meredith,
Shafer, & Sutton, 2007; Pinto, 2012). When considering project net-
works which exhibit feedback, the majority of the literature utilizes
simulation techniques (e.g., Abdelsalam & Bao, 2006; Browning &
Eppinger, 2002; Cho & Eppinger, 2005) or heuristic algorithms (e.g.,
Browning & Yassine, 2016; Jun, Park, & Suh, 2006) to estimate the
duration of the project. Analytical approaches to approximate the ex-
pected duration of PD projects exist but not without limitations; for
example, the Reward Markov Chain (RMC) approach (Smith &
Eppinger, 1997) and the Signal Flow Graph (SFG) approach (Eppinger,
Nukala, & Whitney, 1997) are both used for sequential PD networks.
More recently, the Cycle Elimination (CE) approach (Nasr, Yassine, and
Abou Kasm (2016)) investigated the duration of a PD network for se-
quential and parallel networks. The CE method uses the RMC approach
as a starting point and is extended to include finding the expected
duration and variance of sequential, parallel, and mixed (i.e., combi-
nation of sequential and parallel activities) activity networks. The CE
method mainly works by transforming the PD network into a traditional
network (i.e. eliminating feedback) and then traditional project man-
agement techniques such as CPM and PERT can be used to calculate the
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expected duration and variance of the network.
Pinkett (1998) also implemented modifications to previous analy-

tical methods, namely the signal flow graph (SFG) and the RMC. The
modifications include rework proportions (i.e. repeating a fraction of
the original activity duration when feedback is triggered). Another
modification is accounting for “terminal probabilities”. The terminal
probability as explained by Pinkett (1998) is the probability that a
certain activity will have to be reworked after the downstream activity,
responsible for triggering the rework, is worked a second time (or
more). Also, a modification to account for forward probabilities (pf), the
probability to skip an activity in the first iteration, is discussed. The
terminal probability (identified as dynamic probability in our work)
and the forward probability modifications in the case study presented
by Pinkett (1998) inspired us to investigate further real case scenarios
through a real world case study of our own accompanied by discussions
with managers of a product development company. Pinkett’s mod-
ifications along with different real case complications that were dis-
covered are presented and discussed in this paper.

After reflecting on the different real case PD scenarios, we noted
that additional complications can create limitations or inaccuracies in
the original CE approach, if the method is used without some mod-
ification. Thus, this paper is dedicated to extending the CE method in
order to account for these different complications or special cases. The
issues that are addressed in this paper are:

(i) Forward probabilities that exist when there is a chance to skip a
certain activity from the first iteration. For example, consider an
employee receiving outsourced material which needs to be in-
spected for paint scratches before being sent to the assembly de-
partment to become part of a final product. Thus, the employee, in
this case, can either send the material to the painting department
or skip this activity and send it directly to the assembly department
if found acceptable during inspection.

(ii) Dynamic rework probabilities and proportions that exist when the
rework probabilities and proportions change with successive
iterations (generally decrease) and this can be justifiable due to
learning. For example, consider an engineer submitting a design
for her manager’s review. Assume that the first review, having an
occurrence probability of 70%, requires the engineer to fix certain
aspects of the design requiring 60% of the time spent on the ori-
ginal design. After the latter fixes as requested by the manager, the
probability to ask for successive modifications decreases along
with the duration to fix them due to a better understanding of what
is required.

(iii) Multiple dependency relationships between activities that exist when a
certain activity triggers more than one type of rework from another
activity. This is best explained by a manager asking a subordinate
to repeat a certain design where the amount of rework depends on
amount of errors the manager detected; that is, the rework can
target minor adjustments or detailed adjustments which require
much more time.

(iv) Different rework through indirect connections that exist when two or
more activities have the potential to cause rework for the same
activity but each requesting a different kind of rework, then when
the reworked activity triggers rework for another activity, the
latter rework will depend on the kind of rework initially requested.
For example, consider two engineers that design a product se-
quentially. The first engineer is in charge of preliminary design
(A), while the second engineer performs detailed design (B). Now,
consider two quality assurance employees, where one is re-
sponsible for technical inspections (C) and the other for visual ones
(D). Each can provide feedback for activity (A) and then (A) feeds
information to (B). The rework required from (B) differs depending
on the initial feedback; that is, whether it is initiated from (C) or
from (D) to (A). Note that there is no direct connection between (C)
or (D) and (B).

This paper is divided into five sections. Following this section, a
literature review is provided in Section 2. Then, the extensions and
modifications of the CE method are discussed in Section 3 with illus-
trative examples. In Section 4, two real case studies are presented. The
first, from a software development company, is presented highlighting
the different complications. The second, adopted from Pinkett (1998),
is presented where we compare our approximations with Monte Carlo
simulation results as well as the results obtained in Pinkett (1998).
Finally, summary, discussion and conclusion are presented in Section 5.

2. Literature review

Different literature streams such as, Browning and Eppinger (2002),
Cho and Eppinger (2005), and Abdelsalam and Bao (2006) discussed
simulation techniques to find the expected duration of a PD project
network. However, due to the time-consuming nature of simulation
techniques, our interest in this paper is developing or extending existing
analytical techniques to solve a wider range of project networks. Spe-
cifically, the paper aims for extending the Cycle Elimination (CE)
method developed by Nasr et al. (2016). Thus, the literature of the CE
method fundamentals is first presented before moving to the details of
the proposed extensions.

