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The paper proposes a decision support system (DSS) for the supply chain of packaged fresh and highly perishable products.
The DSS combines a unique tool for sales forecasting with order planning which includes an individual model selection
system equipped with ARIMA, ARIMAX and transfer function forecasting model families, the latter two accounting for
the impact of prices. Forecasting model parameters are chosen via two alternative tuning algorithms: a two-step statistical
analysis, and a sequential parameter optimisation framework for automatic parameter tuning. The DSS selects the model to
apply according to user-defined performance criteria. Then, it considers sales forecasting as a proxy of expected demand and
uses it as input for a multi-objective optimisation algorithm that defines a set of non-dominated order proposals with respect
to outdating, shortage, freshness of products and residual stock. A set of real data and a benchmark – based on the methods
already in use – are employed to evaluate the performance of the proposed DSS. The analysis of different configurations
shows that the DSS is suitable for the problem under investigation; in particular, the DSS ensures acceptable forecasting
errors and proper computational effort, providing order plans with associated satisfactory performances.

Keywords: fresh food supply chain; forecasting; order proposal; optimisation; decision support systems

1. Introduction

The fresh food supply chain management has experienced great changes over the last years, and it has now become the
major strategic issue for food firms (Bourlakis and Weightman 2004). In this context, one of the main goals for a company
is to individuate a combination of purchasing, transportation, physical distribution and logistics to get a position to achieve
economies of scale; the control of the supply chain tends to shift from producers to retailers, while the increased pressure for
higher quality and cost efficiency affects all members of the food chain.

Consequently, the food chain is called to move towards a more vertically integrated structure that includes joint
partnerships, strategic alliances and more vertical coordination among different supply chain players; and retailers are
asking for new value-added logistics services. In fact, traditional logistics firms cannot always fully meet the demands of the
retailers because they did not possess the adequate logistics and information technology solutions. Thus, retailers started to
cooperate also with logistics information technology suppliers as new actors in the field. The resulting value-added services
increase the operational complexity of the food retail chain.

Today’s food supply chain is required to be reliable and agile enough to respond to consumer demand and preferences and
it is expected that e-logistics practices and e-commerce will have a growing relevance to support a customer-focused and more
responsive organisation. Sales forecasts and order planning play a central role in this customer- and data-centred process.
They constitute a process that is dual to the physical process of delivering goods from the producer to the retailer. The whole
process can be viewed as an integrated demand and supply chain management (Dotoli et al. 2005) which integrates both the
pull action from the customer’s demand and the push effect from the producer and the retailer in the form of promotions and
advertising actions.

The forecasting techniques to be employed on the store level are called to fulfil the requirements of the so-called micro-
forecasting (i.e. a specific forecast for every item in each store), while aggregation across items and/or across stores is
considered not meaningful or even misleading. The order plan per store must be based on the individual sales forecast for
the individual store. Since calendar events, advertising and promotional events may have very different effects in different
stores depending on the respective locations, the forecasting techniques should not be based only on the observed time series
of sales but should also be able to take this information about external factors into account also including the possibility of
judgmental adjustments (Wang and Petropoulos 2016). To deal with these aspects, collaborative planning and forecasting
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approaches can be adopted involving different actors of the supply chain organisation (Arminger 2004; Du et al. 2009; Yang,
Pan, and Ballot 2017).

Forecasts for sales and orders for stores are usually based on short-term forecasts, ranging from daily to between one and
four weeks depending on the adopted delivery plans. At supply chain level and/or in a vendor/retailer collaboration (Borade
and Sweeney 2015; Yang, Pan, and Ballot 2017), to forecast the large number of items and store combinations, as required for
demand planning, some automatic computer-assisted ordering systems are needed to process data and execute the recurrent
computations (Tan et al. 2017).

Clearly, the efficiency and effectiveness of quantitative methods for optimising supply chain operations strictly depend on
the quality of available data. For this reason, sales forecasting represents the first crucial step in this integrated process and may
influence the development of a realistic supply chain model. Sales forecasting accuracy typically has close interactions with
inventory management performance. In particular, in a fresh and highly perishable food supply chain, integrating forecasting
and optimisation is even more important: because the shelf life of products can be very limited, reliable order proposals are
fundamental to manage and reduce inefficiencies such as stock-out and outdating (Ma et al. 2013; Nahmias 2011). The fresh
food supply chain represents a very challenging application, characterised by several interrelated variables and constraints,
and possible sources of uncertainties: it requires an effective management of logistics operations, and perishability is a
particularly critical issue (Alvarez and Johnson 2011; Nahmias 2011). This calls for integrated and flexible approaches able
to properly account for the characteristics of customers, retailers and producers in order to meet their needs.

This paper proposes methods and models devoted to fresh food supply chain operations management to be included in a
unique software tool to form a decision support system (DSS), and presents a case study involving a set of retailers with both
small- and medium-sized stores located in the Apulia region (Italy). Both forecasting and optimisation are crucial issues in
such a context and the main criticalities are related to the uncertainty on future sales. In the considered context, a detailed
forecast, i.e. forecast by product or even by product location, is necessary. In fact, the retailer needs sales forecast to determine
how much of each product to deliver or to stock at the different retail locations. We focus on this situation that drives the
planning of the considered supply chain. The considered forecasting process uses sales data, such as point-of-sale scanner
data, and promotion and marketing plans. These information flows also show the collaborative nature of the forecasting
activity and its integration in the decision-making process. The demand forecasts become a key input to the order planning
function. The fresh food supply chain is usually characterised by a high number of products, where each item may account
for only a small fraction of both the total volume and revenue. A relatively cheap and efficient way to, repetitively, forecast
the sales of each of a large number of items is to adopt an automatic forecasting system. Otherwise, it could seem neither
practical nor economical to spend a lot of effort in forecasting single items, except for the few best-selling products. These
forecasting issues are addressed by an integrated, flexible and simple-to-use tool proposed to support the decision-maker to
determine, within a vendor/retailer collaboration, reliable operations plans with respect to waste reduction and other different
criteria, such as shortage, freshness and residual stock of products.

1.1 Literature review

The literature clearly shows how the integration of sales forecasting and planning activities plays a crucial role in the market
of fresh and highly perishable food: in fact, the shelf life of products is very limited, therefore reliable forecasts are essential
to reduce inefficiencies (Nahmias 2011; Stevenson 2015; Wagner 2002; Wagner and Meyr 2002). In particular, we refer to
the analyses proposed by Fildes and Petropoulos (2015), Leung et al. (2011) and Wagner (2002) on the role and functions
of forecasting tools in order to give adequate support to decision-makers. These analyses point out that the selection of a
forecasting model and the estimation of its parameters are fundamental issues in the configuration of a demand planning
system or during the update of forecasting parameters. These activities should be made regularly providing some kind of
automatic software tool to search all available statistical forecasting procedures and parameter combinations and select the
one which produces the best forecast accuracy in the period of interest. More specifically, selecting the appropriate individual
(i.e. for each item or even each item location) forecasting method for a large number of time series is considered as a crucial
problem for many demand forecaster. In addition, the forecast performance of such a system may deteriorate over time if
they are not adequately diagnosed and tuned. These studies also observe that although dedicated software packages usually
provide some parameter optimisation capability, forecasting modules of many integrated supply chain management systems
do not provide such a feature or it is very limited. The survey of McCarthy et al. (2006) offers a guide to expand the knowledge
of understanding the importance of performance indicators when a decision-maker is called to choose, manage or design a
forecasting system.

This paper focuses on the problem of sales forecasting and order planning integration through a DSS, and mainly refers
to base forecast generated from historical data (i.e. time series) captured in a continuous planning and monitoring system. It
is important to observe that final adjustments could be made to improve the base forecasts considering several factors that
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have not been part of historical data (Eksoz, Mansouri, and Bourlakis 2014; Goodwin 2002; Wang and Petropoulos 2016).
For instance, recent changes in the market, weather conditions, competitors’ plan or last minute changes at retail or supply
side are among the factors that should be considered in the order planning process through an expert’s adjustment of base
forecasts (Lawrence et al. 2006; Syntetos et al. 2015). In a fresh food supply chain, this aspect could be much more relevant
due to demand variability, risk of expiry, freshness and sales miss. How to implement these judgmental adjustments (which
cannot be underestimated in the fresh food industry) and the analysis of their impact are outside the scope of this paper and
could be addressed in further research works.

Different mathematical modelling approaches have also been proposed to offer quantitative methods to decision-makers.
A review of the state-of-the-art in the area of planning models for the different components of agri-food supply chains is
offered in Ahumada and Villalobos (2009). The links between sustainability in food supply chains and quantitative methods
to support the decision-makers are analysed in detail by Beske, Land, and Seuring (2014) and Soysal et al. (2012). Indeed,
fresh food production and distribution potentially generate considerable waste through poor planning of operations for both
packaged and unpackaged items (Brandenburg, Govindan, and Seuring 2014). This paper deals with the first case in which
each item has its own nominal shelf life which can be considered as a constant, while in the case of unpackaged products the
planner has to face with a random lifetime (Kouki et al. 2014).

