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The ability of evolutionary algorithms (EAs) to manage a set of solutions, even attend-
ing multiple objectives, as well as their ability to optimize any kinds of values, allows
them to fit very well some parts of the data-mining (DM) problems, whose native learn-
ing techniques usually associated with the inherent DM problem are not able to solve.
Therefore, EAs are widely applied to complement or even replace the classical DM
learning approaches. This application of EAs to the DM process is usually named evo-
lutionary data mining (EDM). This contribution aims at showing a glimpse of the
EDM field current state by focusing on the most cited papers published in the last
10 years. A descriptive analysis of the papers together with a bibliographic study is per-
formed in order to differentiate past and current trends and to easily focus on significant
further developments. Results show that, in the case of the most cited studied papers,
the use of EAs on DM tasks is mainly focused on enhancing the classical learning tech-
niques, thus completely replacing them only when it is directly motivated by the nature
of problem. The bibliographic analysis is also showing that even though EAs were the
main techniques used for EDM, the emergent evolutionary computation algorithms
(swarm intelligence, etc.) are becoming nowadays the most cited and used ones. Based
on all these facts, some potential further directions are also discussed.
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1 | INTRODUCTION

Data mining (DM) (Han, Kamber, & Pei, 2011; Tan, Steinbach, & Kumar, 2006) can be described as the most important
stage of the knowledge discovery of the data (KDD) process. It consists of the automatic process to discover interesting and
unknown trends, patterns, and relationships on datasets, which otherwise would remain undetected. In other words, it tries to
reveal the hidden information underlying large amounts of data. The wide range of DM techniques typically involve learning
methods from the areas of machine learning (ML), statistics, and database systems, which depend on the type of DM prob-
lem being solved. For example, classification by neural networks (NNs) is usually solved by gradient descent network train-
ing, whereas decision trees are usually constructed by an iterative process that divides the data into subsets based on
conditions that are set on the values of the problem attributes.

Even though evolutionary algorithms (EAs; Eiben & Smith, 2003) are not learning techniques, they have been also
applied for learning and knowledge extraction. EAs are widely used optimization techniques that allow solving almost any
combinatorial or continuous optimization problem, and even those involving both. These search techniques, which are
population-based algorithms inspired on natural evolution and genetic processes, can be used as a complement to the stan-
dard DM learning approaches or even to replace them, since they can evolve descriptive or predictive models to their optimal

Received: 1 July 2017 Revised: 6 November 2017 Accepted: 7 November 2017

DOI: 10.1002/widm.1239

WIREs Data Mining Knowl Discov. 2017;e1239. wires.wiley.com/dmkd © 2017 Wiley Periodicals, Inc. 1 of 17
https://doi.org/10.1002/widm.1239

http://wires.wiley.com/dmkd
https://doi.org/10.1002/widm.1239


structure or parameters. This application of EAs to the DM process is nowadays an important part of what is widely known
as evolutionary data mining (EDM).

Techniques that have been termed EAs have increased over time (Brabazon, O’Neill, & McGarraghy, 2015). During the
1960s and 1970s, evolution strategies (ESs), genetic algorithms (GAs), evolutionary programming (EP), and genetic pro-
gramming (GP) were considered as the initial EAs. Lately in the 1980s and 1990s, learning classifier systems (LCSs) and
differential evolution (DE) were also included as part of the EAs, considering this group of techniques as the origin of the so
named evolutionary computation (EC) (Eiben & Smith, 2003) or evolutionary computing. Since they have been the most
used in the literature, and therefore the most widely applied to DM, we will mainly focus on this set of techniques, belonging
to the branch of EAs, in this contribution. However, nowadays there are many other types of evolutionary-inspired algo-
rithms, that even though they do not fit with the EA’s previous definition since they are not inspired on natural evolution
and genetic processes, they are still based on populations or sets of solutions that cooperatively evolve toward a final opti-
mum implementing intelligent behaviors, social interactions, etc. These more recent algorithms (with respect to the initial
EAs) are nowadays considered together with the EAs as the EC (Yang, 2014) current family of algorithms. Since they truly
represent a potential improvement to the EDM area, we will also pay attention to the “emergent” application on DM of these
evolutionary techniques (Xing & Gao, 2014), namely emergent-EC algorithms from now on, by also analyzing their recent
impact with respect to the application of the historically more used EAs.

The objective of this paper is to analyze the most cited and recent contributions to EDM for helping researchers to differen-
tiate past and current trends in order to easily focus on significant further developments. To this end, we search for the five
most cited proposals (EA-based) that focus on this field (five per year), from the last 10 years but also including 2017 to date,
that is, 2007–2017, in the Computer Science category of the Clarivate Analytics ISI WoS.1 Thus, we analyze two time win-
dows, first five years (2007-2011) and last five years (2012-2017), as the medium/long-term past and the short-term past. We
are considering the ISI WoS since even though it provides less inclusive search and indexing engines than other well-known
resources, it is highly rigorous since it considers reliable citation sources in general, and for journals in particular. The most
cited software and review papers are also briefly discussed as well as the most cited emergent-EC-based approaches. Moreover,
we present a quick snapshot of the status of the publications on EDM (separately, EA and emergent-EC based) by analyzing
number of papers and citations of the 10% most cited papers per year in the ISI WoS Computer Science area. We also draw
visual science maps (Moya-Anegón et al., 2004) based on the free software Science Mapping Analysis Tool (SciMAT; Cobo,
López-Herrera, Herrera-Viedma, & Herrera, 2012) and The Open Graph Viz Platform (Gephi). Finally, we discuss the main
current trends and possible further research directions.

Results show that, in the case of the most cited studied papers, the use of EAs on DM tasks is mainly focused on enhanc-
ing the classical DM techniques, thus completely replacing the typical classical DM algorithms only when it is directly moti-
vated by the own problem nature. This is not always common in the lowest cited papers, which sometimes solve the whole
DM problem using only EAs, thus forgetting there could be more suitable ML algorithms. The bibliographic analysis is also
showing that even though EAs were the main techniques from the EC used for EDM, the emergent-EC algorithms (swarm,
social intelligence, etc.) are becoming nowadays the most cited and used ones. Based on all these facts, some potential fur-
ther directions are also discussed at the end of this paper.

This paper is organized as follows. Section 2 describes the search methodology we have considered for finding the most
cited papers for each of the mentioned years. Section 3 analyzes the found proposals, locating them within the main areas of
the DM and separating them into a first and a second five-year period. Section 4 focuses on works related to the available
software tools and review papers on EDM, as well as the works applying the remaining new and recent techniques of the EC
to the problem of DM. Section 5 presents a careful bibliographical study on EDM, revealing the main current research
trends. In section 6, we discuss some critical considerations and possible further research directions. Finally, some conclud-
ing remarks are made in section 7.

