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 Model as a Service (MaaS) with expert knowledge is proposed as a new architecture of cloud

computing.

 A numerical model which simulates the groundwater system is constructed as a case study for

the MaaS.

 The parameters in the numerical model are analyzed using sequential data assimilation.

 A first implementation of the MaaS is conducted on the private cloud to prove the feasibility

of the architecture.
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Abstract 

With the significant advancements in Information and Communications Technology (ICT), cloud 

based applications provide a novel approach to access applications which are not installed on the 

local computers. The integration of cloud computing and Internet of Things (IoT) indicated a 

bright future of the Internet. In this paper, a new architecture of cloud computing—Model as a 

Service (MaaS) is proposed. The feasibility of the proposed architecture is proved by 

implementing a groundwater model on cloud as a case study. The groundwater model is 

established using MODFLOW for the middle reach of the Heihe River Basin (HRB). The model is 

calibrated using in situ observation to ensure capability of simulating the groundwater process 

with Root Mean Square Error (RMSE) of 1.70 m and coefficient of determination (R
2
) of 0.64. 

The parameter uncertainties of the groundwater model are analyzed by sequential data 

assimilation algorithms (PF, Particle Filter; EnKF, Ensemble Kalman Filter) in a synthetic case. 

The results show that the parameter uncertainties are effectively reduced by incorporating 

observed information recursively. A comparison between PF and EnKF indicate that the results 

from PF are slightly better than those from EnKF. The integration shows a bright future for 

simulating the groundwater system in real-time. This study provides a flexible and effective 

approach for analyzing the uncertainties and time variant properties of the parameters and the 

proposed architecture of cloud computing provides a novel approach for the researchers and 

decision-makers to construct numerical models and follow-up researches. 
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1. Introduction 

Numerical models have been widely used in the mathematical modeling of many natural systems 

(e.g., hydrology, climatology, biology, physics, chemistry) and human systems (e.g., economics, 

social science and engineering) with the ability to explore and investigate the natural systems. 

However, scientific computing is a victim of its own success in some ways. Researchers tend to 

develop complex models to involve various processes, data sources, management alternatives and 

analysis algorithms. Significant computational resource and time are required while constructing 

the complex models which would distract the researchers from their research interests. Moreover, 

the reusability of numerical models between different research groups is limited which lead to 

significant waste of resources. A new architecture which makes use of all the endeavors toward 

numerical models would be great help. In this paper, groundwater model was selected to address 

the issues. Groundwater models simulate the spatiotemporal variability of the groundwater system 

in the aquifers and bridge the gap between field observations and general characterization of the 

whole system. In general, groundwater models are implemented by applying finite-difference or 

finite-element approximations and use distributed parameters which are not directly measured and 

have to be determined from calibrations. The desire for solving larger, more sophisticated 

groundwater problems requires improvements to scientific methodology, algorithms and 

temporal-spatial resolutions which are always accompanied by increases in the complexity of the 

groundwater models.  

With the rapid development in Information and Communications Technology (ICT), cloud 

computing has emerged as a new paradigm for sharing the configurable computing resources (e.g., 

servers, applications, storage, services and computer networks) [1, 2]. The computing resources 

are becoming important as computing being transformed to the 5th utility (after water, electricity, 

gas and telephony) [3]. Fortunately, the rapid development of processing and storage technologies 

and the success of the Internet, the computing resources are becoming more powerful, cheaper and 

ubiquitously available than ever before which leads to the cloud computing. Following the results 

of the evolution and adoption of existing technologies and paradigms, cloud computing enables 

the users access the infrastructure, platform and software as a service. In a cloud computing 

environment, there are four standard models those are Infrastructure as a Service (IaaS), Platform 

as a Service (PaaS), Software as a Service (SaaS) and Data as a service (DaaS) [1, 4]. In the SaaS 

model, cloud providers install, operate and manage software in the cloud and users gain access to 

software and databases from cloud clients. SaaS offers high scalability which provides users the 

option to access more or fewer service or features on-demand. Another important technology—

Wireless Sensor Networks (WSNs)—bridged the gap between the cyber world and the physical 

world and led to cyber-physical systems (CPSs). The main reason for the development and 

evolution of CPSs are to intelligently monitor and control our physical world and the requirements 

for reducing the development costs and time and enhancing the designed products. Although the 

cloud computing and WSNs had experienced a rapid evolution independently and were different 

from each other, their characteristics were often complementary [5]. Therefore, the integration of 

cloud computing and WSNs were proposed by many researchers in order to benefit from both 

technologies [5-7]. 