The problem of determining the optimal economic operating policy when a number of non-instantaneous deteriorating
items are jointly replenished has been recently addressed by Ai, Zhang, and Wang (2017). While analytical methods to
reduce the overproduction wastes in the convenience food production are proposed in Darlington and Rahimifard (2006) and
Darlington, Staikos, and Rahimifard (2009), the optimisation issues in the supply chain composed of retailers and potential
recipients that practice food recovery are addressed in Aiello, Enea, and Muriana (2014), Muriana (2015). Wang, Li, and
O’Brien (2009) develop approaches to integrate traceability initiatives with operations management objectives for perishable
food products. Van Der Vorst et al. (1998) investigates the effects of supply chain management on logistical performances in
food supply chains, showing the crucial role of the reduction (or elimination) of uncertainties to improve the overall behaviour
of the chain. In such a context, a robust supply chain operations management can only be obtained by taking uncertainties
of future demand into account; for this reason, a good and reliable forecasting plays a crucial role (Dellino, Kleijnen, and
Meloni 2010; Dellino et al. 2012; Fleischmann et al. 2002; Simangunsong, Hendry, and Stevenson 2012). At this aim, an
extended version of the classical newsvendor problem has been proposed by Huang (2013) to account for specific issues
related to random demand and item deterioration over time. van Donsellar et al. (2006) investigate inventory control policies
for perishable items in supermarkets, providing directions for improving the automated store ordering system currently in
use in two Dutch supermarket chains. Moreira and Tjahjono (2016) study the beverage industry decision-making process at
an operational level, with the aim to increase supply chain flexibility to satisfy fluctuating customer demand quantitatively
considering the impact on the supply chain. The close interactions between demand forecasting and inventory management
performance are addressed by Babai et al. (2013) focusing on their impact on both inventory costs and service levels.
Galasso, Mercé, and Grabot (2009) propose a mixed integer linear planning model embedded in a framework simulating
a rolling horizon planning process in order to assist the decision-makers for coping with an uncertain or flexible demand,
while Kanet, Gorman, and Stößlein (2010) show how the implementation of dynamic planned safety stocks can reduce
unnecessary safety stocks and improve service in supply networks. The study conducted by Rijpkema, Rossi, and Van Der
Vorst (2014) shows that, in perishable product supply chain design, a trade-off should be defined between transportation
costs, shortage costs, inventory costs, product waste and expected shelf life, suggesting to adopt a multi-criteria approach.
However, Yakovleva, Sarkis, and Sloan (2012) point out that experts give considerably different relative weights to various
elements of sustainability in the supply chain, while Kaipia, Dukovska-Popovska, and Loikkanen (2013) observe that the
sustainability (in terms of waste reduction) of the perishable food chain needs more efficient information sharing.

The approach presented in this paper refers to the operational level of a supply network in which the supply configuration
(i.e. actors, products and supply policies) is fixed at a prior decision phase and the supply management is conducted in
cooperation by suppliers and retailers. Thus, the considered models rely only on four KPIs accounting for waste, freshness,
stock-out and residual stock. Indeed, in the fresh food business, these are among the ones that are used in practice. However,
the previous discussion and the relevant literature suggest that for further research, in a more general context or for more
integrated approaches, it is worthwhile to enrich the set of KPIs to consider customer service and supply chain costs,
risks, uncertainties and sustainability issues (Abbou, Loiseau, and Moussaoui 2017; Diabat, Govindan, and Panicker 2012;
Simangunsong, Hendry, and Stevenson 2012; Yakovleva, Sarkis, and Sloan 2012).

1.2 Contribution

In this paper, we address the problem of sales forecasting and order planning integration in a unique software tool, which
is framed within the general problem of supply chain management, for a set of fresh and highly perishable packaged food
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products. This goal is reached by designing a modular and reliable DSS, whose main building blocks are the following: the
first one addresses sales forecasting adopting an automatic individual model selection approach; the information about sales
forecasts is then used as input for a multi-objective optimisation algorithm to define the best order policy. Data, coming from
a set of small- and medium-sized retailers operating in Apulia region, Italy, collected for model estimation are pre-processed
for a twofold reason: identify seasonality and remove noise. Following an individual model selection approach, three different
forecasting model families are considered; besides, the DSS has a modular architecture, so it is open to include other model
families or consider possible judgmental adjustments on forecasts. The first family is one of the best known classes of
mathematical models for time series forecasting represented by the Autoregressive Integrated Moving Average (ARIMA)
models (Box, Jenkins, and Reinsel 2008). ARIMA models are widely used in statistics, econometrics and engineering for
several reasons: (i) they are considered as one of the best performing models in terms of forecasting, (ii) they are used
as benchmark for more sophisticated models and (iii) they are easily implementable and have high flexibility due to their
multiplicative structure. Nevertheless, they do not take the effect of exogenous variables into account. In the case study
under investigation, sales of fresh goods are influenced by prices and the impact of the latter on the forecasting process
should be considered. Several alternative approaches can be found in the literature that make forecasting more robust and
reliable by including the effect of exogenous variables. The easiest approach is to adapt ARIMA models to account for the
aforementioned variables, obtaining the so-called ARIMAX models (Box, Jenkins, and Reinsel 2008). Another common
technique is based on the identification of a transfer function (TF) relating the time series of the variable of interest with the
one of the exogenous variables (Makridakis, Wheelwright, and Hyndman 2008). We investigated the performance of these
model families on our data-set. Specifically, given a time series, for each family the best model is identified and estimated
by varying parameters in predefined intervals. The best parameter setting for each family can be selected according to two
alternative approaches. The first is a grid search-based tuning framework that adopts a set of statistical indicators. The second
is the sequential parameter optimisation (SPO) framework proposed by Bartz-Beielstein et al. (2010): it makes the parameter
tuning automated according to modern statistical techniques based on metamodels’ construction and design of experiments.
The SPO framework is very general and it is considered an efficient and effective tuning procedure in a variety of applications
(Bartz-Beielstein et al. 2010).

The DSS includes a module devoted to automatically operate an individual (i.e. item-location) forecasting model selection,
on the basis of some general user-defined criteria; the tuned forecasting model, among those preliminarily chosen for each
family, provides the input data (i.e. the forecasted demand) for the multi-objective optimisation method. The latter is designed
to be user-interactive and to provide a Pareto front of optimal order proposals according to some crucial key performance
indicators (KPIs) for packaged fresh and perishable products such as outdatings, stock-out and freshness of goods in the
context of a pre-configured supply network in which the planning activities are conducted in cooperation by suppliers and
retailers. The modular structure of the proposed DSS enables to easily consider different KPIs of interest for different research
works and applications. We propose to compute the order proposal through a meta-heuristic approach, based on a genetic
algorithm that considers the forecasting sales as a proxy of demand. Then, the user (i.e. the manager) specifies the criteria
for selecting an order plan among the pool of non-dominated solutions identified by the optimisation module. Therefore, the
DSS provides the order proposal to be implemented on the basis of the manager preferences. Demand uncertainty is also
taken into account through a simulation analysis to assess the impact of demand perturbations on the optimal order quantity.
A scheme describing the proposed DSS is displayed in Figure 1.

As described above, each building block implements specific approaches and algorithms and their integration into a user
interactive system is an innovative contribution in order to provide a well-defined DSS that combines the order planning
problem with sales forecasting, making it tailored for real-world applications.

The paper is organised as follows. Section 2 details the building blocks of the proposed DSS, which combines pre-
processing, alternative tuning procedures for the different forecasting model families, statistical indicators for model selection
and order planning. Next, computational results are discussed in Section 3: specifically, we investigate the DSS performance
under different alternative configurations based on possible user preferences. Intermediate forecasting results are analysed
and also compared to some models belonging to the exponential smoothing (ES) family (Makridakis, Wheelwright, and
Hyndman 2008). The latter represents a robust approach commonly used in practice in this area, often implemented in the
forecasting and supply chain planning systems available commercially (Fildes and Petropoulos 2015; Leung et al. 2011).
They are previously adopted by the retailers participating in the case study for sales forecasting, and taken here as benchmark.
Finally, conclusions are drawn in Section 4.

2. The DSS structure

In the following, we discuss the methods adopted in the proposed DSS for order management, as illustrated in Figure 1.
Specifically, in Section 2.1, we first describe the data pre-processing step of the forecasting module. Then, we use the
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Figure 1. DSS.

pre-processed data as input for the model tuning block, which requires the user to specify the tuning approach (either grid
search or SPO based). This block is composed of an automatic tuning procedure and a statistical analyser to select the best
model. Three forecasting techniques (ARIMA, ARIMAX and TF) are described in Section 2.2, while tuning procedures and
indicators are reported in Section 2.3. The module devoted to the dynamic selection of the forecasting model to use in the
current planning activity is described in Section 2.4. The order planning module, consisting of a multi-objective optimisation
block and an order plan selection block, is finally discussed in Section 2.5.

2.1 Pre-processing

Data, coming from a set of small- and medium-sized retailers operating in Apulia region, Italy, are collected for model
estimation and need to be pre-processed for a twofold reason: identify seasonality and remove noise.

Sales are normalised as follows. Let yt be the quantity of product P sold in store V at time t . Then, the corresponding
normalised quantity zt is

zt = yt − μ

σ
, (1)

where μ and σ are the sample mean and the standard deviation, respectively, of time series yt over the data-set under
investigation.

Seasonality typically emerging from historical sales can be detected by applying an Independent Component Analysis
(ICA) (Hyvärinen and Oja 2001), a well-known Blind Source Separation (BSS) technique widely used in signal and image
processing to extract the most significant information from the given data. In our study, we assume that the sales time series
are linear combinations of several mutually independent components. ICA finds these components by minimising the mutual
information between the unmixed time series. Before applying ICA, a pre-processing step is required in order to get the major
advantage. This step is called pre-whitening and consists uncorrelating the time series and reducing the data dimensionality,
i.e. pre-whitening performs a Principal Component Analysis (Jolliffe 2002) and discards the principal components with
lowest variance, which are associated to the noise affecting the sales data. Based on the impact of noise on historical sales,
the pre-processing module might filter this noise in case it represents a significant component of the original time series.