The Signal Flow Graph (Eppinger et al., 1997) and the Reward
Markov Chain (Smith & Eppinger, 1997) are two analytical techniques
used to calculate the mean and variance of the PD network durations.
However, they suffer from limitations such as tackling only sequential
PD projects and not including rework proportions (Nasr et al., 2016). A
signal flow network represents the activities by nodes, while the arcs
leaving the nodes represent the different mutually exclusive choices
after an activity is worked, meaning that each activity can have at most
one predecessor and thus parallel work is not allowed. This assumption
can be relaxed by adding additional states that represent activities in
parallel. Finally, a sequence of activities, called a path is defined for the
network and rework is considered by allowing an activity to appear
more than once. On the other hand, the RMC approach uses a modified
form of Gaussian elimination to calculate the expected duration of
deterministic activity sequential networks with feedback (Nasr et al.,
2016). A stage in the method is defined by the completion of an activity
along with all feedback generated by the same activity. The RMC works
in a regressive manner, it starts with the duration calculation of the
final stage and works itself backwards until the first stage duration is
calculated and then sums all durations. The two methods, signal flow
graph and RMC converge to give the same expected duration (Pinkett,
1998), where the signal flow graph calculates the expected duration to
pass through the network while the RMC calculates the expected
duration spent in the network.

Nasr et al. (2016) extended the RMC to account for rework pro-
portions in the expected duration calculations as well as finding the
variance in sequential activity networks. Moreover, they extended the
method to account for parallel and coupled activities. As such, their
method, called the cycle elimination (CE) method, requires the fol-
lowing as inputs: Rework probabilities & proportions, distributions of
the activity durations, and the sequence of working the activities (with
identifying sequential, parallel, or coupled activities). When it comes to
sequential networks, the CE method's algorithms and formulations are
used to find the expected durations at every stage and then they are
simply summed. However, a bigger role is played in mixed networks.
The cycle elimination approach starts by modifying the project network
to allow for removing the feedback and then analyzing the network
using traditional project management techniques. Specifically, consider
the probability DSM (Design Structure Matrix) in Fig. 1 and its network
representation in Fig. 2. The probability DSM in Fig. 1 shows the ac-
tivity durations (in the diagonal entries) and the activity connections by
the presence of any value greater than zero in the off-diagonal entries,
where these values are the associated probabilities. For example, there
is a 31% chance that Activity 4 will cause rework to Activity 2. Note
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that the numbers in the lower triangular part of the matrix are only
applicable when rework is triggered. For instance, working Activity 1
for the first time, will always result in tackling activities 2 and 3,
however if Activity 6 triggers rework for Activity 1, then there is a 27%
chance to rework Activity 2 and a 25% chance to rework Activity 3. The
connections in the DSM are translated to a network without feedback in
Fig. 2 allowing it to be solved by any traditional project management
technique after the calculation of all node durations. Three types of
nodes can be observed in this figure, the circles representing the ac-
tivity’s duration, the boxes representing the rework caused by an ac-
tivity, and the doted boxes representing the stages which are the sum of
an activity duration and the rework it generated. Since Activities 4, 5
and 6 have the potential to create rework as seen in the DSM, their
stages are represented to contain rework nodes. Finally, the arcs re-
present the connections between activities in the first iteration, i.e.
when the activities are worked for the first time, and they can be in-
ferred from the lower triangle values in the DSM.

Using the CE algorithm, the stage expected durations and variances
are calculated, and then the problem is tackled as a network without
feedback. The user can then use any preferable traditional technique to
solve such networks. Specifically, the simplified Eqs. (1) and (2) re-
present the set of equations required to find the expected duration TE[ ]k
at stage k.

∑= +
=

R W t R PE[ ] E[ ] E[ ]ij k ij j
u

k

ju k ju;
1

;
(1)

∑= +
=
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1

;
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where the Rij k; is the duration required to complete stage k when ac-
tivity j is requested for rework after activity i; Pij is the associated
probability. Wij is the rework proportion associated with reworking
activity j after activity i and tj is the duration of the single activity k.

These equations result in a total of +k 12 equations where the first
k2 are generated by Eq. (1) and the final equation is generated by Eq.
(2). Similar equations are established to generate the second moment
used to calculate the variance of each stage. The variance equations

along with efficient algorithms to generate the matrices are shown in
Appendix A.

The CE method is then extended to solve two special cases: coupled
activities, and accounting for parallel rework. The math and algorithms
are not changed in these extensions, however modifications in the input
DSMs are made to capture the specific complication. These modifica-
tions along with the right choice of the stage duration generate more
accurate results. Specifically, the modification for coupled activities
involved the inclusion of a dummy activity in the DSM having the right
connections and then including its stage duration in the final calcula-
tions. While the modification of accounting for parallel rework only
involved changes in the rework probabilities input. The extensions
provided in this paper use similar techniques, but applied in different
ways, to capture other complications.

3. Cycle elimination method extensions

After applying the CE method on real case scenarios and examples,
it was found that modifications for the input DSMs are required to
achieve accurate results under certain complications. The CE method
imposes a set of assumptions that when a certain case deviates from, the
accuracy of the result decreases. In this section, we state such cases and
discuss how to manipulate the input matrices in order to better capture
the desired reality and restore the method’s accuracy. We begin by
explaining the different cases and providing examples in this section
while tackling real cases relating to the discussed modifications in
Section 4. Specifically, four issues are discussed in this section: (i)
forward probabilities, (ii) dynamic rework probabilities and propor-
tions, (iii) multiple dependency relationships between activities, and
(iv) different rework through indirect connections. Moreover, since the
required modifications are only in the inputs and not in the calcula-
tions/algorithms, the discussions and examples in this section focus on
the DSM modifications required for each special case. To carry the
calculations that follows, the equations introduced by Nasr et al. (2016)
must be followed; specifically, the expected duration calculations are
based on the set of Eqs. (1) and (2) discussed in the literature. For in-
terested readers, we placed the required detailed calculations for each
example in Appendix B. Additionally, Appendix A summarizes the ne-
cessary theory from Nasr et al. (2016) to carry the expected duration
and variance calculations.

3.1. Forward probabilities

Consider three sequential activities: i, j and k. The forward prob-
ability “pf” denotes the probability to work activities j and k sequen-
tially after Activity i and “1-pf” is the probability to skip Activity j and
directly work on Activity k (see Fig. 3(a)).