2 | EDM MOST CITED PAPER SEARCH METHODOLOGY

This section overviews the methodology applied to search the most cited papers on EDM for each year, from 2007 to 2017,
within the Computer Science category of the ISI WoS. In order to perform the search, we define the following two
objectives:

• Analyzing the five most cited papers on EDM by year.
• Contrasting the most cited EDM papers with the emergent-EC-based DM papers.
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In this sense, we perform two different searches, the second one including the first one, so that we can easily pick-up the
most cited contributions and check for the differences between both search results:

1. Searching for the papers on EDM.
2. Searching for the papers on EDM but also including the emergent-EC-based approaches.

To do so, we make use of the terms showed in Table 1. These terms are grouped into four different categories: (A) terms
related to DM; (B) terms related to EAs; (C) terms related to emergent-EC algorithms; (D) terms used to automatically
exclude papers out of the searched topic. The final queries associated with the mentioned searches are

Q1 :Topic = Að ÞAND Bð ÞANDNOT Cð ÞANDNOT Title = Dð Þ,

Q2 :Topic = Að ÞAND Bð ÞANDNOT Cð ÞANDNOT Title = Dð Þ,
where “Topic” means that the terms are searched for in the Title, Abstract, Author Keywords, and Keywords Plus fields
within each ISI paper record and where a category from Table 1 specification means searching for any of the terms in the
category separated by comma in the table. The terms and the final queries were obtained by trial and error, trying to force
discarding non-EDM papers but obtaining all the papers focused on EDM. As an example, directly using “evolutionary” or
“evoluti*” as a term in (B) includes lots of papers coming from the biology area that even if they are devoted to DM they
are out of the EDM scope. This is why this term appears many times in (B) but combined with a second term. Moreover,
excluding papers where the title includes the terms in (D) help to exclude many papers devoted to the pre-processing stage
of the KDD process (except papers using a wrapper or embedded approach, which involves learning) or several simulated
annealing-based proposals.

Once the results are obtained, the table of percentiles from ESI WoK2, period 2007–2017, is used in order to keep only
the papers fitting the citation limits indicated in the table for the 10% most cited papers. Finally, a few papers out of the topic
that were impossible to exclude by terminology or query modifications without eliminating some correct papers were care-
fully filtered by hand. From now on, we will name as Q1 and Q2 the final results from both queries once all the mentioned
steps have been performed (query, 10%, hand filtering). These final records from Q1 and Q2 are the ones used to consider
the second objective indicated at the beginning of this section, contrasting EA-based with emergent-EC-based DM, as well
as, the five most cited papers are taken from the Q1 results by year. These queries were performed in June 16, 2017.

3 | MOST CITED PAPERS ON EDM (2007–2017)

In this section, we present and analyze the five most cited papers per year in the 2007–2017 period. As mentioned, we have
applied the Q1 query to obtain the contributions on EDM by year, then selecting the five top cited ones. In Figure 1, we
summarize the found proposals by considering a division by the topics of the DM area. We try to show how many proposals

TABLE 1 Terms used to perform the search at ISI WoS (* means 0 or more characters, $ 0 or 1)

(A) DM terms (B) EA terms

data mining, machine learning, differential evoluti*, evoluti* algorithm*,

data*driven, regression, predicti*, classif*, evoluti* learning*, evoluti* multi*, evoluti* approach*,

unsupervised, semi*supervised, rule* evoluti* strateg*, evoluti* tuning*, genetic algorithm*,

(C) Emergent-EC terms evoluti* post$processing, evoluti* programming*,

swarm, colony, PSO, ACO, firefly, fruit fly, genetic learning*, genetic multi*, genetic approach*,

gravitational evoluti*, genetic tuning*, genetic programming,

estimation of distribution algorithm*, genetic post$processing, gene expression programming,

EDA$, biogeography-based optimization, learning classifier sytem*

imperialist competitive algorithm (D) Excluded terms

variable selection AND NOT (wrapper OR embedded),

feature AND NOT (wrapper OR embedded),

annealing, prototype selection, prototype learning,

instance selection

DM = data mining; EA, evolutionary algorithm; EC, evolutionary computation.
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are within each category, how many proposals are from the first five-year period (2007–2011) or from the last 6-year period
(2012–2017), as well as how many proposals are representing application papers. Since there are many fuzzy logic-based
proposals within the most cited contributions in the particular case of the EDM, we have also reflected it in the figure. At this
point, we would like to remark that the papers counted within the interpretability category are those including specific mech-
anisms devoted to obtain more interpretable models, that is, they are not only including the word “interpretability” in the title
or abstract but enhancing or handling the interpretability as an important part of the proposed algorithm.

In order to do so, we are distinguishing between numbers of papers in the first and the second periods by including this
information into consecutive brackets, where numbers in the first bracket refer to the first period and numbers in the second
bracket refer to the second one, (first) + (second). Empty brackets mean there are no proposals on a topic on the correspond-
ing period. A square with round corners spreading across two boxes in the figure means that the papers here belong to the
topics of both boxes. This is why the sum of the number of papers in some sub-topics is not exactly the same at the main
topic (since papers counted into two sub-topics must be counted once for a topic). The dashed line is separating the counts
for non-fuzzy papers (up) from the counts for fuzzy papers (down). Real-world application papers are also distinguished from
standard papers by using a different color from the grey scale. Finally, a summary considering supervised and unsupervised
proposals together is shown after the letters DM by periods and after the arrows by joining both periods (2007–2017).

Observing the numeric values in the figure and always taking into account that we are only talking about what is appear-
ing on the top most cited papers, we can say that most of the proposals are in the fields of classification and regression,
25 and 23, respectively, while a few ones, only 8, are devoted to unsupervised learning (whose majority are for clustering).
This is also notable that a 50.9% are specific real-world application papers, which is even higher in the second period, thus
showing a tendency on the increasing importance of these kinds of applied contributions. Moreover, fuzzy logic-based pro-
posals constitute 41.81% of the total number of contributions.

In the following, the papers found for the first five-year period are presented and briefly analyzed. Then, the second
period is also discussed. Focusing on the distribution in the different fields shown in Figure 1, we will subdivide each period
grouping the proposals into classification, regression, and unsupervised approaches.

3.1 | First period (2007–2011)

Table 2 includes information about the main characteristics of the studied methods as well as their citations for the
first period (Q1 query). Papers that are classified as “Highly cited papers” by Clarivate Analytics in the Essential Sci-
ence Indicators (they are within the top 1% most cited papers for any of the ISI categories considering all the papers,
not only EDM papers, published in the same year) have been also marked in the table. It also includes information
on the problem being solved (Application), where a dash means standard classification, regression, etc. The DM task
being solved is also included in the table (DM problem), as well as the Model and EA types (DM part and evolution-
ary part). Finally, this table shows the techniques used for the proposal (Algorithm) and the validation methodology
used (Val.). In the case of the Algorithm column, & means that both techniques are performed together within the
same process and + means that both techniques are performed separately in two different stages.

Classification Regression

Clust. A.R. S.D.

Supervised

(First period)+(Second period)

Black - Parcial or Total sums

Stand. -Standard, MO. -Multi-objetive

I. -Interpretability, Imb. -Imbalanced classes

TS. -Time series, Clust. -Clustering

A.R. -Association rule mining

S.D. -Subgroup discovery

60% Grey - Regular paper

40% Grey - Application paper

Symbology

Abbreviations

Stand.