The complication of the groundwater models usually leads to the increase of parameters which 



maintained the consistency between the simulated system behavior and the corresponding 

observations [8]. Many techniques had been developed to determine the parameters of numerical 

models. Traditionally, the parameters were determined based on trial-and-error adjustments and 

visual inspection of the agreements and differences between the simulations and observations for 

some historical records [9, 10]. The automatic parameter estimation techniques had been 

motivated by the subjectivity and time-consuming nature of trial-and-error adjustments [11-15]. 

However, these methods always lack the capability to properly take into account various 

uncertainties inherent in the system and easily stuck in the local minimum. Sequential data 

assimilation techniques provide a general framework for automatic parameter estimation and at 

the mean time explicitly considering the uncertainties from the inputs, parameters and model 

structures. One of the most well-known data assimilation algorithm based on recursive Bayesian 

estimation techniques was the Kalman Filter (KF) [16]. However, KF was only applicable to linear 

systems. The Extended Kalman Filter (EKF) was then developed for optimizing nonlinear systems 

[17]. The major drawback of the EKF is the requirement to linearize the model equations which 

lead to notoriously inaccuracy if the nonlinearities are strong. The well-known ensemble 

Kalman-filter (EnKF) [18], a Monte Carlo implementation of Bayesian updating was proposed by 

Evensen to circumvent the problems by evolving the errors with the nonlinear model by 

performing an ensemble of model runs. However, EnKF relies on a Gaussian assumption of model 

and observation errors which is not always true in environmental modeling [19-21]. In a separate 

research line, the use of sequential Monte Carlo methods in the form of PF [22, 23] for 

non-Gaussian, non-linear dynamical models had been developed [22, 24, 25]. The PF originated 

from the research area of target tracking, object recognition, robotics and financial analysis. The 

advantage of PF is the handling of non-Gaussian, non-linear models. Both PF and EnKF use 

samples (i.e., ensemble members in EnKF, particles in PF) to estimate the Probability Density 

Function (PDF) of model states and parameters. 

Groundwater plays a valuable role in the agricultural production, economic development and 

ecological balance in the middle reaches of the Heihe River Basin (HRB). Owing to several 

unique qualities (e.g., widespread and continuous availability, low development cost, drought 

reliability, etc.), groundwater has been excessively exploited during the last decades. Groundwater 

over-exploitation would cause many impacts which include groundwater level drawdown, reduced 

streamflow, increased energy cost for pumping, deterioration of water quality and ecological 

degradation [26]. Groundwater models are widely used methodology to parameterize the geologic 

structure of the real world. Many groundwater models had been developed in the last three 

decades [27-31]. MODFLOW [30], a well-established US Geological Survey computer software 

had been widely used to simulate groundwater system since the early 1990s. 

The core contributions of this study were (1) the simulation of groundwater system in the 

middle reaches of the HRB, (2) the estimation of parameters and parameters uncertainties, (3) a 

new architecture of cloud computing based on Software as a Service (SaaS) which leads to the 

concept of Model as a Service (MaaS). We will first outline the theory behind the cloud computing, 

SaaS, PF and the groundwater model. This will be followed by the descriptions of data source and 

model settings. Section 4 and section 5 will present the results and conclusions. 