Pinkett (1998) discussed a modification for the RMC approach to
account for the forward probabilities. The same modification can be
used in the CE method: Activity j is given the expected duration “pf
times the original duration”. Fig. 3(b) demonstrates this adjustment. If

1 2 3 4 5 6 
1 74 0.40
2 0.27 20 0.31
3 0.25 72 0.50
4 0.55 41 
5 0.29 0.17 36 
6 0.77 59 

Fig. 1. 6×6 probability DSM.
Adapted from Nasr et al., 2016.

Fig. 2. Network with rework nodes.
Adapted from Nasr et al., 2016.
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this case is represented without the adjustment, then the forward
probability will be in the lower triangular part of the DSM. As such, it
will not be considered in the first iteration calculations as discussed in
the literature review. This idea makes the adjustment necessary for the
RMC and CE approaches.

As an example, consider network (a) shown in Fig. 4 with the given
information (durations, probabilities, and proportions) in Table 1. A
forward probability is shown between activities 1 and 2. Then, to use
the method, Activity 2 must be given the expected duration value of pf
multiplied by the original expected duration as shown in Table 1. The
proposed method assumes that the network is as shown in Fig. 4(b), but
with the duration adjustment, it gives the accurate expected duration of
the initial network in Fig. 4(a). Fig. 5 shows the DSMs, with entries
extracted from the given information in Table 1, to be used in order to
proceed with the calculations. For example, the probability of re-
working activity 3 after activity 4, p43, in Table 1 is translated to the
rework probability matrix in Fig. 5. The expected duration calculated is
obtained to be 188.45 with a standard deviation of 30.49. Note that at
each stage, the required matrices are generated by the algorithms in
Appendix A, and solved to find the stage expected parameters and fi-
nally summed. The calculation details are shown in Appendix B.

3.2. Dynamically changing rework probabilities and proportions

This special case is also mentioned in Pinkett (1998), where the
“terminal probability” was defined as the probability that a certain
activity will have to be reworked after the downstream activity (re-
sponsible for the rework) is worked a second time (or more). However,
Pinkett only considered rework probabilities. But this idea can also be
applied to rework proportions, and thus both are implemented in our
proposed modifications to the CE method as discussed here.

To account for these probabilities and proportions, the user must
add dummy activities representing these states. Assume that Activity j
causes rework for Activity i with a probability “p1” and rework pro-
portion “w1” when triggered the first time, but a probability and pro-
portion “p2” and “w2” when triggered a second time. Then the user must
create a dummy Activity j′ located before the original Activity j, and all
the preceding activities which are supposed to be connected to j will be
connected to the dummy Activity j′ (Activity i in our example) and j′
will be connected to Activity i with the new rework probability and
proportion “p2” and “w2” (see Fig. 6). This way, the stage duration of
Activity j will trigger rework with probability p1 and proportion w1 but
when j must be tackled again as a second order rework, the connections
will lead to j′ rather than j (as seen in Fig. 6, Activity i is only connected
to Activity j′) and thus the new probabilities and proportions are con-
sidered. All dummy activity stage durations must be ignored; because
when created, they will automatically be accounted for in the rework
calculations for the original activity stage duration.

As an example, consider the network in Fig. 7. It is given that when
Activity 2 is worked for the first time, there is an 80% chance to repeat
40% of Activity 1; But when tackled a second time or more, there is a
30% chance to repeat 20% of Activity 1. 50% of Activity 2 is always
repeated after Activity 1. Due to the dynamic change of probabilities, a
dummy activity must be added for Activity 2 having the same duration
as Activity 2. To find the expected duration, it is required to use the
DSMs in Fig. 8 which represent the discussed information. The activity
stage durations are summed (The dummy activity stage duration is
neglected), and the obtained results show the expected duration as
207.3 with a standard deviation of 34.33. Note that at each stage, the
required matrices are generated, by the algorithms in Appendix A, and
solved to find the expected duration. Finally, the expected durations of
all non-dummy activity stages are summed. The calculation details are
presented in Appendix B.

3.3. Multiple dependency relationships between activities

Consider two activities: i and j. Activity j can generate more than
one kind of rework for Activity i. For example; Activity i could be re-
worked with a probability “p” after Activity j but with a proportion “w1”
or “w2” under the probabilities “p1” and “p2” respectively. As an ex-
ample, a manager asking simple modifications as compared to asking
extensive modifications from a design engineer. The expected time re-
quired to complete the extensive modifications will require a higher
rework proportion of the original duration than the rework proportion
required to complete the simple modifications.

Similar to Section 3.2, this idea can be accounted for by using
dummy activities. Specifically, in the given example, dummy Activity i
would be created and linked to Activity j with the required probabilities
(i.e. p ∗ p1 for the rework proportion “w1”). However, when the given
probabilities and proportions are the same in every run (i.e. not dy-
namic, unlike the discussion in Section 3.2), then the use of the dummy
activities is not necessary. The user can simply modify the inputted
probabilities and proportions in an expected value manner. Specifically,
the rework probability would stay “p” but the rework proportion would
be “p1 ∗w1+ p2 ∗w2”.

The same idea can be extended to the rework probability change
depending on the kind of rework triggered. Specifically, when Activity j

Fig. 3. Forward probability adjustment.

Fig. 4. Forward probability network (Example 1).

Table 1
Given information and adjusted duration (Example 1).

Activity Duration Forward and rework probabilities Rework proportions

1 56 pf 0.6 w43 0.4
2 70 p43 0.45 w34 0.3
3 40 Activity 2 Adjusted Duration (pf * Duration2)
4 30 0.6 * 70= 42
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triggers rework for Activity i, Activity j is then reworked with a prob-
ability depending on the type of rework asked in the first place. The use
of dummy activities can also be used. But, similar to the above, ad-
justments of the rework probabilities and proportions are a better
method when they are invariable with number of times an activity is
reworked.

Fig. 9 demonstrates the rework probability and proportions ad-
justments. The figure shows two rework types; but more can be avail-
able, and the rework probabilities and proportions can be found simi-
larly (by finding the expected value).