2.2 Sales forecasting

Concerning the model selection procedure, each time series is decomposed in three distinct time segments: a) training set,
used for training the considered models; b) validation set, used to compare the methods and select the best performing one;
and c) test set, which provides the forecasting horizon where the selected models are tested to get forecasts after refitting
over all samples from both training and validation sets. As mentioned in Section 1, we adopt three time series forecasting
model families: ARIMA, ARIMAX and TF. The latter two methods account for prices’ effect on sales.
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2.2.1 ARIMA models

Let zt be the realisation of a stochastic process at time t , that is an observation of time series at time t , and let at be a random
variable with normal distribution, having zero mean and variance equal to σ 2

a . Thus, the random variable at represents the
realisation at time t of a white noise process. An ARIMA model with seasonality is defined as follows:

φp(B)�P (Bs)∇d∇Dzt = θq(B)�Q(Bs)at , (2)

where B is the backward shift operator which is defined by Bzt = zt−1 and

φp(B) = 1 − φ1 B − φ2 B2 . . . − φp B p , (3)

�P(Bs) = 1 − �1 Bs − �2 B2s . . . − �P B Ps , (4)

θq(B) = 1 − θ1 B − θ2 B2 . . . − θq Bq , (5)

�Q(Bs) = 1 − �1 Bs − �2 B2s . . . − �Q B Qs , (6)

∇d = (1 − B)d , (7)

∇D = (1 − Bs)D . (8)

The parameter p defines the order of the autoregressive non-seasonal component, q defines the order of the moving average
non-seasonal component and the parameter d represents the order of non-seasonal integration necessary to obtain a stationary
time series. The parameters p, q and d are commonly used for referring to non-seasonal models in a concise way. For more
complex models, in which a similar pattern at regular time intervals is observed, it is more realistic to take seasonality under
consideration. A data-set comprised of food sales on large-scale stores is typically affected by a weekly seasonality, which
reflects the customers’habit to buy foods especially on the weekend. The seasonal component is defined by the parameters P ,
D and Q, where P defines the order of the seasonal autoregressive component, Q defines the order of the seasonal moving
average component and D is the order of seasonal differences. Finally, s defines the time series’ seasonality. A seasonal
ARIMA model is synthetically described as ARIMA(p, d, q)× (P, D, Q)s . Model tuning and parameters’ identification are
performed by the module discussed in Section 2.3. A disadvantage of classical ARIMA models is that the effect of exogenous
variables on data is not taken into account. In the following sections, we present the alternative forecasting model families
included in our DSS.

2.2.2 ARIMAX models

ARIMA model with exogenous variables, also referred to as ARIMAX, can be defined as follows:

φp(B)�P (Bs)∇d∇Dzt = θq(B)�Q(Bs)at + βxt , (9)

where xt is the vector of exogenous variables and β is the vector of regression coefficients. The latter has to be estimated
and its initial value is set equal to the canonical correlation between zt (series of sales) and xt (series of prices). According to
Makridakis, Wheelwright, and Hyndman (2008), defining β as a regression coefficient is not appropriate, so they propose an
alternative formulation of the ARIMAX model. As the difference between these two models is not remarkable, we implement
the ARIMAX forecasting model (9) as it is more similar to the classical ARIMA model, i.e. the two models preserve a similar
theoretical structure. The best ARIMAX model for a given time series will be selected by the procedures discussed in
Section 2.3.

2.2.3 TF models

TF models are based on the assumption that the relation between time series and exogenous variables can be modelled by a
TF (to be estimated) plus an error vector described by an ARIMA model. More formally,

zt = ω(B)Bb

δ(B)
xt + nt , (10)

where the TF is defined by v zeros, r poles and a delay b, with

ω(B) = ω0 − ω1 B − ω2 B2 . . . − ωv Bv , (11)

δ(B) = 1 − δ1 B − δ2 B2 . . . − δr Br , (12)

and the error vector nt is described by the following ARIMA model
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φp(B)�P (Bs)∇d∇Dnt = θq(B)�Q(Bs)at . (13)

Unlike the previous two models, in this third one, additional parameters have to be estimated, namely parameters v, r and
b. Therefore, a TF model will be described by a tuple (p, d, q) × (P, D, Q)s × (v, r, b), whose values will be identified as
discussed in Section 2.3.

2.3 Model tuning and selection

For each forecasting model family, given a data-set (i.e. an item store sales time series), the best forecasting model to use has
to be identified. In the literature, diverse approaches are proposed to accomplish this task (e.g. see Box, Jenkins, and Reinsel
2008). Our DSS implements two procedures, namely a grid search (GS) and the SPO approach, which are discussed in the
following Sections 2.3.2 and 2.3.3, respectively. The user is required to specify in the system configuration the identification
approach to apply for model tuning (the default choice is SPO), together with the forecasting families to consider for the
pre-processed input data (the default choice is ARIMA). Both GS and SPO procedures use a set of statistical indicators which
will be introduced in the following section.

2.3.1 Statistical indicators

In this section, we analyse the tuning and selection phase in more detail and provide a complete description of the statistical
indicators adopted to identify the best model for each family in the forecasting module of our DSS. As the tuning and
selection procedures refer to the training set and the validation set (previously introduced in Section 2.2), these indicators can
be divided into two groups, in-sample (referring to the training set) and out-of-sample indicators (referring to the validation
set). We perform the so-called in-sample analysis, working on the training set, to identify a set of non-dominated models
with respect to the first group of indicators. Then, in order to finalise the search for the most accurate model, we perform the
so-called out-of-sample analysis on the validation set, which is used to compare forecasts to observed data, and to assess the
effectiveness of the forecasting model in order to individuate the best representative for each considered forecasting model
family.

2.3.1.1 In-sample indicators. This subset includes indicators that are computed on the training set. These are mostly used
as lack of fit measures, based on the information entropy and parsimony of models. Thus, the objective of in-sample analysis
is to measure the matching between real data and simulated data obtained by the mathematical model under analysis.

We compute two different indicators: the Ljiung–Box test and the Hannan–Quinn Information Criterion (HQC) (Box,
Jenkins, and Reinsel 2008; Burnham andAnderson 2002). The Ljiung–Box test is a statistical test in which the null hypothesis
is that the autocorrelations of the residuals are assumed to follow a white noise process. HQC is a well-known criterion used
to quantify the entropy of the information and the information lost in the fitting process. It can be used under the assumption
that the residuals are independent and identically distributed, and it tends to penalise lack of parsimony. The interested reader
is referred to Burnham and Anderson (2002) for a detailed description of these (and others) in-sample indicators.

For the sake of implementation of our forecasting models, the proposed indicators are used as follows: a non-domination
analysis is performed with respect to variance, residuals and HQC for all the models obtained by changing the tuple of
parameters, e.g. (p, d, q) × (P, D, Q)s for ARIMA models. The dominated models, as well as models not satisfying the
Ljung–Box test, are excluded by the next analysis, while the remaining models undergo the out-of-sample analysis.

Note that the joint use of both the Ljiung–Box test and the HQC indicator is relevant from a theoretical standpoint. In
fact, the uncertainty associated to the forecast provided by the model strictly depends on two assumptions: (i) the time series
model describing data is correctly identified and (ii) the residuals follow a normal distribution; see Chatfield et al. (2001).
In this respect, the HQC indicator supports the selection of the best model (see e.g. Hyndman and Khandakar 2008), while
Ljiung–Box test guarantees the normal distribution of residuals.

2.3.1.2 Out-of-sample indicators. The out-of-sample indicators are well-known statistical indicators for quality and accuracy
of forecasting (Makridakis, Wheelwright, and Hyndman 2008; Makridakis and Hibon 2000; Armstrong 2001). Specifically,
we use them to compare forecast data and real data within the validation set and to make a quantitative comparison among
different models in terms of quality of forecast, working on the models passing the previous in-sample analysis.

The first group of indicators includes absolute measures: they are scale dependent and for this reason can only be used
when computed on the same data-set, but they cannot be used to compare the behaviour of a forecasting model on different
data-sets. Let us define ft as the forecast of quantity of product P (indicated as zt ) sold in store V at time t ∈ {1, . . . , n},
where n denotes the size of the validation set. We compute the following indicators:
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• Root Mean Squared Error (RMSE):

√√√√1

n

n∑
t=1

(zt − ft )2 ,

• Mean Absolute Error (MAE):
1

n

n∑
t=1

|zt − ft | ,
• Maximum Absolute Error (MaxAE): max

t=1,...,n
|zt − ft | .

The second set of indicators comprised of relative measures that are scale independent. We computed the following indicators:

• Mean Absolute Percentage Error (MAPE): 100 · 1

n

n∑
t=1

∣∣∣∣ zt − ft

zt

∣∣∣∣ ,

• Maximum Absolute Percentage Error (MaxAPE): max
t=1,...,n

∣∣∣ zt − ft
zt

∣∣∣ ,

• Coefficient of determination R2: 1 −
∑n

t=1(zt − ft )
2∑n

t=1(zt − μ)2
,

where μ is the average value of zt over the validation set. On the one hand, they allow to compare the performance of the
same model on data-sets with different scales; on the other hand, MAPE and MaxAPE are not defined for time t in which
the denominator is equal to zero. Thus, these indicators should be used with caution in case of either missing data or data too
close to zero. To this aim, we replace MAPE by the following indicator:

• Mean Absolute Scaled Error (MASE):
J − 1

n
·

∑n
t=1 |zt − ft |∑J

j=2

∣∣ζ j − ζ j−1
∣∣

proposed by Hyndman and Kohler (2006) to overcome the main issues related to the other measurements (Hyndman 2006;
Franses 2016). In particular, this indicator scales the absolute error (on the validation set) of the forecasting model under
study by the error on the training set (indexed with j ∈ {1, . . . , J }) associated to the naïve forecast, which takes the actual
value of one period (ζ j ) as the forecast for the next period. For seasonal time series, this indicator will be adapted using
seasonal naïve forecasts and, in this case, indicated as Seasonal MASE (SMASE).

Finally, in order to assess the precision of forecast within the validation set, prediction intervals are computed. They
can be defined as an upper and a lower bound between which the future forecasted value is expected to lie with a defined
probability (Chatfield et al. 2001). Thus, the 100(1 − α)% prediction intervals are computed as:

ft (h) ± gα/2 · √
V ar [zt+h − ft (h)] , (14)

where gα/2 is the α-percentile point of the normal distribution of forecasting errors (modeled as white noise), ft (h) represents
the h steps ahead forecast made at time t and V ar [zt+h − ft (h)] is the variance of the h steps ahead forecast error made at
time t ; α is usually set at 5%. According to Chatfield et al. (2001), for time series forecasts based on ARIMA, the variance of
the forecast error is the Mean Squared Error (MSE), under the assumption that the model is properly identified and that the
residuals are normally distributed. As stated above, the latter conditions are guaranteed by the in-sample indicators. Formally,
the h steps ahead MSE is defined as the expected square loss, E[(zt+h − ft (h)|zt , xt )

2], conditional on time series zt up
to time t and to exogenous components xt , if they are included in the forecasting model. MSE provides information on the
forecast precision. Indeed, a forecast may be very accurate in terms of out-of-sample indicators, meaning that there is a
good matching between real and forecast data; nevertheless, a high MSE reveals that the forecast may vary within a wider
prediction interval. That is, MSE is an indicator of the forecast dispersion and this feature has been taken into account by
including MSE as an additional out-of-sample indicator.