2. Related works 

Although the origin of the term “cloud computing” in ICT is unclear, the idea of cloud computing 



is not new. In the Fall of 1957, Professor John McCarthy tried to initiate time-sharing on modified 

IBM 704 and IBM 7090 computers [32]. Later in 1961, he first suggested a vague model of 

computer time-sharing system which was regard as the early stage of cloud computing [33]. The 

National Institute of Standard and Technologies (NIST) provided the definition and reported 

several essential aspects of cloud computing [34]. Several architectures of cloud computing were 

proposed by [1, 35, 36] which were Infrastructure as a Service (IaaS), Platform as a Service 

(PaaS), Software as a Service (SaaS), Data as a service (DaaS) and Robot as a Service (RaaS). The 

architectures, interfaces, and behaviors of intelligent devices connected to the cloud computing 

environment were discussed using RaaS as a case study [37]. All these architectures lead to 

Everything as a Service (EaaS, XaaS or *aaS) [38] (Fig. 1). An extensive survey of mobile cloud 

computing was given by [39]. Recent research advances of applications of cloud computing 

techniques in scientific research were reviewed by [40]. Dong et al. reported a novel evacuation 

system based on multiple cloud platforms in order to provide better management with lowers costs 

in an emergency [41]. More recently, Tao et al. proposed a hybrid computing model named “Foud” 

which combined fog computing and cloud computing to optimize Vehicle-To-Grid network 

services [42]. CPS extends the cloud computing concept beyond computing and communication to 

include physical devices [37]. CPSs require tight integration of computing, communication and 

control technologies in managing physical systems and applications [43]. A comprehensive survey 

on the concept and strategies for constructing resilient and integrated CPSs was given by [44, 45]. 

The pervasiveness of WSNs technologies in many fields makes them an integral part of CPSs [46]. 

Several issues related to WSNs were addressed by the scientific community [47]. The risk 

assessment and security issues in CPSs were studied by [48-54]. Several examples based CPS 

were described by [55-57]. 

 

Fig. 1. The Architectures of Cloud Computing. 

Particle Filter was used to solve nonlinear filtering and Hidden Markov Chain (HMM) problem 

in Bayesian statistical inference and signal processing which was pioneered by [22]. The 

mathematical foundations and the first rigorous analysis of the PF was described by [58, 59]. 

Some branching types of particle methodologies were developed in the 1990s [60, 61]. The 

sample degeneracy and impoverishment problem in PF were investigated by [62]. Bi et al. 

developed an improved PF and tested it by assimilating temperatures into the variance infiltration 

capacity (VIC) model to estimate soil moisture in the NaQu network region at the Tibetan Plateau 



[63]. Salamon et al. applied the PF to assess parameter, precipitation, and predictive uncertainty in 

the rainfall–runoff model LISFLOOD and explored the capabilities of PF for handling the 

parameter uncertainties [64]. Hongxiang Yan and Hamid Moradkhani reported a study which 

assimilated streamflow and surface soil moisture into Sacramento Soil Moisture Accounting 

(SAC-SMA) model using PF. Albrecht H. Weerts and Ghada Y. H. El Serafy compared PF and 

EnKF in updating the state in a conceptual rainfall-runoff model HBV-96 for flood forecasting and 

concluded that PF performed better than EnKF for estimating the soil moisture storage states with 

little difference [65]. 

Many numerical models have been developed for hydrological systems over the last 30 years 

[28, 30, 66-68]. These numerical models provided effective approaches to simulate and analyze 

the spatial–temporal variations in the distribution of groundwater system under changing land use 

and climate conditions, and hence, analyze the hydrological responses to different climate and 

land use scenarios. Many researches had been conducted using the hydrological models [69-77]. 

3. Materials and Methods 

3.1 Model description 

In this paper, the framework of integrating cloud computing and WSNs was used followed [5, 56]. 

WSNs deployed in the physical world were used to gather data from the environment for the cloud 

computing as illustrated in Fig. 2. Several modifications were made based on the Berkeley view of 

cloud computing [78] which led to the new architecture Model as a Service (MaaS). Fig. 2 

illustrated four layers (including MaaS Users in the top layer) in the proposed architecture. The 

bottom layer contained the physical machines which provided the computing resources (e.g., CPU, 

Memory, Disk, Bandwidth, etc.). The second layer mediated and managed the physical resources. 