As an example, consider the network shown in Fig. 10; when rework
for Activity 1 is triggered after Activity 3 (65% of the time), it can be of
two types. Each type has different rework probabilities and proportions
(Table 2). Activity 3 is always reworked after Activity 2, but Activity 2’s
rework probability (after rework of Activity 1) depends on the type of
rework triggered by Activity 3 on Activity 1. Fig. 11 shows the adjusted
DSMs and the given durations to be used in the calculations. The ob-
tained results show the expected duration as 280.63 with a standard
deviation of 96. Note that at each stage, the required matrices are
generated, by the algorithms in Appendix A, solved to find the stage
expected duration and then summed. The necessary calculations are
shown in Appendix B.

Matrices sample calculations:

= ∗ + ∗ = = ∗ + ∗ =P 0.6 0.65 0.4 0.45 0.57 w 0.6 0.4 0.4 0.5 0.4412 23

3.4. Different rework through indirect connections

The dynamic rework case (discussed in Section 3.2) can be available
through indirect connections. Suppose that Activity i gives input to
Activity j. Also, suppose that Activity i can have rework from two
downstream activities m and k; then Activity j is connected indirectly

with activities m and k. Activity j is then reworked in a probability and
proportion “pm” and “wm” if Activity i is reworked after Activity m but
reworked with “pk” and “wk” when Activity i is reworked after Activity
k. Then the user must create two dummy activities for Activity i, con-
necting them to activities m and k, and each dummy activity is con-
nected to Activity j with its respective probability and proportion.
Figs. 12 and 13 show the network and the adjustment required.

As an example, consider the network in Fig. 14. When rework for
Activity 1 is triggered, Activity 2 can be reworked as a second order
rework. But, the rework probability and proportion of Activity 2

Rework Pro e  (P) Rework Propor o  (W)
1 2 3 4 1 2 3 4 Dur on

1 1 56
2 1 2 1 42
3 1 0.45 3 1 0.4 40
4 1 4 0.3 30

Fig. 5. Input DSMs (Example 1).

 i j' J 
i p2 p1

j' pij

j   
Fig. 6. Dynamic rework modification DSM.

Fig. 7. Dynamic rework network (Example 2).

P 1 2' 2 3 W 1 2' 2 3 Dura ons
1 0.3 0.8 1 0.2 0.4 31
2' 1 2' 0.5 60
2 2 60
3 0.2 3 1 70

Fig. 8. DSMs (Example 2).

Fig. 9. Multiple dependency relationships adjustments.

Fig. 10. Multiple dependency relationships network (Example 3).

Table 2
Rework types (Example 3).

Percentage p12 w31 w12 w23

Type 1 60 65 50 50 40
Type 2 40 45 30 70 50
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depends on whether the rework of Activity 1 is generated by Activity 3
or Activity 4. Specifically there is an 80% chance of reworking 70% of
Activity 2 or a 65% chance of reworking 50% of Activity 2 as a second
order rework if Activity 1 is reworked after Activity 3 or Activity 4
respectively. Fig. 15 shows the adjusted DSMs; Two dummy activities
(given the duration of Activity 1) are created, but their stage durations
and variances are neglected in the network expected duration calcula-
tions (they are accounted for in the rework duration calculations of
activities 3 and 4). The obtained results show the expected duration as
358.49 with a standard deviation of 178.41. Note that at each non-
dummy activity stage, the required matrices are generated, by the

algorithms in Appendix A, and solved to find the stage expected dura-
tion and then summed. Additional notes on the calculations are dis-
cussed in Appendix B.

4. Case studies

The method modifications are designed to tackle different compli-
cations that may rise in real PD environments and thus the method is
best demonstrated by applying it to practical case studies. In this sec-
tion, we tackle a case from a Lebanese company (Softex) in the software
development field where we collected the data from the managers of
the company. We then provide another case study from the literature
(Pinkett, 1998) with the results compared with Pinkett's findings and a
simulation for the network.

4.1. Softex case study

Each time Softex receives a project, the same development process
(i.e. network) is followed; however the expected durations of the ac-
tivities depend on the type of project received. The network has ac-
tivities which can result in feedback to upstream activities (the prob-
abilities and rework proportions also depend on the type of the project);
thus making the Softex a suitable case to apply our methods on. For
confidentiality reasons, the company name and activity names are
changed. But all other data collected (durations, probabilities, rework
proportions) are real and based on a specific type of project. Fig. 16
shows the network of the work process, with all the data given in Tables
3 and 4.

As shown in Table 4, rework probabilities depend on whether the
activity is being done for the first time or not; and there are rework
proportions between activities with indirect connections. For example,
activity 18 can cause rework to activity 11 while activity 13 can cause
rework to activities 11 and 12 with direct connections. Activities 11 and
12 can both generate rework to activity 13 and thus this activity (13) is
claimed to have an indirect connection with activities 18 and 13 (here
activity 13 is having an indirect connection with itself), but it will be
worked with a proportion of 10% when the original feedback is from
activity 18 and a proportion of 25% if the original feedback is from
activity 13. Thus adjustments are required as discussed in Sections 3.2
and 3.4. Note that the indices of activities and dummy activities are
carefully chosen to include all rework that maybe caused; for example
Activity 15 is placed after Activity 18 to include the latter in the rework

Rework Probabili es (P) Rework Propor ons (W)
1 2 3 1 2 3 Dura ons

1 0.65 1 0.42 81
2 0.57 2 0.58 56
3 1 3 0.44 71

Fig. 11. DSMs (Example 3).

Fig. 12. Different rework through indirect connections network.

Fig. 13. Different rework through indirect connections DSM adjustment.

Fig. 14. Different rework through indirect connections network (Example 4).