2.3.2 Grid search approach

We propose a grid search approach in which each model parameter ranges in predefined intervals; see, for instance, Höglund
and Östermark (1991). The main advantage of this approach is that an extremely large set of combinations, i.e. forecasting
models, can be compared and the resulting model may be very accurate. On the contrary, the larger the parameters’ intervals,
the higher the required computational effort since a set of statistical tests and analyses have to be performed for every
considered forecasting model.

In the grid search approach for ARIMA and ARIMAX, we consider all possible combinations of parameters p, d , q ,
P , D and Q ranging in predefined intervals, while seasonality s is set based on results from the pre-processing phase. For
each tuple (p, d, q) × (P, D, Q)s , the maximum likelihood principle is adopted for model parameters’ estimation. Then the
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analysis of the forecasting model is conducted by means of two kinds of statistical indicators, in-sample and out-of-sample,
that are used to determine the best model. Such indicators have been described in Section 2.3.1. For TF, the grid search is
implemented as follows: parameters v and r range in predefined intervals, while parameter b is estimated according to the
maximum likelihood principle. In order to choose the best value of unknown parameters, for each pair (v, r), the simulated
time series ẑt is defined as

ẑt = ω(B)Bb

δ(B)
xt . (15)

The original time series zt is compared to ẑt and the following goodness of fit measure F is computed:

F = 100 ·
(

1 − ‖z − ẑ‖
‖z − μ‖

)
, (16)

where μ is the average value of zt over the training set. The pair (v, r) providing the best fitting F is selected and the error
vector is computed as nt = zt − ẑt . This component is described by an ARIMA model whose parameters are estimated
through the grid search approach proposed above for ARIMA models.

2.3.3 SPO approach

The main drawback of the GS approach is that, regardless the forecasting model to be tuned, computational cost for determining
the best parameter setting may be very high; thus, it is necessary to let parameters range within intervals of limited size. In
order to pursue efficiency in tuning the forecasting models, we embed an automatic tuning procedure in our DSS, based on the
SPO framework proposed by Bartz-Beielstein et al. (2010). SPO is a heuristic that combines classical and modern statistical
techniques; it can be used in scenarios where performing an exhaustive parameter tuning is too complex and time-consuming
because of the heavy number of parameter combinations. The general idea of the SPO framework can be described as follows:

(1) define a budget (e.g. number of forecasting model estimations), an initial population (i.e. a set of parameter settings)
and an objective function (i.e. an out-of-sample indicator);

(2) starting from the initial population, explore the search space and infer information about the evolution of the objective
function by building a metamodel;

(3) based on predictions by the metamodel, define new design points and increase the search space;
(4) refine the metamodel until budget is available.

The SPO framework tries to determine a functional relationship between a parameter setting and the objective function
by building a metamodel. Many different metamodels, such as standard regression techniques, tree-based regression and
Kriging models (Bartz-Beielstein et al. 2010), are supported by the SPO approach. In particular, we adopt Kriging models
in our implementation since they are among the most frequently used. The metamodel is used to predict MAE for a new
and wider set of parameter settings. The setting with the best expected improvement is selected (Bartz-Beielstein et al.
2010); the population is increased and it is used to refine the metamodel. The whole scheme is repeated until the budget is
consumed. The main feature of the framework is that the model to be tuned is treated like a black box. Thus, we can use
ARIMA, ARIMAX or TF models without any distinctions. We define a budget equal to a maximum number of parameter
estimations of the forecasting model. The initial population, i.e. the alternative parameter settings to test the model forecasting
performance, is designed according to the Latin Hypercube Sampling (LHS), introduced by McKay, Beckman, and Conover
(1979) for computer experiments and allowing to define space filling designs. For each parameter setting, the forecasting
model is estimated and the out-of-sample indicator MAE (see Section 2.3.1) is used as objective function to measure the
forecasting quality. Note that, for the TF model, it is necessary to make two parameter estimations; thus, the SPO approach
is performed twice: parameters (v, r) are estimated according to the best goodness of fit measure F defined in (16), then
parameters (p, d, q) and (P, D, Q) are estimated according to the best MAE.

2.4 Dynamic forecasting model selection

Automating tuning operations in the design of a forecasting system is relevant when a high number of item/store combinations
need to be analysed (i.e. a micro-forecasting approach is adopted). Besides, we investigated different models (i.e. ARIMA,
ARIMAX and TF) and – in general – no method always dominates the others (Petropoulos et al. 2014). Therefore, an
autonomic character of the forecasting module is of high practical interest also to choose the forecasting method to use
(in an actual instance) without the necessary intervention of the decision-maker (Wagner 2002). In fact, the user or the
decision-maker at the store level should not be exposed to the complexity of the forecasting system. In general, he/she often
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has neither the expertise nor enough time to directly configure these technical details, and should only pay attention to items
with the highest volumes (or values) or to exceptions. To this aim, the proposed DSS is equipped with a Model Selection
Module (as reported in Figure 1) devoted to analyse the set of candidate forecasting methods considering different criteria
(e.g. RMSE, MAE, MaxAE, MASE, MaxAPE, R2 and MSE, already used for model validation purposes).

Our procedures derive, for each forecasting model family, a group of non-dominated models on the basis of in-sample
indicators; then, they further perform a non-domination analysis by means of the selected out-of-sample indicators. Among
the latter non-dominated models, the selection procedure concludes by choosing, for each family, the model with the best
performance in terms of MAE. The reason for adopting MAE as the criterion for the final choice was agreed with the
management, as retailers are mostly interested in minimising the absolute deviation from actual sales, rather than other
measures.

The selection between forecasts produced by different models is conducted adopting an individual (for each single
item/store pair) approach, and the final choice among the available models can follow either a specific (yet pre-configured)
or user-defined rule. This approach has the advantage of taking into account specific time series characteristics shown in
each series individually in the period of interest. Moreover, the performance of individual selection generally outperforms
that of aggregate selection at the expense of an additional complexity and computational cost (Armstrong 2001; Fildes
and Petropoulos 2015). Nevertheless, tuning the forecasting model, which represents the most expensive component in the
module, does not need to be performed at each run of the DSS; investigating the frequency of such update goes beyond
the purpose of this study and deserves further research. Considering that inventory and order performances are, in general,
mainly affected by the forecast errors and their variance (Fleischmann et al. 2002; Nahmias 2011), in this paper we limit
our analysis considering two main possible criteria: accuracy and variability, while further investigations form a subject for
future research. The considered criteria are associated with the MAE and MSE model validation measures, respectively, and
the analysis of the performance of the selected models will be conducted – after a refitting using all the samples from both
training and validation sets – on the test set representing, in our study, the forecasting/planning horizon.

2.5 Order proposal based on sales forecasting

Once one of the forecasting models is selected as described in Section 2.2, in order to apply that model in the forecast-
ing/planning horizon represented by the test set, we refit it using all samples available in both the training and the validation
sets. Then sales forecasts are obtained and they can be considered as a proxy of expected demand and are provided as input
to a multi-objective optimisation algorithm. The aim is to identify an optimal order planning policy according to multiple
(and often conflicting) objectives – reproducing management’s needs – namely minimising stock-outs and waste, as well as
maximising the quality of service perceived by customers, in terms of product freshness, while keeping residual stock levels
under control. Deriving an order proposal which guarantees the best trade-off among these objectives requires a careful
inventory management system. Specifically, it relies on the following assumptions:

• Items are sold according to a First-In First-Out (FIFO) rule (Nahmias 2011), i.e. they are sold on an oldest first basis.
• The age distribution of the on-hand inventory has to be tracked daily in order to identify outdates resulting in waste.

As a consequence, the age of sold items needs to be tracked as well.
• When a new order is delivered to the store, it consists of fresh units whose residual shelf life is exactly equal to the

nominal shelf life of the product, i.e. items arrive at the store with age equal to 1 day.
• Items leave the system due to outdating when their age passes the shelf life, meaning they have just expired and

become waste.

Then, inventory is reviewed at the end of each day throughout the forecasting horizon, according to the procedure illustrated
in Figure 2. The notation adopted is summarised in Table 1. Based on this notation, the following relation holds:

It =
SL∑
l=1

I l
t .

From here, we compute the daily waste wt as the remaining number of units with age SL on hand (if any) after satisfying
the demand Dt . If Dt exceeds I SL

t , no waste is observed, as resulting from line 6 in Figure 2, where the notation (·)+ is
introduced to represent max(0, ·). Similarly, daily stock-out st occurs whenever demand Dt exceeds total on-hand inventory
It , including the order quantity delivered in day t , qt ; otherwise, st = 0, as resulting from line 7. Total on-hand inventory
at the end of day t is then obtained by difference of daily waste wt and demand Dt from the total on-hand inventory at the
beginning of day t , It , including the order quantity delivered in day t , qt , if no stock-outs occur (so that qt + It − Dt ≥ 0),
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Table 1. Notation adopted by the order planning module.

Symbol Description

T forecasting horizon
t day in the forecasting horizon
SL shelf life
l age of the item
I l
0 number of units with age l in the starting inventory

I l
t number of units on hand with age l at the beginning of day t

It total on-hand inventory at the beginning of day t
Dt demand in day t
qt number of units ordered (and delivered) at the beginning of day t
wt waste at the end of day t
st stock-out at the end of day t
yl

t number of units with age l sold at the end of day t
Yl number of units with age l sold in the forecasting horizon

Figure 2. Inventory review and KPIs computation for order planning.

otherwise the total on-hand inventory at the end of day t is equal to 0. This gives the total on-hand inventory at the beginning
of the next day, thus denoted as It+1 in line 8.

As shown in Figure 2, the KPIs of interest are computed as follows: waste f1 (line 15) provides the overall number of
items that must be discarded along the forecasting horizon due to outdating; freshness f2 (line 16) is computed by tracking
the age of the product when sold to the customer, and then averaging over the weekly sales; stock-outs f3 (line 17) express
the cumulative unmet demand at the end of the forecasting horizon; residual stock f4 (line 18) corresponds to the items
remaining in stock at the end of the forecasting horizon.