Virtual machines ran on the hardware resources which were considered as a perfect method to 

overcome the establishment and maintenance of physical machines. The idea of virtualization of 

the computing resources includes processors, memory, disk and I/O devices aiming to improve 

sharing and utilization of the computing resources [79-82]. Virtualization enables multiple and 

different operating systems and softwares to operate on a single physical platform (IaaS). The 

third layer was the numerical model layer. Numerical models are usually computer programs 

which can simulate the behaviors, dynamics of natural systems in physics, astrophysics, 

climatology, chemistry and biology, human systems in economics, psychology, social science, and 

engineering [83]. They can be used to explore, capture and reproduce the performance of natural 

systems which are too complex for analytical solutions [84]. Different kinds of numerical models 

(e.g., groundwater models, subsurface models, land surface models, climate models, etc.) could be 

established on the virtual machines. Models were supposed to construct and calibrate offline with 

extensive expert knowledge according to different purpose and offered as a service (MaaS) so that 

the users could focus on their principal problems. Theoretically, these models were distributed in 

different locations and could be accessed via Internet. Moreover, three fundamental requirements 

of Service-Oriented Architecture (SOA) [85] functions should be satisfied as a service provider, as 

a service broker and as a service client: 

 As a service provider: A repository of preloaded services (e.g., models and components) is 

provided. The information of the services is also hosted and provided to the service broker. 

MaaS users (e.g., researchers and modelers, etc.) can deploy new services into or remove 

service from a model. 



 As a service broker: A list and information of the services which are available are provided 

to the MaaS users. 

 As a service client: MaaS users are able to compose new models based on the services 

available. The entries in the broker registry for the selected services are located using various 

find operations. 

 

Fig. 2. Architecture of Model as a Service 

3.2 Particle Filter 

Particle Filters [86] allows inference of full posterior distributions via Bayesian filtering in 

nonlinear state-space of models with non-Gaussian noises. With sufficient samples, the particles 

would approach the Bayesian optimal estimate. A brief introduction of PF is given below. 

3.2.1 Recursive Bayesian Estimation 

The central idea of PF is to represent the PDF of model states as a set of random samples. 

The state vector evolves according to 

  1 1
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n n n n
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 
                            (1)                      

Where M(•) is the system transition function which normally is a model and Vn represents the 

system noise. Xn-1 is the state variables at time step n-1. θ represents the vector of model 

parameters. At discrete times, the measurement Yn would be available. The states transform to the 

measurement domain using the observation equation. 
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Where H is the observation operator which expresses the transition from states to the 

measurements and Un is the measurement noise. The noise terms of Vn and Un are generally 

assumed to be independent random vectors. On time step n, the available information of 

measurements is Dn={Yn; n=1, 2, …, t}. 

The purpose is to acquire the PDF of the current state given all the available information 

p(Xn|Dn). This PDF can be obtained recursively in two procedures: prediction and update. Suppose 

that the PDF p(Xn-1|Dn-1) at time step n-1 is available. For the prediction stage, the prior PDF of 

the state at time step n is: 
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After the Yn becomes available at time n, the posterior PDF could be obtained via Bayes rule 

(the update stage): 
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Where the normalizing constant is given by 
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In equation (4), Yn (the measurements at time step n) is used to update the prior PDF for time 

step n-1. The recurrence of equation (3) and (4) along time step is the formal solution to Bayesian 

estimation problem. 

3.2.2 Sequential importance sampling (SIS) 

In PF, the posterior distributions are approximated by discrete random measures implemented by 

particles and the associated weights. The particles at time step n are used to map integrals to 

discrete sums by the following approximation [24]:  
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Where { , }i i

n n
X w  represents the ith particle at time step n and its weight, respectively. The weights 

i

n
w  sum to 1. δ(•) denotes the Direc delta function. 