Rework Probabili es (P) Rework Propor ons (W) Dura on
1 1' 1'' 2 3 4 1 1' 1'' 2 3 4 

1 60 

1' 1 0.45 1 0.9 60 

1'' 0.4 0.8 60 

2 0.8 0.65 0.7 0.5 53 

13 0.4 66 

55.04 0.6 33 

Fig. 15. DSMs (Example 4).
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caused by Activity 15.
Also there are activities that can be reworked in parallel, and thus

priorities must be assigned as discussed by Nasr et al. (2016). The idea
is that the activity with highest priority is the one responsible in de-
ciding any additional rework, when called in parallel with other ac-
tivities. Thus when there is no company policy in this decision, we need
to give priority for the activity that generates the maximum amount of
rework to avoid underestimating the network’s expected duration. For
two activities (i and j) being reworked in parallel after activity k (the
only applicable case in this case study) and activity i is given priority
over activity j, then Pk i, remains the same and Eq. (3) defines the ad-
justed probability Pk j

a
, .

= −P P P(1 )k j
a

k j k i, , , (3)

The below clarify the priority choices for the activities that can be
reworked in parallel,

– Activities 11 and 12: Since both cause the same rework, but Activity
11 has a higher deterministic duration, Activity 11 is given priority.

– Activities 14 and 16: Since the rework after Activity 16 has a higher
expected durations than the rework after Activity 14, Activity 16 is
given priority.

– Activities 15 and 17: Since Activity 16 is given priority to Activity
14, and both activities are worked together with a 100% chance
when Activity 13 is triggered, then the priority adjustment leaves
Activity 14 with 0% chance of occurring in rework after Activity 13
in the adjusted DSM. This implies Activity 15 is not triggered in
rework, then priority will not affect the solution and can be chosen
at random.

The rework probability and proportion matrices are adjusted (they

are posted in Appendix C for interested readers) and used with the first
and second moments1 (Table 5) to find the rework nodes expected
durations and variances for the transformed network by the cycle
elimination procedure (Fig. 17). Then, after simulating the no-feedback
network, the expected duration is obtained to be 127.82 Hours with a
standard deviation of 11.4. Finally, for comparison sake, the problem is
simulated using ARENA which resulted in a small mean error (0.16%)
as shown in Table 6.

4.2. Pinkett's case study

Pinkett (1998) tackled a case study for a hardware development
process (designing and testing analog and digital PCBs) by the use of
three methods. Fig. 18 shows the network required for the hardware
development. Different prototypes undergo the same process, but the
activity durations and rework probabilities differ for each prototype.
Table 7 shows all the given activity durations and rework probabilities;
moreover, it is given that all rework proportions are 50% of the original
duration. Also, the terminal probabilities are set to 1%; which is the
probability that a certain activity will have to be reworked after the
downstream activity (responsible for the rework) is worked a second
time (or more).

The first step is to write the matrices to be inputted in the CE
method. Since all rework proportions are given to be 50%, then the
rework proportion matrix (W) will have all elements (resembling the
connections) equal to 0.5. For the rework probability matrix (P), other
than the given input, adjustments are required to account for the

Fig. 16. Softex process network.

Table 3
Activities, durations, and inputs.

Task Name Type Distribution (Hours) Input From

1 Analysis of Clients Requirements Analysis UNIF(6,8) –
2 Analysis of Technical Requirements Development UNIF(6,8) 1
3 Preliminary Visual Designing Visual 12 1
4 Wire framing the Requirements Analysis UNIF(5,7) 1
5 Writing the Functional Document Analysis UNIF(7,9) 4
6 Reading the Functional Document and Writing the Task cases Quality Control UNIF(7,9) 5
7 Preliminary Development of Application (Basic Functionality) Development 20 2,5
8 Complete Visual Development of Application Visual 16 2,3,5
9 Supplementary Development of Application Development 8 8
10 Executional Testing Quality Control UNIF(12,20) 5,9
11 Defect Fixing Development 12 10,13,15,18
12 Visual Defect Fixing Visual 8 10,13,15
13 Verification of Global Application Quality Control UNIF(8,16) 11,12
14 Deployment to Client-Based Environment Development 4 13
15 Testing of Client-Based Environment Quality Control UNIF(3,5) 14
16 Automation Scripting Development+QC UNIF(8,12) 13
17 Automation Execution Quality Control 8 14,16
18 Automation Results and Fixes Development UNIF(2,8) 17
19 Ensuring the Client-Based Environment Analysis UNIF(1,2) 15,18

1 The means and second moments are calculated using the following formulas (Casella

& Berger, 2002): = +E(X) a b
2

& = + +E(X )2 a2 ab b2

3
Where a and b are the minimum and

maximum values of the uniform distribution
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terminal probabilities (as discussed in Section 3.2): four dummy tasks
are added. And finally, the duration matrix is adjusted to account for
the forward probabilities (as discussed in Section 3.1). The acquired
rework probability matrix and activity durations for prototype 1 are
shown in Fig. 19 and Table 8 respectively. The matrix is populated by
inputting the rework probability values where applicable. For example,
activity 5 provides rework for activity 4 with a probability p3= 0.3; as
such a value of 0.3 is placed at the intersection of the column of activity
5 with the row of activity 4.

Now, the CE method can be used to find the expected duration and
variance. The dummy activity stage durations are neglected since they
are added just to be considered in the rework calculations. The network
is transformed using the Cycle Elimination procedure (as shown in
Fig. 20) and the critical path of the parallel activities is chosen. Since all
given durations are deterministic, there is no need for simulation to find
the expected maximum of the parallel activities.