Fuzzy

Stand.MO. MO.

Unsupervised

Imb.

(1)+(1+1)(1)+(1+1)

(1)+() (1)+() (3)+()

(6+9)+(7+10) 13+19 32

2314+9(9+3)+(5+6)

(1)+()

()+(1)

(1)+(1)

(1)+(2) (1)+() (1)+()

()+(1)(1+1)+()

(1)+()(2+3)+(2+1) (1+3)+(7)

(1)+(1)(2+1)+(2+4)()+(1)Fuzzy

MO. MO.

DM

I.

47

8

TS.Stand. Stand.I.5 3 2 18

6

5 1 1

1 1

14 4 4 4

25 23

FIGURE 1 Summary of the five most cited papers per year in the periods 2007–2011 (first period) and 2012–2017 (second period) by data-mining
problem type
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We can observe that there is a wide variety of particular applications related to economy, biology, geology, etc., among
the most cited papers, which are more or less equally distributed through the years. This shows the interest these applied pro-
posals generate and their relevance to the research community. However, it is also remarkable that most of them are applying
standard versions of GAs as well as the simplest validation model, the hold-out (HO) method, which is not a statistically
robust evaluation method. Another remarkable fact is that only 9 of the 25 references in Table 2 are using statistical tests
(STs). These facts were not expected in papers that accumulate so many citations.

3.1.1 | Classification (first period)

From the characteristics shown in the table, there are different DM techniques applied to classification tasks. Out of the nine
references addressing classification in Table 2, as observed in the column Model type, four references used some kind of
fuzzy system: three using fuzzy rule-based classification systems (FRBCSs) and one using fuzzy k-nearest neighbors
(Ding & Zhang, 2008) (k-NN) ensembles.

TABLE 2 The five EDM most cited papers in Computer Science from 2007 to 2011

Year References Cites Application DM problem
Model
type EA type Algorithm Val.

2007 Handl and Knowles (2007)a 250 – Unsup./
MO.Clu.

Cluster MOEA Clusters & PESA-II HO & ST

Huang, Chen, and Wang (2007)b 213 Economy Clas. SVM GA GA (feat.) + SVM & GA CV

Ishibuchi and Nojima (2007) 201 – Clas./I. FRBCS MOEA FRBS & NSGA-II CV

Wu, Tzeng, Goo, & Fang (2007)b 165 Economy Reg./TS SVM GA SVM & GA HO &
Bo.
& ST

Zhu, Ong, and Dash (2007) 151 – Clas. KNN MMs + 1NN 1-NN & GA (wrapper) HO

2008 Ding and Zhang (2008)b,c 131 Biology Clas./Ens. F KNN Ens. Immune GA (F KNNs) & IGA (Ens.) HO

Baykasoglu, Guellue, Canakci, and
Oebakir (2008)

95 Geology Reg. SR GP MEP, GEP, LGP HO & ST

Mansoori, Zolghadri and Katebi (2008) 79 – Clas. FRBCS GA (steady-
state)

FRBS & SSGA(SGERD) CV

Alatas, Akin, and Karci (2008) 78 – Unsup./ARs AR MO DE ARs. & MO-DE(MODENAR) HO

Rojas et al. (2008) 73 – Reg./TS SR +
F Rules
+ NN

GA ARMA + F Rules + NN &
GA

HO

2009 Garcia, Fernandez, Luengo, and Herrera
(2009)a,c

254 – Clas./
Comparison

Many Many GBML approaches CV & ST

Martinez, Castillo, and Aguilar (2009)a 166 Mobile robot Reg. T2 TSK FRBS GA FRBS & GA HO

Suresh, Babu, and Kim (2009) 110 Image Clas./Imb.MC. NN GA ELM(NN) & GA(RCGA-ELM) HO

Alcala, Ducange, Herrera, Lazzerini, and
Marcelloni (2009)

90 – Reg./I. FRBS MOEA FRBS & PAES CV & ST

Fei and Zhang (2009 81 Energy Clas. SVM GA SVM & GA HO

2010 Jose Gacto, Alcala, and Herrera (2010) 80 – Reg./I. FRBS MOEA FRBS & SPEA2ACC (TSSP2-SI) CV & ST

Cheng, Chen, and Wei (2010) 74 Stock Market Reg. SR GA Rought Sets + GA HO

Lei, Zuo, He, and Zi (2010) 69 Engineering Clas./Ens. NN & KNN GA (MLP, RBF, KNN) & GA
(Ens.)

HO

Das and Sil (2010) 67 Image Unsup./Clu. F Clusters DE F clusters & DE HO

Pulkkinen and Koivisto (2010) 67 – Reg./I. FRBS MOEA (C4.5 + WM) & NSGA-II CV & ST

2011 Gandomi and Alavi (2011)a 98 – Reg. SR Multi-Stage GP MSGP HO

Alcala-Fdez, Alcala, and Herrera (2011)a 93 – Clas./ARs/HD FRBCS GA A priori & CHC(FARC-HD) CV & ST

Ghosh, Mishra, and Ghosh (2011) 92 Image Unsup./Clu. F Clusters GA FCM & GA, GKC & GA HO

Alavi and Gandomi (2011)b 82 Engineering Reg. NN & SR GP MEP, GEP and LGP HO

Alcala, Jose Gacto, and Herrera (2011) 70 – Reg./HD/Sc. FRBS MOEA FRBS & SPEA2E/E CV & ST

a Highly cited paper in computer science
b Highly cited paper in engineering.
c Available software.

ARs = association rules; Bo. = boosting; Clas. = classification; clus. = clustering; CV = cross fold validation; DE = differential evolution; Ens. = Ensemble;
F = fuzzy; FCM = fuzzy C-means; FRBS = fuzzy rule-based system; GKC = Gustafson–Kessel clustering; FRBCS = fuzzy rule-based classification system;
GEP = gene expression programming; HD = high dimensionality; HO = hold-out; I. = interpretability; Imb. = imbalanced; LGP = linear genetic program-
ming; MC. = multi-class; MEP = multi-expression programming; MM = memetic; MO = multi-objective; Reg. = regression; Sc. = scalability; SR. = symbolic
regression; STs = statistical tests; TS = time series; T2 = type-2; Unsup. = unsupervised.
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The two support vector machines (SMVs) for classification are only used in application papers. These two papers apply
GAs to learn the SVM input parameters in order to get the SVM algorithm learning better (Huang et al., 2007; Fei & Zhang,
2009). We can also find ensembles using k-NN and neural networks (Lei et al., 2010) (NNs), where EAs are applied for find-
ing the best subset of models’ combination (selection of models) or learning the weights for combining all the individual
models. fuzzy rule-based systems (FRBSs) are also used for classification, where the EAs are used for learning the whole
system (Ishibuchi & Nojima, 2007; Mansoori et al., 2008) or as post-processing (Alcala-Fdez, Fernandez, et al., 2011).