An important concept in PF is the SIS which is used for the determination of the particle 

weights [87]. The importance sampling generates particles 
i

n
X  from a proposal distribution (or 

importance density) q(X0:n|D1:n) and assigns the weights (importance weights) according to 
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The update of the importance weights at iteration is achieved by factorizing the proposal 

distribution sequentially [24, 25]: 
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The SIS algorithm has serious degeneracy limitations [25]. To surmount this limitation, a 

resampling stage needs to be introduced which will be briefly presented in the following section. 

3.2.3 Sequential importance resampling (SIR) 

The SIR eliminates samples with low weights and accumulates samples with high importance 

weights by mapping the Dirac random measure -1 -1
{ , }i i

n n
X w  into an equally weighted random 

measure 1
{ ,1 }i

n p
X N

  so that Np particles are produced all with weighting 1/Np. 



  

Fig. 3. Schematic diagram of Particle Filter 

As shown in Fig. 3, the PF starts at time step n-1 with a uniform distributed measurements 

 1

1
,i

n p
X N 

  which provides an approximation of p(Xn-1|D1:n-2). The importance weights for 

particles are computed at time step n-1. This results in the weighted measure  1 1
,i i

n n
X w

   which 

provides an approximation of p(Xn-1|D1:n-1). The resampling step selects only the fittest particles to 

obtain the unweighted measure 1{X , N }i

n p

  which is also an approximation of p(Xn-1|D1:n-1). 

Finally, the prediction step introduces variety in the measure of the next time step 1{X , N }i

n p

  

which yields an approximation of p(Xn|D1:n-1). 

3.3 Numerical model 

In this study, the numerical model MODFLOW [30] was used to simulate the groundwater flow. 

MODFLOW numerically solves the three-dimensional groundwater flow equations using a 

finite-difference method. 
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              (9) 

Where H is the hydraulic head (L); Kxx, Kyy, Kzz, are values of hydraulic conductivity along the x, y 

and z coordinate axes (L/T); W represents source and/or sink term of water (T
-1

) with W < 0 for 

flowing out of the groundwater system, and W > 0 for flowing into the system; Ss denotes the 

specific storage of the aquifer (L
-1

); and t is time(T). 

3.4 Data and model settings 

Land use data were obtained through interpretation of Landsat TM/ETM+ images in [88-90] 

which was developed by the Chinese Academy of Sciences (CAS). Observed groundwater level 

data from 42 boreholes (Fig. 4 (a)) were used in for calibrating the model. The irrigation data were 

obtained from annual water resource management reports published by the Zhangye Municipal 

Bureau of Water Conservancy. Annual runoff at Yingluo Gorge, Gaoya and Zhengyi Gorge 

hydrologic stations (Fig. 4 (a)) were collected from the Gansu Provincial Bureau of Hydrology. 

The data of groundwater exploitation during the modeling period were obtained from China 



Census for Water. All of the above-mentioned data were collected by WSNs and obtained from the 

Environmental and Ecological Science Data Center for West China (WestDC, 

http://westdc.westgis.ac.cn/). 

  The construction of conceptual model for the middle reaches of the HRB was shown in Fig. 5. 

From the perspective of the whole middle reaches, there are several source and sink terms. These 

terms can be summarized as follows: 

Liyuan Heihe Bou Heihe
Irr Q Q Q ET Q Storage                          (10) 

Where Irr is the irrigation for the farmland (L/T); QLiyuan is the inflow of the Liyuan river (L
3
/T); 

QHeihe is the inflow of the Heihe river from the upper reaches which is observed at Yingluo 

hydrologic station (L
3
/T); QBou is the inflow from system boundary (L

3
/T); ET is 

evapotranspiration (L/T); QHeihe represents the outflow to the lower reaches which is observed at 

Zhengyi Gorge hydrologic station (L
3
/T); △Storage is the variation of the groundwater storage in 

the middle reaches. Constant flux boundary is defined for the south and east boundary where 

groundwater flows into the model domain from mountains; the north side of the middle reaches is 

the impermeable boundary; impermeable boundary is selected at the tectonic fault-down zone in 

the west; the top boundary is atmospheric air-soil interface; the bottom boundary condition at the 

base of aquifer is defined as no-flow boundary.  