Table 9 shows the stage durations and variances of prototype 1. At
each stage, the algorithms in Appendix A are used to generate the ne-
cessary matrices and carry the calculations. Since the durations are
deterministic, then any stage without feedback is expected to have the
activities duration with a variance of zero while activities with feedback
will get a variance due to the associated probabilities such as the stage 5

duration. Similarly, prototypes 2 and 3 are solved, and all final results
are shown in Table 10. To know where the proposed method stands, a
simulation was done using ARENA to set a benchmark for the com-
parison with the results of the signal flow method (SFM) (which gen-
erates exact results as the RMC) and the modifications discussed by
Pinkett (Dynamic SFM and Adjusted Markov). The comparison is shown
in Table 10 and infers the accuracy of the proposed method. For ex-
ample, the expected duration using the proposed method is equal to
279.9 days for prototype 1 which is 0.32% away from the simulation
result (280.8), while the other methods are 50%, 7%, and 47% away
from the simulation result. Prototypes 2 and 3 also accurate results with
0.04% and 0.18% mean errors for the proposed method while the
others have larger deviations.

5 Summary, discussion and conclusion

Finding a good estimate of the expected duration (and cost) to de-
velop complex products can be crucial for project managers as they plan
for resources and provide clients with estimated completion times. Poor
resource planning, staffing decisions, and commitments can result from
inaccurate estimates of project duration. Additionally, contractual pe-
nalties may arise for noncompliance with promised delivery times.
Simulation models to find the expected project duration can be time
consuming to design, build, and run. Thus, our focus in this paper is on
analytical techniques which can generate the results more promptly.

The cycle elimination (CE) method (Nasr et al., 2016) is an analy-
tical technique which can be used to solve sequential and mixed net-
works (combination of sequential and parallel activities). The method

Table 4
Probabilities and rework proportions.

Direct connections Probabilities (%) Rework proportions (%)

From To First Run Other Runs

13 11 75 25 50
12 25 15 40

15 11 25 15 25
12 10 – 15

18 11 5 – 10

Indirect connections Rework proportions (%)

From To

13 13 25
15 13 10

14 25
18 13 10

14 25

Table 5
Activity durations.

Task Mean Second
moment

Task Mean Second
moment

Task Mean Second
moment

1 7 49.33 10 16 261.33 14 4 16
2 7 49.33 11 12 144 16 10 101.33
3 12 144 12 8 64 17 8 64
4 6 36.33 11′ 12 144 15′ 4 16.33
5 8 64.33 12′ 8 64 18′ 5 28
6 8 64.33 13′ 12 149.33 18 5 28
7 20 400 13 12 149.33 15 4 16.33
8 16 256 13″ 12 149.33 19 1.5 2.33
9 8 64

Fig. 17. Softex network without feedback.

Table 6
Case study results.

Method Expected duration (Hours) %Mean Error

CE 127.82 −0.16%
ARENA Simulation 128.02 (H-W < 0.98)
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tackles PD networks having feedback possibilities by transforming the
network to a non-cyclic network in order to proceed with traditional
project management techniques to find the expected duration. The
method uses DSM to represent the network and finds the stage expected
durations based on the DSM inputs, where the stages represent the
activity's expected duration and their possible rework. Modifications to
DSM are necessary for the method capture different complications. Two
special cases, coupled activities and allowing parallel rework, were
discussed by Nasr et al. (2016) and in this paper we extended the
method to account for four additional complications (i) forward prob-
abilities, (ii) dynamic rework probabilities and proportions, (iii) mul-
tiple dependency relationships between activities, and (iv) different
rework through indirect connections.

The CE method can be used to solve any kind of complication with
the right DSM modifications. The modifications can be in the rework
probability and proportion inputs, adding dummy activities, or re-
ordering the activities to capture the complication properly and reach

the desired results. The reordering of activities is seen in the Softex case
study; it is used when an activity may generate indirect rework for
another activity (the two activities being in parallel tracks in the first
iteration), then the latter’s DSM index must be lower. The two other
modification techniques are well described in Sections 3.1–3.4 of this
paper. When more complications arise, more adjustments are required
to achieve accurate results. For that, it is recommended that a software
tool is created as a future work for using the method efficiently. The
program would take the rework probabilities, rework proportions,
durations (first and second moments), and any special feature as input
from the user, creates the matrices automatically with the right ad-
justments, and generates the expected duration results of the whole
network.

Generally, as seen in the case studies discussed in this paper, pro-
duct development companies have the same network with only the
durations, rework probabilities and proportions changing with the
change of the product type. Thus, programming the method for such

Fig. 18. Process network.
Adapted from Pinkett (1998).
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cases can be very easy by creating a specific spread sheet (and VBA
coding) where the user only inputs the durations and probabilities/
proportions, and the results are automatically generated. Then each
time a new product is being considered, the spread sheets can be used to

find the expected duration and variance, and the results will be ob-
tained in no time.

Finally, as discussed earlier, the expected duration is essential to
find when planning a certain product development project, or when

Table 7
Data for Pinkett’s case study.

1 2 3 4 5' 5 6' 6 7' 7 8' 8 9 10 11 12 13 14 15 16 

1 

2 0.5 

3 0.5 1 

4 0.8 0.01 0.3 

5' 0.2 1 

5 0.01 0.4 0.01 0.2 0.01 0.3 

7.099.0'6

6 0.01 0.2 

6.099.0'7

7 

6.089.0'8

8 

7.099.09

10 0.05 

11 0.9 

12 0.05 

13 1 1 1 

14 1 

15 1 

16 1 

Fig. 19. Prototype 1 rework probability matrix (P).

Table 8
Prototype 1 activity duration matrix.

Activity Adjusted Durations Activity Adjusted Durations Activity Adjusted Durations Activity Adjusted Durations

1 30 5 34 8′ 4 12 0.3
2 20 6′ 8 8 4 13 2
3 4 6 8 9 0 14 4
4 20.8 7′ 0 10 0.3 15 14
5′ 34 7 0 11 54 16 46
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giving a client the lead time to finalize a requested product. But another
important issue is optimizing the product development process by
minimizing the expected duration. Prasad (1999), qualitatively de-
scribed several collaboration techniques that can result in transferring
sequential activities to parallel ones, and thus reducing the production’s
expected duration. Also, Hu, Liu, and Prasad (2003), discuss an ex-
ecution plan to maximize the concurrency in a network in the effort of
minimizing the expected duration. As future work, the cycle elimina-
tion (CE) method can be used to provide quantitative measures on the
expected duration improvements that the collaborations and

maximized concurrency can result in. As some execution methods may
require additional costs to achieve a lower duration, and since con-
currency may create rework risks (Yang, Zhang, & Yao, 2012), and
since under high uncertainty, sequential networks may perform better
than networks with parallel activities (Liu, Hisarciklilar, Thomson, &
Bhuiyan, 2015), the CE method can be used to find the expected
duration for each arrangement of activities and then analyze the results
to identify the best collaboration and concurrency combinations that
improve the duration with minimal cost.