We formulate a multi-objective optimisation problem based on the aforementioned KPIs in order to derive a plan covering
the whole forecasting horizon (typically, a week). The proposed formulation accounts for the following issues:

• Lot size constraint, i.e. orders are allowed only in multiples of a minimum order quantity.
• Fixed delivery date, i.e. orders can be delivered only in given days. The number and frequency of weekly deliveries

are established by the supplier and taken as input by our DSS.
• Lead time determines when an order has to be placed in order to meet the delivery requirements.

The problem is solved through a meta-heuristic approach, based on a genetic algorithm implemented in Matlab (MATLAB
2014), which adopts a variant of NSGA-II (Deb 2001). As a result of the optimisation process, we obtain a set of Pareto
optimal solutions, which are non-dominated with respect to the four identified objectives.
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The following step of the order planning module is the selection of a single order plan among all the non-dominated
solutions computed by the meta-heuristic approach. To this aim, the order plan selection module is called by the DSS. This
module takes two inputs: the Pareto front of optimal solutions and an indication of the criteria defined by the user. Alternative
criteria may be specified in order to take management’s preferences into account. Among the most widely used selection
rules, we cite the following two: (i) an aggregated objective function such as a weighted sum of the four KPIs, such that the
non-dominated order plan minimising the aggregated objective function is selected; (ii) ranking the KPIs by relevance in
lexicographic order, thus selecting the best ranked non-dominated order plan.

It is clear that almost any kind of criterion may be introduced in the DSS. Moreover, the management’s priority may
change over time or it may depend on the specific kind of item and store; thus, our DSS is flexible enough to satisfy different
user’s requirements. The order plan selection module (see Figure 1) is introduced to this objective: without altering the overall
structure and behaviour of the DSS, the user may define the most suitable selection criteria fitting his/her needs.

The optimal order proposal is based on the forecasted demand provided by the forecasting module of the DSS. As demand
might deviate from its forecasted value, it may be helpful for the management to evaluate the impact of demand uncertainty
on the computed order proposal, in terms of KPIs variation. Therefore, we perform an ex-post analysis in which, given the
optimal order plan, the DSS simulates demand variability and evaluates KPIs deviation. In particular, we simulate system
performances for different realisations (say, N ) of daily demand. To this aim, we estimate the distribution of daily demand
based on predictions provided by each forecasting model. In particular, we assume daily demand to be normally distributed
(Stevenson 2015) with mean equal to the forecasted value and standard deviation derived from the square root of the MSE
associated to the forecast. Then, we sample N observations from the estimated distribution and compute the KPIs associated
to the optimal order proposal when demand equals each sampled realisation. Comparing the value of the KPIs for the base
scenario to the N values of the same KPIs for the alternative scenarios, we are able to estimate how sensitive the order plan
selected by our DSS is to demand variability. In particular, a small variability in the KPIs would be preferable to denote a
stable order plan with a limited impact of demand variability on system’s performances.

3. Experimental analyses

In this section, we investigate the performance of the proposed DSS on a set of real sales’ data for a number of sample items,
chosen among the ‘best sellers’. Details on the available data-set and the selected sample products are reported in Section 3.1.
After the pre-processing analysis, we study all the proposed forecasting models using classical statistical indicators; to this
aim, we identify a training set of 90 days, a validation and a test set of 7 days each (corresponding to the usual length of
the real planning horizon). Then, we run the whole DSS to derive an order proposal by optimising the KPIs introduced in
Section 2.5, based on forecasted sales provided by the model identified by the selection module described in Section 2.4.
Finally, we perform a sensitivity assessment of the KPIs due to forecasts’uncertainty; this investigation helps the management
to evaluate risks in terms of potential performance losses caused by sales deviating from their forecasts.

3.1 Data description

The data-set used for designing and setting the DSS comes from a real fresh food supply chain. The available data are made
of three-year sales, from 2011 to 2013, for a set of 19 small- and medium-sized supermarkets operating in Apulia region,
Italy. We have been provided with a set of 156 fresh products identified as best sellers, for which the available sales were
characterised by large and reliable values. Restricting our analyses to the freshest items – i.e. those having a shelf life lower
than two months – the remaining 113 products belong to nine food categories, represented in Figure 3 together with their
percentage composition.

Tests have been performed on specific pairs of items and stores, according to the following criteria:

• We selected products belonging to the three biggest categories (namely, cheese, yogurt and fresh milk/cream), as
they appear to be the most representative, covering 66% of the whole data-set, as emerging from Figure 3.

• For each of these food categories, we selected the products showing the highest sales volume.
• For each selected product, we compared sales on different stores and computed the correlation among them; finally,

we selected the store with the highest correlation.

Regarding store selection for a given product, we considered correlation as a measure of similarity among sales on different
stores. Indeed, given a store A, a high correlation between the corresponding time series and the sales series from the other
stores means that sales on store A precisely mimic the overall behaviour of sales on all stores.

We propose four examples to illustrate the performance of the proposed DSS. The first example refers to 1 litre of milk,
selected for being a common fresh item, with a very short shelf life (4 days). In the second example, we analyse another very
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Figure 3. Fresh food classification for our data-set.

Table 2. Data on sample products.

Shelf life Lot size
Product Food category (days) (# items) Delivery days

Milk Fresh milk/cream 4 12 Mon, Wed, Thu, Sat

Mozzarella cheese Cheese 18 1 Mon, Thu

Yogurt Yogurt 30 20 Mon, Thu

Salmon Specialties 51 10 Tue, Sat

Table 3. Statistics on historical sales for sample products.

Product Min Max Mean Std. dev. CV % zero sales

Milk 10 47 20.89 11.43 0.55 1.0
Mozzarella cheese 3 25 9.31 5.81 0.62 1.1
Yogurt 13 63 25.83 16.81 0.65 5.6
Salmon 2 26 8.36 5.87 0.70 2.2

common fresh product, 250 g of mozzarella cheese, which has a medium shelf life (18 days) and can be supplied as single
items. Another example is based on 125 g of yogurt, having a medium-long shelf life (30 days). Finally, the last example
considers 200 g of salmon, selected for having the highest sales’ volumes in our data-set and a relatively longer shelf life
(51 days). Key information on our sample products is summarised in Table 2. Further, Table 3 reports details on historical
sales, including minimum and maximum values observed on a daily basis, as well as sample mean, standard deviation and
the corresponding coefficient of variation (CV), computed as the ratio of the standard deviation to the mean. We also specify
the percentage of zero sales occurring throughout the time horizon under study – apart from closing days, when sales are
obviously zero. From here, it is clear that zero sales have a negligible impact on the following DSS data processing, ranging
between 1 to 5.6% across the four sample products.

3.2 Data pre-processing

To identify seasonality in sales, we run ICA in its JADE implementation (Cardoso 1999). The pre-whitening procedure
mentioned in Section 2.1 reveals that only one principal component is characterised by high variance, thereby reducing
the problem dimensionality to one component. The remaining principal components are associated to the noise affecting
historical sales data.

For each product, a seasonality of 7 days is observed. This is typical of food sold on large-scale distribution in which
customers tend to have well-defined cyclical behaviour.
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Table 4. Validation (out-of-sample) analysis for milk.

ARIMA ARIMAX TF ARIMA-SPO ARIMAX-SPO TF-SPO

(p, d, q) (1, 0, 0) (0, 0, 1) (0, 0, 0) (3, 0, 1) (0, 0, 0) (3, 0, 2)

(P, D, Q)s (1, 1, 1)7 (1, 1, 1)7 (1, 1, 1)7 (2, 0, 0)7 (0, 2, 0)7 (0, 0, 0)7
(v, r, b) – – (1, 1, 0) – – (3, 0, 0)

RMSE 2.79 2.87 3.72 2.14 2.85 2.72
MAE 2.49 2.38 3.08 1.78 2.26 2.12
MaxAE 4.57 5.03 6.98 3.70 6.43 4.56
SMASE 0.51 0.49 0.63 0.36 0.46 0.44
MaxAPE 30.60% 34.78% 58.16% 10.27% 20.22% 22.78%
R2 92.36% 91.90% 86.38% 95.51% 91.99% 92.72%
MSE 31.32 31.32 64 46.98 50.98 128.02

Time(s) 233 318 224 475 533 724

Note: Bold values denote the best value for each indicator.

Concerning the impact of noise on the historical sales, we observe that it is less than 1% and, therefore, we process the
original sales time series without filtering it.

3.3 Forecasting models

All forecasting models are implemented in Matlab and, even if different and faster implementation is possible, the analysis
of the computation times among the considered models is fair. In our implementation, the user is required to specify store
and item, retrieved by a database, the forecasting/planning horizon and what kind of exogenous variables has to be accounted
for (in our study, the price). When tuning the forecasting models, the following intervals have been set for their parameters:

• for grid search-based tuning, we let p, d , q , v and r vary in the set {0, 1, 2}, while P , D and Q may take values 0
or 1; we also set b = 0, as no delay is expected;

• for SPO-based tuning, we set the interval [0, 3] for all parameters (p, d , q , P , D, Q, v and r ), while keeping b = 0.

In fact, because the SPO approach explores the parameters’ search space more efficiently, we used this framework to
investigate whether increasing the intervals’ width might provide better forecasting results while keeping computational time
under control.

Table 4 provides validation results of the six forecasting models (i.e. one for each family and for tuning method) in terms of
out-of-sample indicators, the bold values denoting the best value for each indicator. Notice that, whenever historical sales are
zero, we do not include them in the computation of MaxAPE. In fact, dealing with best-selling products, no sales are mostly
due to store closings while being seldom observed during the week, as confirmed by sparsity results from Table 3. When this
is the case, it appears reasonable to exclude the corresponding prediction error from the computation of the out-of-sample
indicator. Zero-demand samples still impact all the other error measures, which are well defined also for these values. The
computational times (in seconds) required by the different methods (including tuning/selection and forecasting activities)
are also reported in Table 4. The out-of-sample analysis shows that ARIMA and ARIMAX have a quite similar performance,
while TF performs worse, especially in the basic version, showing, in this case, a not relevant impact of prices. When
integrated with SPO, the differences among the three models are smoothed over: the integration of every model with SPO
substantially increases the computational time (more than 50%, on average) and it also improves the performance indicators
in almost all cases. ARIMA-SPO seems to be the best performing model according to the adopted statistical indicators, while
TF is the least time-consuming.

