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Abstract

Mobile cloud computing is a paradigm that delivers applications to mobile devices by using cloud com-

puting. In this way, mobile cloud computing allows for a rich user experience; since client applications run

remotely in the cloud infrastructure, applications use fewer resources in the user’s mobile devices. In this

paper, we present a new mobile cloud computing model, in which platforms of volunteer devices provide

part of the resources of the cloud, inspired by both volunteer computing and mobile edge computing

paradigms. These platforms may be hierarchical, based on the capabilities of the volunteer devices and

the requirements of the services provided by the clouds. We also describe the orchestration between the

volunteer platform and the public, private or hybrid clouds. As we show, this new model can be an

inexpensive solution to different application scenarios, highlighting its benefits in cost savings, elasticity,

scalability, load balancing, and efficiency. Moreover, with the evaluation performed we also show that

our proposed model is a feasible solution for cloud services that have a large number of mobile users.

Keywords: fog computing, heterogeneous cloud, hybrid cloud, mobile cloud computing, mobile edge

computing, participating device.

1. Introduction

Throughout the last few years, cloud computing (CC) has provided computing solutions to lots of

companies, organizations, and individual users in the form of services over the Internet. CC provides

on-demand, pay-per-use, and highly scalable computing capabilities for services that enhance the user

experience in a transparent way for the user [1]. Meanwhile, with the current exponential growth of5

mobile devices, there is an emerging concept called mobile cloud computing (MCC) that has erected to

integrate CC into the mobile environment [2]. In MCC, user applications are computed in remote clouds

rather than in their own mobile devices, providing multiple benefits to the mobile users, such as a longer

battery lifetime or a lower processing load.

Among the different approaches to MCC, we can bring the computation capabilities closer to the10

mobile users. This model locates small-scale servers or cloudlets at the edge of the network (e.g., base
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stations or coffee shops) in order to avoid latency or bandwidth issues CC experiment. This approach is

related to novel paradigms such as fog and mobile edge computing and is supposed to be a key aspect

in 5G [3, 4]. On the other hand, it needs a periodic synchronization between the edge servers and the

cloud, so several questions arise: when should the edge servers upload data to the cloud servers? How15

will the cloud handle such amounts of data from multiple edge servers located all over the world? How

will these systems guarantee consistency (one of the desired properties of a distributed system according

to Brewer’s theorem [5])? There are only a few published works related these issues [6, 7] and they are

all also theoretical. Besides, this approach has numerous security issues (e.g., authentication, mobility,

or access control) [8, 9], and not all companies and organizations will be able to deploy multiple servers20

at the edge of the network due to the high investment that it entails.

For all these reasons, we have developed a heterogeneous mobile cloud computing model that can

provide most of the benefits of the fog and mobile edge computing solutions, but it can also be deployed

easily and inexpensively by enterprises into their current cloud systems. More specifically, our work

provides the following contributions:25

• A heterogeneous mobile cloud computing model, which combines the current mobile cloud archi-

tecture with the utilization of volunteer platforms as resource providers.

• A complete description of this model and how it can be deployed in public, private, and hybrid

clouds by using the BOINC open-source software: the devices that form the volunteer platforms

should run the BOINC client software, and the cloud side should run the BOINC server software.30

• A modeling of the new proposed model using ComBoS, an open-source simulator for volunteer

computing and desktop grids created by the authors, as an entry point.

• An explanation of the benefits of our solution, including cost savings, elasticity, scalability, load

balancing, and efficiency.

• An extensive simulation-based evaluation considering several realistic scenarios that demonstrates35

that our proposed model is a feasible solution for different cloud services.

The rest of the paper is organized as follows: Section 2 describes the background and discusses related

work; Section 3 introduces in detail our proposed MCC model; Section 4 analyzes the performance of our

model applied to different services; and finally, Section 5 concludes the paper and presents some future

work.40

2. Background Related Work

In this section, we describe the background and present the work related to the solution proposed

in this paper. In particular, Section 2.1 is about mobile cloud computing, while Section 2.3 deals with
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volunteer computing.