We can also find two particular contributions. The use of NNs for imbalanced multi-class classification (Suresh et al.,
2009) and a proposal for the use of statistical techniques in the analysis of the behavior of genetic-Based machine learning
algorithms(Garcia et al., 2009).

3.1.2 | Regression (first period)

There is only a SVM-based approach applied to time series (TS) forecasting (CH et al., 2007) whose combination with
a GA is quite similar to the mentioned approaches for classification. FRBSs are mainly combined with multi-objective
EAs (MOEAs) in order to take into account interpretability issues (Alcala et al., 2009; Jose Gacto et al., 2010; Pulkki-
nen & Koivisto, 2010) or to decrease the search space on high-dimensional problems (Alcala et al., 2011). There is also
a particular case making use of type-2 fuzzy logic together with a GA in order to control a robot (Martinez et al.,
2009). Symbolic regression is also accomplished by means of gene expression programming (GEP) or GP (Alavi &
Gandomi, 2011; Baykasoglu et al., 2008; Gandomi & Alavi, 2011), but also by a GA (Cheng et al., 2010) or in combi-
nation with the derivation of fuzzy rules (Rojas et al., 2008),

3.1.3 | Unsupervised (first period)

There are only two approaches devoted to clustering: One of them performed multi-objective clustering (Handl & Knowles,
2007) by means of a known MOEA and the other performed fuzzy clustering by improving the Fuzzy C-Means algorithm in
a specific image clustering problem (Ghosh et al., 2011). And finally multi-objective association rule (AR) mining (Alatas
et al., 2008) is also performed by a multi-objective DE.

3.2 | Second period (2012–2017)

Table 3 includes information of the main characteristics of the studied methods as well as their citations for the second period
(Q1 query). A description of this kind of table can be found in the previous subsection (“First period [2007–2011]”). Since
there are a few more papers with one citation than the five ones shown in the table for 2017 (papers with 0 citations were
removed), we have used U1, usage count (last 180 days), provided by ISI WoS as tie-breaking criterion to select the ones
included in the table. Anyway, we have to point out that these papers should be considered only as representative examples,
since they will surely change their position in a near future.

As we can see, there are even more specific application papers. The use of standard versions of GAs is still a frequent
issue, but in these last years there are also some approaches using more advanced algorithms such as the CHC algorithm, the
cooperative coevolution (CC) and a hybrid combination of ESs and GAs.

There are also more proposals using STs and cross-validation. However, there are still only 12 papers (out of 25) using
STs and 15 papers are still using the simple (but not statistically robust) HO method as the only evaluation method.

3.2.1 | Classification (second period)

From the characteristics shown in Table 3, the following approaches are applying to classification tasks. Two SVM
approaches appear again as for the previous period, where EAs are performing the learning of the SVM algorithm’s input
parameters. One of them is directly applying GAs,(Kuang et al., 2014) while the other is including a new twin SVM proposal
tuned by a GA (Shao et al., 2013). The first one was devoted to solve specific real-world applications, while the second one
is the only SVM approach in all the study (2007–2017) that is not an application paper but a proposal for standard
classification.

NNs have been also obtained by application of the DE for classification (Cao et al., 2012) (but also for regression in this
case), and by hybrid application of Grammatical Evolution (topology) and GAs (weights) (Ahmadizar et al., 2015).

In Table 3, out of the 16 articles addressing a classification problem, 7 use some kind of fuzzy system: 6 using FRBCS,
and 1 using fuzzy K-NN. More precisely, FRBSs are again obtained by means of GAs, with CHC applied to tune interval-
valued fuzzy systems (Antonio Sanz et al., 2013, 2014) which is lately applied to imbalanced classification (Antonio Sanz
et al., 2015), or with a GA applied in a multi-stage method for rule optimization (Nguyen et al., 2015). Interpretability of
FRBSs is also taken into account (Rudzinski, 2016) by means of MOEAs this past year. Interval-valued fuzzy kNN have
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TABLE 3 The five EDM most cited papers in Computer Science from 2012 to 2017

Year References Cites Application
DM
problem

Model
type EA type Algorithm Val.

2012 Gandomi and Alavi (2012a)a 71 Engineering Reg. SR GP (MG GP) MGGP HO

Chandra and Zhang (2012) 63 – Reg./TS NN CC GA Elman-RNN & CC G3-PCX HO

Huang (2012) 55 Stock Market Reg. SVM GA SVR & GA HO

Cao, Lin, and Huang (2012) 54 – Clas.&Reg. NN DE ELM(NN) & Self-adaptive
DE(SaE-ELM)

HO

Gandomi and Alavi (2012b) 45 Engineering Reg. SR GP (MG GP) MGGP HO

2013 Kisi, Shiri, and Tombul (2013) 42 Geology Reg./TS SR GP SR GEP HO

Antonio Sanz, Fernandez,
Bustince, and Herrera (2013)b

39 – Clas. IV FRBCS GA A priori & CHC (IVTURS − FARC) CV & ST

Shao, Wang, Chen, and Deng
(2013)

38 – Clas. SVM GA Twin SVM & GA CV

Cpalka, Rebrova, Nowicki, and
Rutkowski (2013)

36 – Reg. NFS ES(μ, λ) NFS & ES (μ, λ) HO

Bhowan, Johnston, Zhang, and
Yao (2013)

36 – Clas./Imb. SR MO GP MO-GP (Ens.) HO & ST

2014 Cpalka, Lapa, Przybyl, and
Zalasinski (2014)

39 – Reg./I. NFS ES(μ, λ) and GA NFS & ES (μ, λ)-GA HO

Krawczyk, Wozniak, and Schaefer
(2014)

39 – Clas./Imb. DT GA Cost-Sensitive DT + GA CV & ST

Kuang, Xu, and Zhang (2014) 38 Security Clas. SVM GA Kernel-PCA + SVM & GA HO

Antonio Sanz et al. (2014) 36 Medicine Clas. IV FRBCS GA FRBS & CC GA + CHC CV & ST

Menendez, Barrero, and Camacho
(2014)

35 – Unsup./
C Clu.