MODFLOW was used to simulate the groundwater dynamics in the middle reaches of the HRB 

[91] (Fig. 4 (a)). The middle reaches of the HRB was conceptualized by finite-difference grids 

which consisted of 132 rows and 165 columns with a uniform cell size of 1×1 km (Fig. 4 (b)). The 

simulation was conducted from January 1986 to December 2008 with 276 stress periods. The 

agricultural irrigation was simulated through Recharge (RCH) package [30] in MODFLOW-2005 

by specifying recharge flux during the study periods. Evapotranspiration was simulated using the 

Evapotranspiration (EVT) package [30]. Groundwater discharge from evapotranspiration was 

neglected when the groundwater level is lower than 5 m. There were over 6000 pumping wells in 

the study area; however, 805 pumping wells were simulated in MODFLOW due to the resolution 

of model grids (Fig. 4. (b)). The Heihe River and Liyuan River was implemented using the 

Streamflow-Routing (STR) package [92] (Fig. 4. (b)). The study area was divided into eight 

sub-zones according to hydrogeological map [93]. The horizontal hydraulic conductivity 

(parameters) were constant for each sub-zone (Fig. 6). 

 

Fig. 4. (a) Location and map of the middle reaches of the Heihe River Basin; (b) 



Conceptualization of the middle reaches of the Heihe River Basin in MODFLOW 

 

Fig. 5. Conceptual model for the middle reaches of the Heihe River Basin 

 

Fig. 6. The subzones of hydraulic conductivity in the middle reaches of the Heihe River Basin 

4. Results and Analysis 

4.1 Groundwater level simulation 

Seven boreholes (one for each sub-zones of hydraulic conductivity) were selected from the 42 

wells to illustrate comparisons of the observed and simulated groundwater level (Fig. 7). No 

comparisons were conducted in sub-zone 8 because of the absence of observed data. The model 

parameters were calibrated in the middle reaches of HRB using different types of data. The 

calibration was accomplished by a combination procedure of the parameter estimation code PEST 

[94] and trial-and-error. The calibration makes the simulated results to approximate the measured 

data from the boreholes as much as possible. Through this process, the model parameters 

(hydraulic conductivity) were adjusted and shown in Table 1. The observed and simulated 

groundwater level at all the observation wells in the calibration period (Fig. 7 (h)) indicated a 

reasonable match between the observed and simulated head values. A quantitative comparison of 

the head data in all observation wells was carried out to evaluate the model performance with 

RMSE of 1.70 m and R
2
 of 0.64. The discrepancy was reasonable considering the inaccurate 

spatial distribution of the initial hydraulic heads and the relatively large difference between the 



highest and lowest groundwater level across the model domain with about 230 m. However, from 

Fig.7 (a) to Fig. 7 (g) one could notice that there were still some differences between the observed 

and simulated groundwater levels. 

Table 1 

Calibrated hydraulic conductivities for each sub-zone 

       Sub-zones 

Parameters 
1 2 3 4 5 6 7 8 

Hydraulic conductivities 

(m/day) 
23 10 90 3 20 20 50 50 

 

Fig. 7. Comparison between observed and simulated groundwater levels ((a) Daman; (b) 

ZhangYNC; (c) 54; (d) BanQDW; (e) 32; (f) SanYiQv; (g) 11) 

4.2 Groundwater level assimilation and parameter estimation 

In general, the groundwater system is simulated and analyzed by numerical models. However, 

numerical models would be inapplicable in a situation where aquifer parameters vary with time. 