Concerning mozzarella cheese, Table 5 shows results for the out-of-sample statistical indicators. In this case, TF is the
best performing among the basic models in terms of computational time and all the statistical indicators except for MSE.
Considering the integration with SPO, TF-SPO is the best one except for MaxAPE, MSE and computational time. Hence,
in this case, prices have a relevant role as exogenous data. Again we notice that the SPO approach allows to improve the
out-of-sample indicators at overall computational time’s expense. However, the tuning phase is not always required at each
use of the system allowing significant savings. Results for yogurt are summarised in Table 6. It is evident that there is no model
clearly outperforming the others over all the indicators. We note that negative values of R2 observed for almost all models
do not reflect a low forecasting accuracy, as supported by the other indicators; rather, it depends on the limited variability of
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Table 5. Validation (out-of-sample) analysis for mozzarella cheese.

ARIMA ARIMAX TF ARIMA-SPO ARIMAX-SPO TF-SPO

(p, d, q) (1, 1, 2) (0, 0, 0) (2, 0, 0) (2, 0, 1) (1, 0, 3) (2, 0, 2)

(P, D, Q)s (1, 1, 1)7 (1, 0, 0)7 (1, 1, 0)7 (0, 2, 3)7 (0, 0, 0)7 (2, 0, 0)7
(v, r, b) – – (2, 1, 0) – – (3, 1, 0)

RMSE 4.69 4.05 3.13 3.63 2.04 1.78
MAE 3.94 3.58 2.59 2.79 1.75 1.50
MaxAE 7.78 6.45 5.65 7.97 3.81 3.43
SMASE 1.24 1.12 0.81 0.88 0.55 0.47
MaxAPE 66.79% 65.26% 54.90% 46.81% 63.54% 48.93%
R2 8.82% 32.17% 59.52% 45.25% 82.72% 86.92%
MSE 9.12 13.48 18.24 13.19 17.9 19.92

Time(s) 245 307 231 506 493 715

Note: Bold values denote the best value for each indicator.

Table 6. Validation (out-of-sample) analysis for yogurt.

ARIMA ARIMAX TF ARIMA-SPO ARIMAX-SPO TF-SPO

(p, d, q) (0, 1, 1) (1, 1, 2) (1, 1, 1) (1, 0, 2) (2, 1, 1) (2, 0, 2)

(P, D, Q)s (1, 0, 1)7 (1, 1, 0)7 (1, 1, 0)7 (2, 1, 2)7 (2, 1, 3)7 (1, 0, 1)7
(v, r, b) – – (2, 1, 0) – – (1, 3, 0)

RMSE 2.65 2.35 2.95 2.70 2.52 2.96
MAE 2.20 1.35 2.11 2.12 2.05 1.99
MaxAE 5.38 5.92 6.29 4.72 4.87 7.08
SMASE 0.55 0.34 0.53 0.53 0.51 0.50
MaxAPE 89.69% 98.71% 104.81% 77.77% 97.30% 33.52%
R2 −17.46% 7.71% −46.37% −22.29% −6.49% −47.43%
MSE 15.2 17.9 28.65 24.48 25.18 23.42

Time(s) 225 331 232 383 440 613

Note: Bold values denote the best value for each indicator.

historical sales around their average values: based on the definition of the R2 coefficient, this makes the denominator very
small, thus implying a negative R2. The validation analysis for salmon is reported in Table 7. ARIMA-SPO seems to be the
best model in terms of RMSE, MaxAE, MaxAPE and R2 while ARIMAX-SPO performs slightly better as far as MAE and
SMASE are concerned. ARIMA is the least time-consuming model; note that the forecasting quality of the three models
with SPO is almost comparable, but the average MSE is higher than the models using GS, that is the provided forecast is the
least accurate one. Conversely, ARIMAX is the model with the smallest average MSE. Overall, TF and ARIMAX seem to
outperform ARIMA in terms of all the out-of-sample indicators.

Summing up, if we consider all the out-of-sample indicators and compare all the selected models, ARIMA-SPO is
the non-dominated model for milk, ARIMA-SPO and TF-SPO are the two non-dominated models for mozzarella cheese,
ARIMAX, ARIMA-SPO and TF-SPO are the non-dominated models for yogurt, while ARIMA-SPO and ARIMAX-SPO are
the two non-dominated models for salmon. Taking the computational time into account leads to different conclusions, as the
integration of the forecasting models with SPO almost doubles the total solve elapsed time. ARIMA seems to be preferable
for milk, while ARIMAX performs better for yogurt and TF seems to provide the best compromise between forecasting
quality and computational burden for mozzarella cheese and salmon. This behaviour may be affected by the impact of prices:
for primary goods and highly fresh products, such as milk, having a shelf life of a few days, price seems to be irrelevant for
the forecasting process, also because their high perishability prevents from buying too many pieces when the price is lower.
On the contrary, for secondary goods, such as mozzarella cheese, salmon and yogurt, price plays a more relevant role.

The family of ES models represents a simple robust approach commonly used in practice and also previously adopted
in the application context under study (e.g. see Fildes and Petropoulos 2015; Gardner and McKenzie 2011; McKenzie and
Gardner 2010). Hence, we consider three different ES models as benchmarks, namely the simple ES (indicated as ETS), the
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Table 7. Validation (out-of-sample) analysis for salmon.

ARIMA ARIMAX TF ARIMA-SPO ARIMAX-SPO TF-SPO

(p, d, q) (1, 0, 0) (1, 0, 0) (2, 0, 2) (1, 1, 1) (0, 1, 3) (1, 1, 1)

(P, D, Q)s (0, 1, 1)7 (1, 0, 1)7 (1, 0, 1)7 (3, 1, 2)7 (1, 2, 2)7 (3, 1, 2)7
(v, r, b) – – (2, 1, 0) – – (2, 1, 0)

RMSE 6.94 5.34 5.21 4.12 4.22 4.28
MAE 4.96 4.21 4.08 3.59 2.98 3.33
MaxAE 13.74 11.51 10.15 6.90 9.85 8.30
SMASE 0.58 0.49 0.48 0.42 0.35 0.39
MaxAPE 35.23% 20.56% 26.70% 18.68% 25.93% 21.54%
R2 80.24% 88.31% 88.87% 93.05% 92.71% 92.48%
MSE 93.3 70.6 115.82 129.94 474.71 251.48

Time(s) 219 299 241 465 512 722

Note: Bold values denote the best value for each indicator.

Table 8. Performance comparison of ARIMA (A), ARIMAX (AX) and TF models with ES methods.

A AX TF A-SPO AX-SPO TF-SPO ETS ETSs ETSDs

SMASE (Validation) 0.72 0.61 0.61 0.55 0.47 0.45 1.31 0.74 0.89
MAE (Test) 0.49 0.41 0.42 0.37 0.32 0.32 0.96 0.49 0.59

Note: Bold values denote the best value for each indicator.

seasonal ES (indicated as ETSs) and the linear damped trend ES with seasonality (ETSDs). Table 8 reports a comparison
of the selected models with some ES models in terms of both validation and test performance. The results are summarised
reporting the averages on the considered cases for the SMASE indicator obtained in the validation phase and the MAE
measured in the test phase. Notice that several models belonging to the ES family can be expressed as an ARIMA and are
among those investigated by the sales forecasting module of the proposed DSS; therefore, they would be selected in case
they perform better than other forecasting models. Comparing the forecasting performance of the ES models against the
models tested by the DSS in terms of the out-of-sample indicators, it emerges that there is always at least one model per
group – either the one using a grid search or SPO – among those returned by the DSS which performs better than ESs. These
observations are confirmed by the results (in terms of MAE) obtained over the forecasting horizon. When forecasts are poor,
it is possible that the forecasting model is structurally inadequate, or that the parameters of the model are not set properly. In
general, it is difficult for the user to distinguish between the two cases. At this aim, the proposed DSS offers a simple-to-use
tool able to give high-quality forecasts automatically adapting the structure of the forecasting model to the underlying data,
if necessary.

3.4 Order proposal

As emerging from the results discussed in the previous subsection, there is no forecasting model clearly outperforming the
others over all analysed products. Moreover, the forecast performance of a selected model tends to deteriorate over time
without adequate diagnosis and tuning actions. Therefore, it is useful for the user to have a DSS that dynamically adapts to
the available data, each time selecting the most appropriate forecasting model according to some user-specified criteria. In
fact, this avoids to choose a forecasting technique a priori, regardless of the specific characteristics of the underlying data.
Specifically, the proposed DSS implements two alternative final model selection criteria among those individuated for each
family: the accuracy criterion selects the model having the smallest MAE, corresponding to the smallest deviation in terms
of units of product; the variability criterion chooses the model with the smallest MSE, which implies a more stable forecast.
Combining these two criteria with the alternative tuning techniques described in Section 2.3, we analyse four configurations.
Summing up, we analyse the following four DSS configurations:

• Config #1 → grid search-based tuning, accuracy criterion;
• Config #2 → grid search-based tuning, variability criterion;
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Table 9. DSS configuration results for milk.