Cluster GA CSG & GA (GGC) HO

2015 Chandwani, Agrawal, and Nagar
(2015)

25 Engineering Reg. NN GA ANN & GA HO

Ahmadizar, Soltanian,
AkhlaghianTab, and Tsoulos
(2015)

16 – Clas. NN GE + GA ANN & GE (topology) & GA
(weights)

CV & ST

Nguyen, Khosravi, Creighton, and
Nahavandi (2015)

16 Medicine Clas. FRBCS GA FRBS & AVQC (RI) + CV & ST

GA (RO) + GDSL (PT)

Carmona et al. (2015) 15 Medicine SD FRBS GP GP CV & ST

Antonio Sanz, Bernardo, Herrera,
Bustince, and Hagras (2015)

14 Economy Clas./Imb. IV FRBCS GA A priori & CHC (IVTURS − FARC) CV & ST

2016 Wang, Wang, and Liu (2016)a 11 – Clas./MV TS NN DE RNN + adaptive DE (parameters) CV & ST

Gorzalczany and Rudzinski (2016) 8 Economy Clas. FRBCS MOEA FRBS & NSGA-II CV

Derrac, Chiclana, Garcia, and
Herrera (2016)

8 – Clas. IV F-KNN GA fuzzy-kNN + CHC CV & ST

Rudzinski (2016) 8 – Clas./I. FRBCS MOEA FRBS & (SPEA2, NSGA-II) CV & ST

Krawczyk, Galar, Jelen, and
Herrera (2016)

7 Medicine Clas./Imb., KNN EU (FCM, LS, GLS) + C4.5 s & Bo. & CV

Ens.& Bo. CHC 1NN EU (Ens.)(EUSBoost) & ST

2017 Oliveira et al. (2017) 1 – Unsup./Clu./BD Cluster GA k-means & GA (MR), k-means &
GA (Ens. MR)

HO & ST

Duchanoy et al. (2017) 1 Engineering Reg. NN DE RNN & DE HO

Shen et al. (2017) 1 Medicine Reg./BD SVM GA SVM & GA (MR) HO

Demertzis, Iliadis, Avramidis, and
El-Kassaby (2017)

1 Geology Reg. NN & SR GP (GEP) Feed-Forward ANN, GEP SR HO

Serdio et al. (2017) 1 Engineering Clas. SFIS GA (MM) SFIS & GA T (Emb.)(GenSparse-FIS) HO

a Highly cited paper in engineering.
b Available software.

AVQC = adaptive vector quantization clustering; BD = big data; Bo. = boosting; C = continuity; CC = cooperative coevolution; Clas. = classification; Clus. = clus-
tering; CSG = cluster similarity graph; CV = cross fold validation; DE = differential evolution; DT = decision trees; Emb. = embedded; Ens. = ensemble; ES = evo-
lutionary strategy; EU = evolutionary undersampling; FCM = fuzzy C-means; FRBS = fuzzy rule-based system; FRBCS = fuzzy rule-based classification system;
GDSL = gradient descent supervised learning; GE = grammatical evolution; GEP = gene expression programming; GLS = grey-level segmentation; HO = holdout;
I. = interpretability; Imb. = imbalanced; IV = interval-valued; LS = level-set; MG = multi-gene; MM = memetic; MO = multi-objective; MR = MapReduce; MV =
multivariate; NFS = neuro-fuzzy system; PT = parameter tuning; Reg. = regression; RI = rule initialization; RO = rule optimization; SD = subgroup discovery;
SR = symbolic regression; SFIS = sparse-fuzzy inference system; ST = statistical tests; T = tuning; TS = time series; Unsup. = unsupervised.
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been also obtained by means of CHC optimization (Derrac et al., 2016), as well as sparse fuzzy inference systems were
obtained by the application of a memetic GA (Serdio et al., 2017).

Multi-objective GP is also used to perform symbolic regression for imbalanced classification (Bhowan et al., 2013).
Imbalanced classification is also addressed (Krawczyk et al., 2014) by learning cost-sensitive decision trees applying a GA
or proposing evolutionary undersampling by the CHC application in order to obtain 1NN-based ensembles (Krawczyk
et al., 2016).

Finally, a particular interesting contribution is the one solving multi-variate TS classification. This is a relatively recent
problem addressing the interactions among many uni-variate TS. In this case, the parameters of a recurrent NN are evolved
by means of an adaptive DE (Wang et al., 2016).

3.2.2 | Regression (second period)

In Table 3, out of the 11 articles that are addressing a regression problem, 5 articles use NNs as a model type, and 4 articles
use GP for symbolic regression.

An ES is applied to learn a neuro-fuzzy system (Cpalka et al., 2013), then lately including interpretability issues (Cpalka
et al., 2014) and the use of a hybrid ES-GA.

GP is again applied to perform symbolic regression (Gandomi & Alavi, 2012a), including TS forecasting (Kisi et al.,
2013). Multi-gene GP can be also found to perform symbolic regression (Gandomi & Alavi, 2012b) as well as GEP
(Demertzis et al., 2017).

Artificial NNs are also constructed by the application of a GA (Chandwani et al., 2015), including recurrent NNs for TS
forecasting by means of a cooperative coevolutionary GA (Chandra & Zhang, 2012). Besides, a DE also evolves recurrent
NNs for standard regression (Duchanoy et al., 2017).

As for the previous period, a GA is used to learn the optimal input parameters of an SVM (Huang, 2012) for a specific
real-world application, including their use within a MapReduce (MR) framework for solving medical big data problems
(Shen et al., 2017).

3.2.3 | Unsupervised (second period)

In the case of the EDM application to unsupervised problems in this second period, a GA is applied for continuity clustering
by learning cluster similarity graphs (Menendez et al., 2014). Subgroup discovery (SD) is also addressed in this period by
means of GP applied to the derivation of fuzzy rules (Carmona et al., 2015) in a medicine-specific application. Finally, clus-
tering is performed on big data problems by means of k-means-based ensembles optimized by a GA within an MR frame-
work (Oliveira et al., 2017).

3.3 | Applications in both periods (2007–2011 and 2012–2017)

The ability of EAs to manage a set of solutions, even attending to multiple objectives, as well as their ability to optimize any
kinds of values, allows them to be successfully applied in a wide variety of applications. Tables 2 and 3 shows a list of the spe-
cific problems that have been solved by EAs on the top most cited papers in the periods 2007–2011 and 2012–2017 (see col-
umn “Application”), respectively. In this list, we can find a great variety of problems that are related to very diverse subjects.
At a glance, we can find applications in economy, biology, geology, energy, image, mobile robot, engineering, stock market
and security, highlighting the number of proposals for applications in the areas of image (Eiben & Smith, 2003), economy
(Han et al., 2011), and engineering (Han et al., 2011) in the first period, and for the engineering (Yang, 2014) and medicine
(Yang, 2014) in the second. This demonstrates the great capacity of these methods to be applied to a great variety of problems.

Analyzing the number of contributions in these periods, we can see how more than 44% of papers in the first period
(2007–2011) are specific real-world application papers and the ratio is even higher in the second period (2012–2017), reach-
ing more than 57% of studied papers. There is also an evidence of the interest that is awakening in the last years these
methods to solve real-world problems. Moreover, more than 40% of the application papers studied are fuzzy logic-based pro-
posals due to their ability to better address the imprecision and uncertainty and to incorporate expert knowledge and granular
computing (Yao, Vasilakos, & Pedrycz, 2013).

4 | SOFTWARE TOOLS, REVIEW PAPERS, AND REMAINING EC TECHNIQUES ON DM

Here, we include interesting papers that, because they are not algorithm-based proposals or because they are not using EAs,
got out of the previous analysis. They are the papers devoted to software tools including EDM algorithms, review papers
highly related to EDM and some interesting application examples of the emergent-EC algorithms to DM.
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4.1 | Software papers

Since each year, EDM proposals are being developed more and more, there is also a growing interest in the development of
software tools that compile all these proposals according to a threefold necessity: (a) enabling researchers with low-medium
knowledge to apply these proposals to their problems successfully; (b) to compare the authors’ proposals versus other proposals
of the literature on the topic; and (c) to carry out a complete experimentation to select the best suited solution for our problem.