Therefore, a recursive strategy was applied to capture the time variation of the hydraulic 

conductivity during the assimilation period. A synthetic case was conducted to assimilate 

groundwater level, estimate parameters and analyze the uncertainty of the parameters 

simultaneously. The calculated groundwater level from the simulation (shown in Fig. 7) was used 

as observations to update the parameters. Similar to the simulation results, seven boreholes were 

selected to illustrate the assimilation results (Fig. 8). Horizontal hydraulic conductivities from 8 

sub-zones were the parameters to be estimated and analyzed through PF (Fig. 9). One hundred 

particles for each of the parameters were randomly generated from a logarithmic normal 

distribution for the prior distribution of the parameters. The expectation and variance of the 

distribution for the parameters in each sub-zone were respectively set to the calibrated value 

(Table 1) and 0.3 according to [95]. SIR filtering in the parameter space was carried out at each 



time step. By implementing Bayesian statistical inference, the posterior distributions of the 

parameters were estimated. The mean value of the posterior distribution was supposed to be the 

optimal estimation for the current time step. 

The uncertainties of the parameters were considered by random generating the parameters from 

a log-normal distribution. PF was used to reduce the parameter uncertainties by involving more 

observations which was reflected by the narrowing of the distributions of the parameters (Fig. 9). 

As the assimilation proceeded, the posterior mean estimates for all the parameters were 

converging. In the meantime, the calculated groundwater levels converged toward the 

observations which indicated the reduction of the parameters uncertainties. The processes of 

reducing uncertainty in sub-zone 2 and sub-zone 5 were slower than in other sub-zones. This may 

be caused by the relatively less boreholes and centralized distribution of boreholes. Moreover, the 

interactions and transformations between groundwater and the Heihe River, the interactions 

between groundwater and boundary were both significant in this area. In other words, the 

information obtained from observations of sub-zone 2 and sub-zone 5 was not sufficient to reduce 

the uncertainties in these two sub-zones. Another reason for the different convergence rates was 

the small difference between the variance of the log-normal distribution for resampling and the 

relatively large value of the parameters. This would lead to small difference between the weights 

of different particles and less updating effects. Significant reductions of uncertainties for the other 

six parameters were observed after about 120 assimilation steps (around 1996). All the parameters 

were converged after about 144 assimilation steps (around 1998). The reason for these significant 

reduction could be attributed to the key role of new observation data (observed groundwater levels) 

in updating (correcting) of parameters. Because of the lack of observation wells in sub-zone 2 and 

sub-zone 7, the uncertainties remained large until the end of the assimilation period. 

Furthermore, EnKF [18] was used to assimilate observations for the purpose of comparison 

with PF. In this experiment, the observations, parameters and numerical model were identical with 

regards to that in the PF case study. The results from PF and EnKF were shown in Fig. 10. A 

quantitative comparison of the results in all the boreholes was carried out to evaluate the 

performances of different algorithms. Generally, the differences between PF and EnKF were 

negligible. However, the results from PF were slightly better than those from EnKF. This may be 

caused by the nonlinearity and non-Gaussian distribution of the numerical model. 



 

Fig. 8. The evolutions of groundwater level at observation wells ((a) Daman; (b) ZhangYNC; (c) 

54; (d) BanQDW; (e) 32; (f) SanYiQv; (g) 11) 

 

Fig. 9. The evolutions of hydraulic conductivities for sub-zones ((a) sub-zone 1; (b) sub-zone 2; 

(C) sub-zone 3; (d) sub-zone 4; (e) sub-zone 5; (f) sub-zone 6; (g) sub-zone 7; (h) sub-zone 8) 



 

Fig. 10. Comparison of the results from PF and EnKF ((a) PF; (b) EnKF) 

4.3 Groundwater model as a service 

With the advancement of Information and Communications Technology (ICT), cloud computing 

emerges as one of the most inspiring technologies and widely used in many fields due to its cost 

efficiency and flexibility [96]. There is a trend that the computing resources are provided as 

services which results in IaaS, PaaS, SaaS and DaaS, etc. The groundwater model established in 

this paper was implemented on cloud to offer services for the users (decision makers, researchers, 

water managers, etc.). 