Appendix A

Expected value simplified equations:

∑= +
=

R W t R PE[ ] E[ ] E[ ]ij k ij j
u

k

ju k ju;
1

;
(A.1)

Fig. 20. Network with rework nodes.

Table 9
Prototype 1 stage durations and variances.

Dummy activitiesa

Stage Stage Duration Variance Stage Stage Duration Variance Stage Stage Duration Variance

1 30 0 9 0 0 5′ 34.28 7.6
2 20 0 10 0.3 0 6′ 8.296 10.41
3 4 0 11 54 0 7′ 0.464 16.34
4 20.8 0 12 0.3 0 8′ 4.324 12.41
5 42.3 163.2 13 2 0
6 19.84 279.7 14 4 0
7 9.273 245.1 15 14 0
8 13.72 281 16 46 0

a Dummy Activities' stages are neglected in the critical path calculations.

Table 10
Results and method comparisons.

Expected duration [Stdev] (Days) Simulation duration [Half-Width, Stdev] (Days) % Mean Error

Prototype 1 Our Method 279.9 [31.13] 280.81 [< 1.13, 31.58] −0.32%
Static SFM 421.4 [14.99] 50.07%
Dynamic SFM 261 [5.74] −7.05%
Adjusted Markov 413.6 [–] 47.29%

Prototype 2 Our Method 140.912 [14.77] 140.86 [< 0.64, 14.6] 0.04%
Static SFM 167.4 [7.38] 18.71%
Dynamic SFM 146.2 [7.33] 3.76%
Adjusted Markov 166.2 [–] 17.86%

Prototype 3 Our Method 261.22 [14.45] 261.69 [< 1.56, 25.17] −0.18%
Static SFM 216 [7.33] −17.46%
Dynamic SFM 224.2 [5.25] −14.33%
Adjusted Markov 215.8 [–] −17.54%
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∑= +
=

T t R PE[ ] E[ ] E[ ]k k
u

k

ku k ku
1

;
(A.2)

Second Moment Simplified Equations:

∑= + +
=

R W t W t R R PE[ ] E[( ) ] E[2 ]ij k ij j
u

k

ij j ju k ju k ju;
2 2

1
; ;

2

(A.3)

∑= + +
=

T E t t R R PE[ ] [ ] E[2 ]k k
u

k

k ku k ku k ku
2 2

1
, ,

2

(A.4)

where TE[ ]k and TE[ ]k
2 is the expected duration and second moment respectively for stage. Rij k; and Rij k,

2 are the duration and second moment
required to complete stage k when activity j is requested for rework after activity i; Pij is the associated probability. Wij is the rework proportion
associated with reworking activity j after activity i and tj is the duration of the single activity k. E[tk

2] is the second moment of the single activity k.
AX1= b1 and AX2= b2 are system of linear equations to be solved to obtain the expected duration and the second moment at each stage k.

Where A, b1, and b2 (algorithms in Figs. A1–A3) are the required matrices to carry the calculations. X1 and X2 represent the arrays of expected
durations and second moments.

Appendix B

B.1. Example 1 calculations

The matrices in Fig. A4 are the result of the CE method extensions discussed in example 1. Now, we need to calculate the expected duration and
variance at each stage using the CE method’s equations, and then sum them to get the parameters of the whole network. We can easily determine the
durations and variances of the first three stages as they generate no feedback and they take the values of their respective activity parameters. For this

   Step 1: Set A

   Step 2: For 
     For 
      For 
    Set 
    Set 
    Set A
  Set 
 For 
  Set 
  Set A

   Step 3: Set A A

Fig. A1. Algorithm to populate the entries of A.
Adapted from Nasr et al. (2016)).

   For 
 For 
  Set 
  Set 
   Set 

Fig. A2. Algorithm to populate the entries of b1.
Adapted from Nasr et al. (2016)).

   For 
 For 
  Set 
  Set 

   Set 

Fig. A3. Algorithm to calculate the elements of b2.
Adapted from Nasr et al. (2016)).
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example, stages 1, 2, and 3 take the expected duration of 56, 42 and 40 respectively with a variance of 0 as they are deterministic. For stage 4, the CE
method’s equations are necessary and they are represented in the below matrices (populated by the algorithms in Figs. A1 and A2) where TE[ ]4 is the
required value representing the expected duration of stage 4. Solving the set of equations results in =TE[ ] 50.454 and thus the total expected duration
of the network is 188.45.
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For the variance of stage 4, we use the CE method’s equations to calculate the second moment and accordingly finding the variance. The below
matrices (populated by the algorithms in Figs. A1 and A3) represent the required equations where TE[ ]4

2 is the second moment value of our interest.
Solving the equations results in =TE[ ] 34754.44

2 , and thus = − =T T TVar[ ] E[ ] E [ ] 929.754 4
2 2

4 and this is the variance of the whole network as the other
variances are equal to zero. Thus the standard deviation is 30.49.
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B.2. Example 2 calculations

The matrices in Fig. A5 are the result of the CE method extensions discussed in example 2. Looking at the DSMs, 4 stages are represented (1, 2′, 2,
and 3). Since stage 2′ is a dummy activity, it is not considered in the network calculations as a stage but it is necessary for the rework calculations in
stage 2. Stages 1 and 3 do not generate any feedback, as such their expected durations are the given activity durations 31 and 70 respectively with a

Rework Probabili es (P) Rework Propor ons (W)
1 2 3 4 1 2 3 4 Dura ons

1 1 56
2 1 2 1 42
3 1 0.45 3 1 0.4 40
4 1 4 0.3 30

Fig. A4. Example 1 input matrices.
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variance of 0. Stage 2 requires the CE method’s equations for its calculations. Since it is not the last stage in the DSM, the input matrices are adjusted
by deleting all proceeding stages and represented in Fig. A6.