# config 1 2 3 4

Forecasting model ARIMAX ARIMA ARIMA-SPO ARIMA-SPO

Forecasted sales

16 16 12 12
20 22 20 20
41 41 40 40
0 0 0 0

22 22 21 21
24 24 22 22
21 21 20 20

Sales variability

5.37 5.32 6.07 6.07
5.55 5.59 6.17 6.17
5.55 5.62 6.17 6.17
5.55 5.62 6.19 6.19
5.55 5.62 6.19 6.19
5.55 5.62 6.19 6.19
5.55 5.62 6.19 6.19

Sales CV 0.23 0.23 0.27 0.27

Order proposal

36 36 36 36
0 0 0 0

36 48 48 48
0 0 0 0

48 36 36 36
0 0 0 0

24 24 12 12

Inventory

20 20 24 24
0 0 4 4
0 7 12 12
0 7 12 12

26 21 27 27
2 0 5 5
5 3 0 0

KPIs

0 0 0 0
1.35 1.39 1.64 1.64
5 5 3 3
5 3 0 0

Avg_inventory

20.11 20.65 22.88 22.88
3.87 2.77 4.65 4.65
2.61 10.05 13.46 13.46
2.61 10.05 13.46 13.46

28.86 23.69 28.55 28.55
5.8 3.69 8.01 8.01
9.47 7.78 4.54 4.54

Avg_KPIs

0 0 0 0
1.48 1.53 1.71 1.71
7.55 9.28 9.26 9.26
9.47 7.78 4.54 4.54

Stddev_KPIs

0 0 0 0
0.21 0.26 0.36 0.36
7.62 10.21 10.62 10.62
7.01 6.77 7.25 7.25

(Continued)
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Table 9. (Continued).

# config 1 2 3 4

Forecasting model ARIMAX ARIMA ARIMA-SPO ARIMA-SPO

CV_KPIs

− − − −
0.14 0.17 0.21 0.21
1.01 1.10 1.15 1.15
0.74 0.87 1.60 1.60
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Figure 4. Box plots of the KPIs for milk.
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Figure 5. Box plots of the KPIs for mozzarella cheese.

• Config #3 → SPO tuning, accuracy criterion;
• Config #4 → SPO tuning, variability criterion.

For each of these four configurations, once sales forecasts are available from the forecasting module, our DSS calls the
order planning module aiming to identify an optimal order proposal with respect to the KPIs ( fi with i = 1, . . . , 4) discussed
in Section 2.5, assuming empty inventory at the beginning of the planning horizon. So, we derive the optimal order plan
associated to the daily forecasted sales, covering the whole planning horizon; we refer to this scenario as the base scenario.
The computational time to solve the optimisation problem usually remains below 30 s, thus impacting by less than 9% the
overall computational cost required by each DSS configuration considered when tuning and selection of the forecasting
model are also performed.

After the multi-objective optimisation algorithm computes the Pareto frontier, it is necessary to define a criterion for the
order plan selection module of the DSS. In our experimental analyses, we test the weighted sum of KPI as selection criterion:
specifically, the order proposal is derived by equally weighting the four KPIs and selecting the one minimising their weighted
sum. Note that different combinations of weights can be used to reflect the corresponding management’s policies.
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Table 10. DSS configuration results for mozzarella cheese.

# config 1 2 3 4

Forecasting model TF ARIMA TF-SPO ARIMA-SPO

Forecasted sales

0 0 0 0
6 10 6 5
7 9 9 9

10 9 12 11
0 8 0 8

11 12 10 10
18 18 14 15

Sales variability

4.24 3.01 4.41 3.54
4.24 3.01 4.41 3.62
4.29 3.01 4.48 3.65
4.29 3.01 4.48 3.66
4.29 3.01 4.48 3.66
4.29 3.01 4.48 3.66
4.29 3.01 4.48 3.66

Sales CV 0.49 0.27 0.53 0.38

Order proposal

0 0 0 0
23 29 27 26
0 0 0 0
0 0 0 0

29 37 24 32
0 0 0 0
0 0 0 0

Inventory

0 0 0 0
17 19 21 21
10 10 12 12
0 1 0 1

29 30 24 25
18 18 14 15
0 0 0 0

KPIs

0 0 0 0
2.42 2.18 2.39 2.28
0 0 0 0
0 0 0 0

Avg_inventory

0 0 0 0
16.19 19.14 20.29 20.68
8.27 10.21 10.98 11.48
1.83 3.04 2.59 2.36

30.83 32.29 26.59 25.84
19.30 20.20 15.93 15.48
3.47 3.84 4.34 3.24

Stddev_inventory

0 0 0 0
3.53 3.10 4.34 3.18
4.96 4.20 5.86 4.62
3.02 3.78 4.03 3.68
3.02 5.29 4.03 5.21
5.05 6.55 5.74 6.05
4.40 5.05 5.40 4.91

(Continued)
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Table 10. (Continued).

# config 1 2 3 4

Forecasting model TF ARIMA TF-SPO ARIMA-SPO

Avg_KPIs

0 0 0 0
2.44 2.26 2.48 2.28
5.99 3.49 5.49 4.77
3.47 3.84 4.34 3.24

Stddev_KPIs

0 0 0 0
0.29 0.29 0.45 0.30
6.59 5.26 6.08 5.44
4.40 5.05 5.40 4.91

CV_KPIs

− − − −
0.12 0.13 0.18 0.13
1.10 1.51 1.11 1.14
1.27 1.31 1.24 1.51

Next, we analyse the variability of the four selected KPIs resulting from demand uncertainty. To this aim, we sample
N = 100 different realisations of daily demand over the planning horizon, using the estimated probability distribution. This
results in as many scenarios, including the base scenario. Then, we simulate system’s performance in terms of its identified
KPIs when different demands occur, as expressed by the N alternative scenarios, while the order proposal remains fixed at
the optimal level associated to the base scenario. We note that this analysis is usually very fast (less than 1 s, on average), so
its contribution to the overall computational cost is negligible.

For each product, we compare the four DSS configurations over the following results:

• daily sales forecasting along the planning horizon, denoted as forecasted sales;
• daily sales variability as square root of the forecasting MSE;
• sales coefficient of variation (CV), based on the daily average forecasted sales and variability;
• order proposal for the base scenario;
• expected inventory at the end of each day associated to the optimal order proposal in the base scenario;
• KPIs ( f1- f4) associated to the optimal order proposal in the base scenario;
• sample mean (avg_inventory) and standard deviation (stddev_inventory) of daily inventory resulting from alternative

scenarios generated during the sensitivity analysis;
• sample mean (avg_KPI ), standard deviation (stddev_KPI ) and coefficient of variation (CV_KPIs) of the KPIs

associated to the alternative scenarios generated during the sensitivity analysis.

Results are summarised in Tables 9–11, specifying also the forecasting model selected by the model selection module in each
configuration. We also include box plots showing variability of the KPIs due to demand uncertainty along the forecasting
horizon. Possible outliers have been identified as follows: data points are considered outliers if they fall outside the interval
[q1 − w(q3 − q1), q3 + w(q3 − q1)], where q1 and q3 are the 25th and 75th percentiles, respectively, and we set w = 1.5 to
guarantee 99.3% coverage, approximately corresponding to ±2.7 σ . Table 9 reports results for milk, which can be delivered
every other day (see Table 2 and zero values in the order proposal section of Table 9). We notice that overall weekly forecasted
sales are different across configurations, ranging from 135 to 146, while order proposals always sum up to 144, although with
different assortments along the planning horizon. This may result in stock-outs and/or residual stock at the end of the week
(as in configs #1-2). Nevertheless, based on the choice of the weights for the KPIs and due to lot size constraints, it turns out
to be preferable to order less, thus accepting to face stock-outs, instead of ordering one lot more to prevent stock-outs, rather
risking to have waste. Figure 4 depicts the box plots associated to the KPIs for milk. Blue dots superimposed to the box
plots correspond to the KPI values for the base scenario, when demand equals forecasted sales. We also included squared
markers for the KPIs measured at the end of the planning horizon, resulting from the selected order proposal having faced
the historical demand, as it occurred in the planning horizon. Triangular markers reproduce the KPIs we would obtain by
optimising the order proposal in the ideal case of forecasting sales perfectly matching the historical demand observed at the
end of the planning horizon.
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Table 11. DSS configuration results for yogurt.

# config 1 2 3 4

Forecasting model ARIMAX ARIMA TF-SPO TF-SPO

Forecasted sales

7 3 6 6
9 9 10 10
6 7 6 6

12 11 8 8
0 0 0 0
7 6 6 6
7 4 7 7

Sales variability

4.27 3.91 4.72 4.72
4.27 3.91 4.72 4.72
4.27 3.91 4.87 4.87
4.27 3.91 4.87 4.87
4.27 3.91 4.93 4.93
4.27 3.91 4.93 4.93
4.27 3.91 4.93 4.93

Sales CV 0.53 0.59 0.68 0.68

Order proposal

0 0 0 0
40 40 40 40

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Inventory

0 0 0 0
31 31 30 30
25 24 24 24
13 13 16 16
13 13 16 16

6 7 10 10
0 3 3 3

KPIs

0 0 0 0
3.20 2.97 3.19 3.19
8 3 6 6
0 3 3 3

Avg_inventory

0 0 0 0
30.17 31.36 30.03 30.03
23.49 24.62 23.30 23.30
12.6 13.69 15.29 15.29
12.60 13.69 15.29 15.29

6.42 7.50 8.99 8.99
2.58 4.07 4.20 4.20

Stddev_inventory

0 0 0 0
4.45 3.70 4.47 4.47
5.71 4.95 6.03 6.03
6.54 6.47 7.51 7.51
6.54 6.47 7.51 7.51
6.17 6.19 7.09 7.09
4.08 5.44 5.58 5.58

(Continued)
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Table 11. (Continued).

# config 1 2 3 4

Forecasting model ARIMAX ARIMA TF-SPO TF-SPO

Avg_KPIs

0 0 0 0
2.95 2.98 3.03 3.03

12.82 6.27 11.50 11.50
2.58 4.07 4.20 4.20

Stddev_KPIs

0 0 0 0
0.53 0.42 0.57 0.57
7.53 4.86 7.39 7.39
4.08 5.44 5.58 5.58

CV_KPIs

− − − −
0.18 0.14 0.19 0.19
0.59 0.77 0.64 0.64
1.58 1.34 1.33 1.33
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Figure 6. Box plots of the KPIs for yogurt.
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Figure 7. Box plots of the KPIs for salmon.

We notice that zero waste is reached by all DSS configurations across the N scenarios, so we do not include the
corresponding box plot. Freshness remains around 1.5 days for the base scenario: this is a satisfactory result since milk has
a shelf life of 4 days, and in the base scenario it will be always sold within the next half day following the delivery day.
Config #1 ensures the lowest freshness, both in terms of median and in terms of variability across the N scenarios. The other
configurations show similar behaviour with higher median values – still remaining below 2 days – and increased variability,
particularly for configs #3-4. All configurations show similar stock-outs performance, config #1 being slightly better in terms
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Table 12. DSS configuration results for smoked salmon.