Table 4 shows the most referenced software tools in the last years. Only 4 publications were found in the complete period
(2007–2017) from the Q1 query.

The KEEL (Knowledge Extraction based on Evolutionary Learning) software suit (Alcala-Fdez et al., 2009, 2011; Tri-
guero et al., 2017) allows researchers to evaluate the performance of evolutionary learning for different kinds of DM prob-
lems: regression, classification, clustering, and so on. Shark (Igel et al., 2008) is a library that provides single and
multiobjective methods for regression and classification tasks. Finally, DREAM (Vrugt, 2016) is a toolbox that allows us to
apply the DE Adaptive Metropolis algorithm (DREAM) to regression problems.

4.2 | Review papers

Review papers are often among the most cited contributions because of their usefulness in positioning future articles in a specific
theme. We have preferred to leave them apart from the study of the most cited contributions since they do not include any new
specific proposal. However, as they are what could be considered as the base bibliography to any bibliographic study, we also
introduce them in this section. In this way, while we are focusing on the most cited and recent papers in order to see the most
interesting current trends, these reviews usually include a significant part of the remaining proposals and/or their categorization.

Table 5 lists the review works found within the 2007–2017 period. Only 7 publications were found in the complete
period (2007–2017) from the Q1 query.

In the following, we indicate the specific topic they cover. In 2010 (Fernandez et al., 2010), a state-of-the-art summary
and taxonomy is provided for the genetic-based machine learning algorithms for rule induction in classification tasks. Foun-
dations, algorithms, and applications of SD are reviewed in 2011 (Herrera et al., 2011). The authors provided in 2012
(Barros et al., 2012) a detailed survey of EAs to evolve decision trees for classification and regression. In 2013 (Fazzolari
et al., 2013), an overview of multiobjective evolutionary fuzzy systems, describing the main contributions on this field and
providing a two-level taxonomy is performed. Part I and Part II of a review (Mukhopadhyay et al., 2014a; Mukhopadhyay
et al., 2014b) on multiobjective EAs for DM is also proposed in 2014. In 2015, the authors review (Fernandez et al., 2015)
the progression of the so named evolutionary fuzzy systems by analyzing their taxonomy and components. Finally, a revision
(Alcala-Fdez & Alonso, 2016) on the existent freely available and open-source fuzzy systems software is performed in 2016,
which includes EAs application to FRBSs, neuro-fuzzy systems, and fuzzy AR mining.

4.3 | Application of the emergent-EC techniques

The following section will show as the emergent-EC-based publications that appear within the EDM most cited papers in the
past 10 years grow in quantity and importance across the years. Here, we only introduce some representative examples of
the great variety of emergent-EC algorithms that have been applied to the DM problems (see Reference (Xing & Gao, 2014)
where a detailed description of 134 of these emergent-EC algorithms can be found). For these representatives, we will only
consider those appearing in the top five contributions obtained from the Q2 query.

TABLE 4 Existent EA-based most cited software for EDM in Computer Science publications from 2007 to 2017

Year References Cites DM problem EA type Name Software type Language Licence

2008 Igel, Heidrich-Meisner,
and Glasmachers (2008)a

85 Clas. & Reg. GA, ES, MOEA Shark Library C++ GPLv3

2009 Alcala-Fdez et al. (2009)a,b 458 Clas., Reg., EAs (GA, GP, KEEL Suit Java GPLv3

Unsup., Semisup. DE, MOEA, etc)

2011 Alcala-Fdez, Alcala, et al. (2011)a,b 390 Clas. & Reg. EAs (GA, GP, KEEL-Dataset Suit / Web Java GPLv3

DE, MOEA, etc)

2016 Vrugt (2016)a,b 20 Reg. DE (BI + DREAM) DREAM Toolbox Matlab GPLv3

a Available software.
b Highly cited paper in computer science.

BI = Bayesian inference; Clas. = classification; DE = differential evolution; DREAM = DiffeRential Evolution Adaptive Metropolis; ES = evolutionary strategy;
Reg. = regression; Semisup. = semi-supervised; Unsup. = unsupervised.
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The first approach we can find in this period (Martens et al., 2007), 2007, makes use of the Ant Colony Optimization
(ACO) extending the AntMiner algorithm for multi-class classification by using a better performing MAX-MIN Ant System.
The so named AntMiner + is then applied to learn a set of interval rules. In 2008 (Melgani & Bazi, 2008), the authors
improved the generalization ability of a SVM by searching for the best value of the parameters that tune its discriminant
function based on particle swarm optimization (PSO) in the automatic classification of electrocardiogram beats. The fruit Fly
optimization algorithm (FOA) was applied in 2013 (Ze Li, Guo, Jie Li, & Qi Sun, 2013) to annual power load forecasting,
where the FOA was used to automatically select the appropriate spread parameter value of a generalized regression NN
(GRNN). A biogeography-based optimization (BBO) algorithm was also introduced in 2016 (Yang et al., 2016) to optimize
the weights of an SVM for automated classification of brain images.

As said, they are only a representation of the most cited proposals. But the application to DM of many other emergent-
EC algorithms can be found among the most cited papers as, the bee colony optimization (BCO), the imperialist competitive
algorithm (ICA), the firefly algorithm (FA), etc.

5 | EDM BIBLIOGRAPHICAL ANALYSIS

In this section, we provide a snapshot of the status of publications on EDM according to the ISI WoK, focusing on publica-
tions that belong to the top 10% of publications in Computer Science from 2007 to 2017 with the aim of finding out the cur-
rent research trends in the field. To accomplish this, we first make an analysis of the EDM visibility concerning the number
of publications and citations per year. Second, we analyze how the evolutionary techniques used have evolved in the last

TABLE 5 Existent EA-based algorithm reviews on EDM in Computer Science publications from 2007 to 2017

Year References Cites Apps DM problem Model type EA type Algorithm

2010 Fernandez, Garcia, Luengo,
Bernado-Mansilla, and
Herrera (2010)a

59 – Clas. / Stan. & Imb. RBS GBMLs XCS, CORE, GASSIST, etc

2011 Herrera, Jose Carmona,
Gonzalez, and Jose del Jesus
(2011)a

58 – SD RBS & FRBS MOEA & GA SDIGA,MESDIF,NMEEF-SD,etc

2012 Barros, Basgalupp, de Acplf,
and Freitas (2012)

52 – Clas. & Reg. DT EAs (GA,GP, DE, LEGAL-Tree, GEA-ODT, etc

ENN, MOEA, etc)