Now, the CE method equations are developed and represented by the matrices below (populated by the algorithms in Figs. A1 and A2) to
calculate the expected duration of stage 2 ( TE[ ])2 . Solving the set of equations results in =TE[ ] 106.32 , and thus the expected duration of the network
is 207.3 which is the sum of stage 1, 2, and 3 expected durations.
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Then, we use the CE method’s equations to calculate the second moment and find the variance of stage 2. The below matrices (populated by the
algorithms in Figs. A1 and A3) represent the required equations to find the second moment of stage 2 ( TE[ ]2

2 ). Solving the equations results in
=TE[ ] 124852

2 , and thus = − =T T TVar[ ] E[ ] E [ ] 1178.52 2
2 2

2 and this is the variance of the whole network as the other variances are equal to zero. Thus
the standard deviation is 34.33.
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B.3. Example 3 calculations

The matrices in Fig. A7 are the result of the CE method extensions discussed in example 3. Since stages 1 and 2 do not generate any feedback,
their expected durations are the given activity durations 81 and 56 respectively with a variance of 0. Stage 3 requires the CE method’s equations for
its calculations. The equations are developed and represented by the matrices below (populated by the algorithms in Figs. A1 and A2). Our interest is
to calculate the expected duration of stage 3 (E T[ ])3 and it is found, by solving the set of equations represented in matrix format below, to be

=E T[ ] 143.633 . And thus the expected duration of the network is obtained to be 280.63 which is the sum of all stage expected durations, where the

P 1 2' 2 3 W 1 2' 2 3 Dura ons
1 0.3 0.8 1 0.2 0.4 31
2' 1 2' 0.5 60
2 2 60
3 0.2 3 1 70

Fig. A5. Example 2 input matrices.

P 1 2' 2 W 1 2' 2 Dura ons
1 0.3 0.8 1 0.2 0.4 31
2' 1 2' 0.5 60
2 2 60

Fig. A6. Stage 2 input matrices (Example 2).

P 1 2 3 W 1 2 3 Dura ons
1 0.65 1 0.42 81
2 0.57 2 0.58 56
3 1 3 0.44 71

Fig. A7. Example 3 input matrices.
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other durations are noted earlier (81 and 56 for stages 1 and 2 respectively).
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3

To find the variance, we start by calculating the second moment using the CE equations. The below matrices (populated by the algorithms in Figs.
A1 and A3) represent the required equations to find the second moment of stage 3 ( TE[ ]3

2 ). Solving the equations results in =TE[ ] 298473
2 , and thus

= − =T T TVar[ ] E[ ] E [ ] 9217.63 3
2 2

3 and this is the variance of the whole network as the other variances are equal to zero. Thus the standard deviation is
96.
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B.4. Example 4 calculations

The above matrices are the result of the CE method extensions discussed in example 4. Six activities exist where two of them are dummy and thus
their stage calculations are neglected. They are included in the matrices to be considered in the rework calculations of other stages. Activities 1 and 2
do not generate any feedback and thus their stage durations are simply the activity durations 60 and 53 respectively with variance 0. However,
stages 3 and 4 require the CE method equations to find the expected durations and variances. The required equations are generated in similarly to the
previous examples, however since the input DSMs for stages 3 and 4 contain 5 and 6 activities, they require 26 and 37 equations respectively, and
thus they are not presented. Stage 4 takes the input matrices shown in Fig. A8. For stage 3, since it is not the final stage, the input matrices are
adjusted by deleting the proceeding activities and presented in Fig. A9. The results of these stage calculations are presented in Table A1 giving the
network an expected duration and variance of 358.49 and 31829.1 (standard deviation of 178.41) when summed with the stages 1 and 2.

P 1 1' 1'' 2 3 4 W 1 1' 1'' 2 3 4 Dura ons
1 1 60 

1' 1 0.45 1’ 1 0.9 60 

1'' 0.4 1’’ 0.8 60 

2 0.8 0.65 2 0.7 0.5 53 

13 4.03 66 

55.04 6.04 33 

Fig. A8. Example 4 input matrices.

P 1 1' 1'' 2 3 W 1 1' 1'' 2 3 Dura ons
1 1 60 

1' 1 0.45 1’ 1 0.9 60 

1'' 1’’ 60 

2 0.8 0.65 2 0.7 0.5 53 

13 4.03 66 

Fig. A9. Stage 3 input matrices (Example 4).
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Appendix C

Section 4 Softex Case Study’s Input Matrices (see Figs. A10 and A11).

1 2 3 4 5 6 7 8 9 10 11 12 11' 12' 13' 13 13'' 14 16 17 15' 18' 18 15 19 
1 
2 1 
3 1 
4 1 
5 1 
6 1 
7 1 1 
8 1 1 1 
9 1 

10 1 1 
11 1 0.25 0.75 0.25 
12 1 0.11 0.06 0.11 
11' 0.15 0 0.05 0.25 
12' 0 0.08 
13' 1 1 
13 
13'' 1 1 
14 0 0 0 
16 0.64 0.19 0.64 
17 1 
15' 1 
18' 1 
18 
15 
19 1 1 1 1 

Fig. A10. Rework probabilities DSM.

Table A1
Stage calculation results (Example 4).

Stage Expected duration Second moment Variance

3 139.687 31,999 12486.54
4 105.8 30,537 19343.36
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4 1 
5 1 
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Fig. A11. Rework proportions DSM.
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