# config 1 2 3 4

Forecasting model TF ARIMAX ARIMAX-SPO ARIMA-SPO

Forecasted sales

25 35 31 36
28 34 28 31
26 29 28 23
32 35 36 37
53 44 58 54

0 0 0 0
29 28 27 31

Sales variability

10.79 8.08 11.26 10.29
10.79 8.35 15.92 11.37
10.80 8.36 19.50 11.59
10.80 8.36 22.01 11.64
10.81 8.36 24.26 11.65
10.81 8.36 26.31 11.65
10.81 8.36 28.22 11.65

Sales CV 0.34 0.24 0.58 0.32

Order proposal

110 130 130 130
0 0 0 0
0 0 0 0
0 0 0 0

80 70 80 80
0 0 0 0
0 0 0 0

Inventory

85 95 99 94
57 61 71 63
31 32 43 40

0 0 7 3
27 26 29 29
27 26 29 29

0 0 2 0

KPIs

0 0 0 0
2.19 2.20 2.32 2.23
3 5 0 2
0 0 2 0

Avg_inventory

84.88 94.49 99.42 93.53
55.80 59.74 69.58 60.89
30.48 30.32 41.55 37.85

7.49 4.87 11.93 9.79
34.03 31.42 33.00 36.31
34.03 31.42 33.00 36.31
10.77 7.18 13.07 10.64

Stddev_inventory

9.71 7.68 12.10 9.72
16.41 11.89 18.50 15.40
19.45 13.80 24.51 18.24
12.41 8.01 17.50 12.63
18.77 12.83 24.41 17.78
18.77 13 24.41 17.78
17.95 10.79 19.48 14.29

(Continued)
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Table 12. (Continued).

# config 1 2 3 4

Forecasting model TF ARIMAX ARIMAX-SPO ARIMA-SPO

Avg_KPIs

0 0 0 0
2.29 2.24 2.35 2.29

15.72 13.91 27.26 15.99
10.77 7.18 13.07 10.64

Stddev_KPIs

0 0 0 0
0.45 0.25 0.47 0.36

19.37 14.77 29.58 19.48
17.95 10.79 19.48 14.29

CV_KPIs

− − − −
0.20 0.11 0.20 0.16
1.23 1.06 1.09 1.22
1.67 1.50 1.49 1.34

of lower third quartile and maximum values. All the other configurations show similar median and third quartile values. The
lowest residual stock is provided by configs #3 and 4, in terms of both quartile and maximum values. Higher interquartile
ranges are observed for config #2; it has high third quartile and maximum values.

Mozzarella cheese is delivered (at most) twice a week. Based on the delivery days specified in Table 2, we notice from
Table 10 that the DSS usually suggests to order as many units to fully cover the overall forecasted sales up to the next delivery:
in fact, mozzarella cheese is sold as single item, so the best KPIs are obtained when ordering as many units as expected to
sale. In the base scenario, this ensures zero stock-outs and residual stock at the end of the planning horizon. However, the
identified order proposal becomes subject to higher variability when tested in the alternative scenarios: in fact, both average
stock-out and residual stock values and their standard deviations increase. This is clearly shown in Figure 5, representing
the box plots of the KPIs. Again all DSS configurations ensure zero waste across the N scenarios, and are not reported in
the figure. Freshness varies between 1.8 and 3.4 days, remaining below 2.5 days on average, given a shelf life of 18 days for
mozzarella cheese. Stock-outs show low median and limited variability in config #2; values increase in config #4 and further
worsen in configs #3 and 1, which have the highest third quartile and maximum values. As for residual stock, the lowest
quartile values and variability across the N scenarios are provided by config #4, while the other configurations have higher
median and third quartile values.

Assuming to have no inventory at the beginning of the planning horizon and having fixed delivery days, all yogurt
forecasted sales for the first day result in stock-outs, as shown in Table 11. Figure 6 illustrates the box plots related to the
KPIs for yogurt, which can be delivered twice a week. All DSS configurations guarantee zero waste (not reported) and high
freshness, which always remain below 4.5 days, i.e. around 15% of its shelf life; the shortest interquartile range is provided
by config #2, while configs #1, 3 and 4 show similar performance, with higher variability. Stock-outs show the smallest
variability in config #2, which also has the lowest quartile values. The best residual stock is provided by config #1. Configs
#2, 3 and 4 have higher values for the first quartile and median values, and similar maximum values. Figure 7 shows box plots
of the KPIs for salmon, whose delivery days are the first and fourth days of the week. Again zero waste (not reported) and
(almost) no stock-outs are guaranteed by all DSS configurations in the base scenario. Config #4 provides the lowest stock-out
values across scenarios, while the worst is config #3, having the highest median and third quartile values and the widest
interquartile range. Given a shelf life of 51 days, average freshness is also good, showing limited variability around 2.2 days,
while remaining always under 3.5 days; config #2 has the best quartile values and the lowest variability across scenarios.
Residual stock is zero or close to zero in the base scenario; similar performance is observed across scenarios by configs #1–2:
the latter has the lowest third quartile and maximum values, which slightly increases in configs #1, and increases even more
in configs #3 and 4.

The proposed tool combining simulation-based analyses and box plots appears to be adequate to evaluate the KPIs’
variability induced not only by the forecasts themselves and the planning model but also by the criteria adopted by the
decision-maker to select an order plan from the set of Pareto optimal solutions. Such a tool provided support to compare the
different DSS configurations investigated in this study. Overall, we notice that all configurations have a significantly smaller
dispersion than the historical one. Configurations adopting SPO offer in general good performances not only in terms of
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quality of sales forecasting but also in terms of KPIs’dispersion. Configurations adopting the variability criterion (i.e. configs
#2 and 4) to select the forecasting model give, on average, lower dispersion of the predictions; however, this result tends to
be absorbed throughout the planning process due to the combined effects of solution integrality, delivery days restrictions
and lot size constraints. On the basis of these observations, it seems useful – from an overall DSS performance and reliability
point of view – to prefer configurations oriented towards more accurate predictions, as those based on the accuracy selection
criterion and SPO tuning.

4. Conclusions

In this paper, we propose a modular and reliable DSS for sales forecasting and order planning in the supply chain management
of packaged fresh food products. The proposed DSS combines, in a unique, flexible and easy-to-use software tool, a forecasting
module to derive sales forecasts from historical data and exogenous variables, supported by a model selection and tuning
module for the automatic choice and configuration of the forecasting method, and a multi-objective optimisation module
equipped with an order plan selection module to derive the best order proposal based on a set of KPIs accounting for cost
and quality of service. Three different forecasting model families were considered and tested on a set of sample products in
a real supply network.

Our results clearly show the benefits of deriving an optimal order proposal based on sales forecasting, explicitly accounting
for demand variability and the possible impact of exogenous variables. The proposed analyses highlight the capability of the
DSS to absorb relevant differences in terms of forecasting behaviour, thus limiting their impact on the order planning phase.
Another advantage offered by this DSS relies on its flexibility, as it is designed to be easy-to-use and to automatically run
alternative approaches in terms of forecasting and model tuning techniques, depending on the characteristics of the data-set.
In this respect, we notice that the results point out that there is no dominant forecasting model and there is no convenience
to use a single model for all the cases (i.e. pairs item/store), and also the performance of a model selected for a specific case
might deteriorate over time. Hence, instead of a one-size-fits-all approach, an individual selection including the identification
of the best method for each series is considered, though it is more computationally intensive. More specifically, configurations
using SPO tend to provide more accurate forecasts, although the computational time, when tuning is required, is higher than
the configurations adopting the grid search.

For a given configuration of the DSS, the forecasting model selected may change depending on the product or the store
under investigation, as well as on the specific period (i.e. sales time series) under study. In fact, it is not required to identify the
’best’ forecasting technique for a given product. Results show that almost all forecasting techniques are selected at least once
across the DSS configurations, which confirms there is no technique always ‘worse’ than the others. Overall, this supports
the usefulness of a DSS in identifying the most appropriate forecasting model for the specific situation, accounting for both
product’s characteristics, its historical sales and user’s preferences. Specifically, it is preferable to adopt a DSS configuration
pursuing the accuracy criterion, as it provides more accurate sales forecasting, while its dispersion – whenever relevant –
tends to be absorbed throughout the planning process. In fact, as the sales forecasting module can be computationally more
expensive than the order planning module, particularly because of the micro-forecasting environment we are working on,
investing more computational resources on the forecasting module might pay off in terms of reliability of the whole DSS.

Further research may focus on the forecasting side extending the considered families of forecasting methods (e.g. including
ES and Neural Networks), and developing more sophisticated tools for parameter tuning of models, and on performing long-
run simulations (including the implementation and test of both monitoring and re-tuning policies), e.g. over one year, to
test alternative settings for the tuning module (McCarthy et al. 2006). Moreover, further research efforts could be oriented
to evaluate the overall behaviour of the proposed DSS against the current supply chain and design suitable robust planning
approaches to cope with the uncertainty associated with the obtained forecasts (Fleischmann et al. 2002; Simangunsong,
Hendry, and Stevenson 2012). Another interesting theme for future researches could be devoted to adapt and extend the
proposed approach to cases including products characterised by a random shelf life (Kouki et al. 2014) as often occurs for
unpackaged fresh foods.

Many elements, such as market and weather conditions, competitor’s plans, last minute changes at retail or supply side,
promotions or festivities, as well as intermittent demand behaviour, may have an impact on sales and considering their
contribution in the forecasting process may represent promising future research directions. The latter could be addressed
considering managers’ judgement to adjust the statistical baseline forecasts (Goodwin and Fildes 1999; Önkal, Sayim, and
Gönül 2013; Syntetos et al. 2009).

The modular and flexible structure of the proposed DSS enables for an easy implementation of different possible extensions
for more general contexts or for more integrated approaches. At this aim, it is worthwhile to enrich the set of KPIs to consider
customer service and supply chain costs, risks, uncertainties and sustainability issues.
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