2013 Fazzolari, Alcala, Nojima,
Ishibuchi, & Herrera (2013)b

99 – Clas., Reg., & Unsup. (ARs) (Mamdani,TSK&DNF) MOEA SPEA2, NSGA-II, PAES,

FRBS & FARs MPAES, etc

2014 Mukhopadhyay, Maulik,
Bandyopadhyay, and Coello
Coello (2014a)

54 – Clas. FRBCS, SVM & NN MOEA NSGA-II, SPEA2, EMOGA,

M-PAES, CEMOGA, etc

Mukhopadhyay, Maulik,
Bandyopadhyay, and Coello
Coello (2014b

41 – Reg., SD, Cluster & AR MOEA NSGA-II, SPEA2, PESA-II,

Unsup. (Clus., ARs), etc MOGA, MODE, etc

2015 Fernandez, Lopez, Jose del
Jesus, and Herrera (2015)a

23 – Clas. (Imb., ML, MI, FRBS, FCluster MOEA, GA, EUSBoost, G3P-MI,

Ord. & Mon., LQD),
Reg., SD,

& FAR GP, etc FARLAT-LQD, etc

DS, Unsup. (Clus., ARs), etc

2016 Alcala-Fdez and Alonso
(2016)a

10 – Clas., Reg., SD, & Unsup. FRBS, NFS, FAR, etc EAs & MOEA FARCHD, FURIA, SLAVE,

FuzzyApriori, etc

a Available software.
b Highly cited paper in engineering.

AR = association rules; Clas. = classification; Clus. = clustering; DE = differential evolution; DS = data stream; DT = decision trees; FAR = Fuzzy association
rules; FCluster = fuzzy clusters; FRBS = fuzzy rule-based system; Imb. = imbalanced; LQD = low quality data; ML = multi-label; ML = multi-instance; Mon. =
monotonic; NFS = neuro-fuzzy system; Ord. = ordinal; RBS = crsip rule-based system; Reg. = regression; SD = subgroup discovery; Stan. = standard; Unsup. =
unsupervised.
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10 years, distinguishing between proposals based on EAs and proposals based on other emerging-EC techniques. Finally, we
analyze how the publications are distributed among the main ISI categories.

Figure 2 shows the number of published items and the citations per year in the EDM research area that belongs to the
top 10% of publications in Computer Science. In Figure 2a, we can see that the number of publications on EDM that appear
within the 10% tends to increase each year in general. The exceptions are that the number decreased a little from 2009 to
2010, and remained approximately the same from 2011 to 2012 and from 2015 to 2016. In addition, the number of citations
increases substantially over the years (except for the last year since only a few months are considered for this year). All these
data allow us to say that the EDM research area is today a mature field with a research community working actively on it.

Table 6 and Figure 3a show the proportion between DM proposals based on EAs and DM proposals based on emerging-
EC algorithms that are within the top 10% of the papers in Computer Science for each year. In order to compute the number
of EDM papers that are included within the top 10% of the whole Computer Science papers for a year, we have considered
the Computer Science table of percentiles provided at the ESI WoS. We take all the papers published in the given year that
are over the minimum number of citations for the 10% percentile from both, Q2 and Q1, separately. Let the numbers of taken
papers be named as #Q210% and #Q110%, respectively. The percentage of EA-based proposals that are in the top 10% with

respect to the emerging-EC-based ones in the corresponding year is computed as Q110%
Q210%

∗100. And the associated emerging-

EC-based percentage with respect to the EA-based ones is computed as Q210%-Q110%
Q210%

∗100. We can see how the use of EAs with
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FIGURE 2 Report produced in June 16, 2017; total number of publications on evolutionary data mining (EDM): 1,959; sum of times cited: 57,905;
average citations per item: 29.56

TABLE 6 Percentages of EDM papers within of the top 10% of papers in Computer Science separated by EA (Q1) and emerging-EC based (EC–EA, ie,
Q2−Q1)

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

EC EA-based (%) 85.98 75.00 73.62 66.22 67.60 59.22 56.14 55.14 52.11 51.75 42.86

Emerging-EC based (%) 14.02 25.00 26.38 33.78 32.40 40.78 43.86 44.86 47.89 48.25 57.14

EA = evolutionary algorithm; EC = evolutionary computation; EDM = evolutionary data mining.
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FIGURE 3 (a) Percentages of the number of publications separated by evolutionary algorithm (EA) (Q1) and emerging-evolutionary computation (EC)-
based (EC-EA, that is, Q2−Q1); (b) Percentages of citations separated by EA (Q1) and emerging-EC-based (EC-EA, that is, Q2−Q1) percentage of the
number of publications and citations in the evolutionary data mining (EDM) area within the top 10% of papers in Computer Science from 2007 to 2017
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respect to the emerging-EC algorithms decreases linearly over the years within the top 10%, presenting currently almost the
same percentage of publications both types.

Table 7 and Figure 3b show the same percentages but in terms of the number of citations received by the so taken pro-
posals. If we consider the number of citations, we can appreciate the same trend, where the percentage of citations of the

TABLE 7 Percentage of citations of EDM papers within of the top 10% of papers in Computer Science separated by EA (Q1) and emerging-EC based
(EC–EA, ie, Q2−Q1)

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

EC EA-based (%) 88.16 69.07 71.11 67.81 62.75 50.75 49.73 53.06 38.59 48.94 40.35

Emerging-EC based (%) 11.84 30.93 28.89 32.19 37.25 49.25 50.27 46.94 61.41 51.06 59.65

EA = evolutionary algorithm; EC = evolutionary computation; EDM = evolutionary data mining.

(a)

(b)

FIGURE 4 Relationships among the most relevant
ISI categories for evolutionary data mining (EDM)
publications
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EA-based papers is even a little lower than the percentage of citations of the EC-based papers from the year 2015. According
to these data, we can appreciate how the publication trend is becoming focused on the use of the emergent-EC algorithms.

Finally, to analyze the distribution of the publications among the ISI categories from 2007 to 2017, we have performed a
study based on co-concurrence of the publications in the main ISI categories, analyzing the evolution between the periods
2007–2011 and 2012–2017. Notice that the notion of co-concurrence represents the frequency with which publications are
simultaneously indexed in two categories. To accomplish this, we have created a visual science map (Moya-Anegón et al.,
2004) for each period (see Figure 4), in which each node represents an ISI category (the number of publications is propor-
tional to the darkness and size of the node) and an edge among two nodes represents the degree of co-concurrence of the
publications between the two linked categories (the number of co-concurrence is proportional to the darkness and thickness
of the edge).3 The citation counts used to produce Figure 4 were based on all papers returned by query Q2.

These maps (see Figure 4a,b) show a clear view of how publication trends (regarding ISI categories) have evolved in the
last 10 years. From the first period (2007–2011), we can appreciate how the categories Computer Science-Artificial Intelli-
gence, Computer Science-Interdisciplinary Applications, Engineering Electrical Electronic, and Operations Research Man-
agement Science have emerged as the four main categories, with Computer Science-Interdisciplinary Applications presenting
a higher number of publications than the other categories and sharing a strong link with Engineering Electrical Electronic
and Operations Research Management Science. Moreover, the main categories are linked with other eight categories, of
which Computer Science Theory Methods and Computer Science Information Systems are the most productive.