In the RaaS architecture which was proposed by [36, 37], hardware components (e.g., 

intelligent things and robot) were connected to the cloud environment and provided to the RaaS 

users as a service. Similar to the RaaS, in MaaS architecture, the numerical model was 

implemented in the cloud environment and provided as services which were used to simulate 

different physical processes (irrigation, precipitation, evapotranspiration, groundwater pumping, 

river seepage, etc.) (shown in Fig. 11). Generally, a physical process was encapsulated as a service. 

Different services were able to cooperate with each other. The users were able to customize the 

services and formulate their own models for special problems. The establishment of the numerical 

model was not needed for the users which avoided the duplication of work. Furthermore, different 

models (e.g., groundwater models and crop growth dynamic models) were able to be integrated to 

consider the interactions and feedbacks between different processes. The visualization of 

observations and influence of different parameters and processes facilitated the decision-making 

processes for the MaaS users.  

 



Fig. 11. MaaS in cloud environment. 

4.4 Implementation of MaaS 

To prove the concept of MaaS, we implemented the established groundwater model in the cloud 

environment as a case study. Fig. 12 showed the system consisting of the cloud (left) and the 

groundwater model which simulated several physical processes (i.e., Irrigation, Groundwater 

pumping, River and Evapotranspiration). The data and model settings of MaaS were presented 

previously. The deployment of the cloud environment engaged two general Personal Computers. 

On the software side, standard interface, Web capacity and distributed deployment were the main 

consideration. 

 Operating system: The system was implemented on two Ubuntu-based machines. 

 Programming language: NODE.JS was used to program the groundwater model into Web 

services.  

 Database: MongoDB—a distributed document-oriented database—was deployed in the two 

Ubuntu-based machines to store the observations and the simulated data from the 

groundwater model. 

 

Fig. 12. MaaS in cloud environment (using groundwater model as a case study). 

As shown in Fig. 13, some interfaces for basic features were provided as a service in the initial 

version. In the main page, the MaaS users were able to choose the layers (study area boundary, 

irrigation channels and observation wells) to load. The simulation period was limited from January 

1986 to December 2008 and could be customized. The hydraulic conductivities for each sub-zone 

of the study area could be changed by the users for different purpose. Default parameter values 

were pre-defined by the calibrated values. After finishing the settings, the groundwater model was 

able to execute on the cloud. There was no need for the users to install or construct the model. The 

construction, data pre-process, model calibration, output post-process and visualization procedures 

were all handled by the system. The visualization for results was shown in Fig. 14. The 

observation boreholes were represented by the red marks in the study area. The observed 

groundwater level was available at each observation boreholes as shown in Fig. 14. By clicking 

the red marks, the time series of observed and calculated groundwater level were plotted. In the 

meantime, the calculated spatial distribution of the groundwater level was plotted in the form of 

heat map in the study area. Additional map layers were available to verify the reasonableness of 

the simulation results. The MaaS users can analyze the trend of groundwater level or the effects of 

different parameters or inputs on the groundwater system. 



 

Fig. 13. Main page for MaaS 

 

Fig. 14. Results from MaaS 

5. Conclusions 

As cloud computing becoming more and more popular, a new architecture of cloud 

computing—Model as a Service (MaaS) was proposed in this paper. A groundwater model of the 

middle reaches of the HRB in northwestern China was established to illustrate the advantages of 

MaaS. The groundwater model was adequately calibrated with observed groundwater level. The 

calibrated model reproduced the historical observations considerably at the monthly time scales. A 

sequential data assimilation method (Particle Filter) was developed to assimilate the observed 

information into the groundwater model to estimate the aquifer parameters (horizontal hydraulic 

conductivity). By implementing PF, the uncertainties of the groundwater model parameters were 

reduced and the parameters were adjusted along with time. An initial implementation of MaaS was 

realized with which the users were able to conduct spatio-temporal analysis of the observed and 

calculated groundwater level. The physical processes involved in the numerical model were 



realized as services on the cloud. The MaaS users were able to build their own models based on 

different services instead of establishing numerical models from scratch. However, the assumption 

that the aquifers were characterized only by hydraulic conductivities should be extended and more 

features for the MaaS should be provided in the future work. 
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