Although, from the second period (2012–2017), we can appreciate how the two main categories are only Computer
Science-Artificial Intelligence and Computer Science-Interdisciplinary Applications with almost the same number of publica-
tions as the previous period, while the categories Engineering Electrical Electronic and Operations Research Management
Science have far fewer number of publications. Moreover, the categories Statistics Probability, Computer Science Hardware
Architecture, and Mathematical Computational Biology disappear of the 10 main categories, while the categories Engineer-
ing Multidisciplinary, Computer Science Software Engineering, and Computer Science Cybernetics are included in this
period.

We can see how EDM is an active area that extends toward new fields. Besides the usual ISI categories (Computer
Science-Artificial Intelligence and Computer Science-Interdisciplinary Applications), several new categories (such as Engi-
neering-Multidisciplinary, Computer Science-Software Engineering, and Computer Science-Cybernetics) represent promising
emergent categories that have grown rapidly in the last years, showing a growing interest in application fields and software
development.

6 | CRITICAL DISCUSSION AND POSSIBLE FURTHER DIRECTIONS

This section discusses some critical aspects based on the analysis performed in the previous sections as well as some possible
further research directions on the studied topic. Several aspects have been found that, from our point of view, could be taken
into account when a DM problem is going to be solved in order to properly apply EDM. These issues or recommendations
are listed in the following:

• Recommendation—As we have observed in the analysis of the five most cited papers per year, most papers use EAs to
enhance well-established ML techniques when they exist for a given type of target problem. EAs only replace well-
established ML techniques when this is motivated by the nature of the problem. In our opinion, this is a natural and prac-
tical way to apply EDM, since it allows us to get the benefits from the results of extensive research on ML techniques.
In fact, as optimization techniques, EAs can easily complement the corresponding DM techniques in order to try to find
the optimal learning algorithm input parameters or the initial main structure of the models that are going to be finally
obtained by the associated ML algorithm (e.g., NN topology learning before gradient descent parameters learning). In
addition, they can be used for tuning of the previously obtained models as a post-processing stage, thus enhancing their
performance. Furthermore, they are suitable to replace the typical ML algorithms directly when multiple objectives, com-
plex model structures or particular restrictions need to be considered, since they are highly flexible population-based and
fitness-based algorithms, and therefore, they fit very well with these issues.

• Critical issue—As indicated in Garcia et al. (2009), the application of appropriate STs for comparisons is a must. How-
ever, we still found many proposals among the most cited ones that do not perform this kind of validation. Even though
for particular applications the use of these tests could make no sense, at least the application of the cross-validation
method is the expected. However, we found still many proposals applying only the simple HO method. In our opinion,
this is a lack of scientific rigor for the EDM proposals that must be solved.
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• Critical issue—We have also found the application or adaptation of simple GAs in many of the studied papers. Since
there are a lot of proposals on more advanced EAs, this is a real pity to waste their improved search ability. Probably this
is the main motivation of the recent success of the emergent-EC algorithms application, since these algorithms were pro-
posed to beat the previous versions of their EA counterparts.

From our point of view, there are still many things to do. In the following, we introduce some potential further
directions:
• The application of the emergent-EC algorithms seems a very prolific area. As we can see from the performed study, they

are just now outperforming the EA-based approaches in terms of number of highly cited publications and number of cita-
tions. This leads to think that further new developments on the EC framework will be successfully applied to the DM
problems.

• Further developments for big data mining are still expected. From the analysis performed on the five most cited papers
per year, we can see that the big data challenge is just appearing within the most cited contributions on EDM of the last
2 years. Considering the increasingly fast data acquisition from devices, internet activities, etc., it can still be considered
as an open problem where new developments on EDM will be still applied.

• The emergent deep learning could be another possible application framework. NNs have been successfully optimized or
learned by means of EAs in the specialized literature. As in the case of the big data application, since EAs are very suit-
able to perform parallelization, they could contribute to enhance or to train the complex and large multi-layer networks
required for the deep learning application.

• Application to new types of DM problems. As EAs have successfully solved imbalanced or multi-class classification
problems in the last 10 years, the application of EAs could become the easiest way to solve new kinds of complex DM
problems that have become more common in the last few years. Multi-variate TS, temporal pattern mining, data privacy,
etc., are examples of these relatively new highly complex problems representing a challenge for the traditional ML tech-
niques. Due to their flexibility, EAs or EC algorithms could become a serious alternative to be taken into account.

• Even though it is not a new research direction, we think that problems with multiple objectives are a field where EDM
will be still successfully applied. EAs, or in general EC algorithms, are highly suitable and natural tools to evolve a set
of solutions representing the different desired trade-offs among the different objectives in a flexible manner. In this way,
EDM approaches facing still non-solved real-world applications with a multi-objective nature, or making use of addi-
tional objectives in order to better optimize a main objective could still play an important role in the future.

7 | CONCLUSIONS

EDM is a prolific field that takes advantage from the application of EAs in order to enhance or to replace the typical learning
algorithms associated with the different problems or DM techniques. EAs are powerful population-based optimization tech-
niques that are able to improve or even learn any type of predictive or descriptive model, evolving their structure and/or defini-
tion parameters together. In this review article the most cited contributions on EDM from the last 10 years (including the
current year) have been analyzed from two different points of views. First, analyzing the five most cited papers per year. Sec-
ond, contrasting the classical EA-based approaches with the emergent-EC based ones by focusing on the EDM approaches
that can be found within the 10% of the most cited papers from the ISI WoS per year. These top cited papers have been mainly
found in the classification and regression areas, addressing a high number of particular applications, imbalanced classification
problems, multiple objectives and interpretability issues, and TS forecasting. A number of contributions have been also found
on unsupervised learning, addressing mainly clustering problems, and eventually performing AR mining and subgroup
discovery.

From this analysis, we can conclude that most of the top cited papers apply EAs in order to enhance the existent ML
techniques, only replacing them when the problem nature motivates their use. For example, when multiple objectives should
be taken into account searching for a set of solutions with different objective trade-offs or when learning fuzzy systems, since
there is no well-established ML technique to efficiently learn these types of rule structures together with their optimal defini-
tion parameters. In view of the studied contributions, we recommend the use of more advanced EAs from the specialized lit-
erature and the use of STs when it is possible, or at least cross-validation. Moreover, the application of the emergent-EC
algorithms has been found to be a prolific current trend and a promising research direction since we have observed that in
the last few years they overcome the EAs in the number of publications and citations within the 10% of the most cited
papers. Developments for big data, the emergent deep learning and problems with multiple objectives are also proposed as
possibly interesting research areas to be explored in a near future.
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NOTES

1Formerly the Institute for Scientific Information (ISI) Web of Science (WoS): https://apps.webofknowledge.com/.
2The Essential Science Indicators (ESI) of the Web of Knowledge (WoK): https://apps.webofknowledge.com/.
3The free software Science Mapping Analysis Tool (SciMAT) (Cobo et al., 2012) and The Open Graph Viz Platform (Gephi) have been used to create
the maps.
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