2.1. Mobile Cloud Computing45

Mobile cloud computing (MCC) is a concept that refers to the integration of cloud computing into the

mobile environment [2]. In this way, MCC allows for a rich user experience; since client applications run

remotely in the cloud infrastructure, applications use fewer resources in the user’s mobile devices. The

typical architecture of MCC is shown in Figure 1 [2]. In this figure, the mobile user devices (from Mobile

device A to Mobile device F) are connected to the mobile networks through base stations: satellites,50

access points, or base transceiver stations (BTS). The network operators are the providers of wireless

communication services, and they allow the mobile devices to access the cloud via the Internet. This

left half of Figure 1 is called the network edge, while the right half, where cloud computing is located, is

called the network core. Cloud controllers are located within a cloud, and their job is to manage the user

requests and answer them by providing the mobile users with the corresponding cloud services. Even55

though new types of cloud services have emerged in recent years - such as CaaS (container as a service),

DBaaS (database as a service) or even GaaS (game as a service) - cloud services are mainly classified as

IaaS (infrastructure as a service), PaaS (platform as a service), and SaaS (software as a service) [10]:

• IaaS: it is the lowest layer of cloud computing. It offers any physical or virtual resource to the

clients.60

• PaaS: it is the middle layer. It provides the user with the ability to develop and manage applications

regardless of the infrastructure they use.

• SaaS: it is the highest layer. It allows the user to consume applications through the Internet using

a specific client software.

Among the multiple advantages of MCC, it can improve the user experience [2, 11] in terms of: (1)65

battery lifetime and (2) lower CPU load, since the processing tasks are performed in the cloud instead of

in the mobile device; (3) storage capacity, because files can be stored on remote cloud servers, without

consuming the storage resources of the mobile device; and (4) reliability, since data is stored in a number

of computers within a cloud, thus preventing data loss. There are MCC applications of many kinds [12]:

mathematical tools, file search, imaging tools, games, download applications, security, etc. Examples of70

MCC applications are Google’s Gmail for mobile1 or Amazon Simple Storage Service (Amazon S3)2.

According to [13], there are two other definitions of MCC. The first one is shown in Figure 2, where

some mobile devices act as cloud resource providers forming a peer-to-peer (P2P) network. In this model,

the mobile devices in the local vicinity and other stationary devices (if available) would create an ad-hoc

1https://www.google.com/mobile/mail/
2https://aws.amazon.com/s3/
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Figure 1: Mobile cloud computing basic architecture, based on [2].

network which can be accessed by other mobile devices in order to run their applications. Theoretically,75

this model allows offloading the cloud tasks to the mobile devices that form the virtual resource cloud.

Besides, latency is also reduced, since the mobile users just have to access the virtual cloud resource

instead of traversing lots of hops to get to the remote cloud. Examples of this approach are Hyrax [14]

and SATIN [15], but there are no real deployments of such solutions. However, there are different issues

related to this model:80

• It is not clear how the mobile users will find the mobile devices forming the virtual resource cloud

and how these devices are able to process the same tasks as a remote cloud.

• Battery lifetime is a critical issue in mobile devices, so, if the mobile devices of the virtual resource

cloud processed complex tasks, their batteries would run out.

• Most clouds need to back up all of the user’s information on their servers, so, if mobile devices85
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Figure 2: Virtual resource cloud forming a P2P network and acting as a resource provider.

perform the tasks near the mobile users, synchronization with the cloud servers becomes much

more complicated.

• The devices that form the virtual resource cloud are untrusted mobile devices, so why would a

mobile user send information to them? Nothing can warrant the user that their data will not be

treated maliciously.90

2.2. Fog and Edge Computing

Together, Fog and Mobile Edge Computing (FMEC) establish a distributed computing paradigm that

extends the services provided by the cloud to the edge of the network [16, 17]. In fog computing, a large

number of devices of all types access to cloud services. However, much of the processing is done near the

edge of the network instead of entirely in the core, taking advantage of the large number of sources on95

the edge [18]. This FMEC model is gaining relevance in the scientific community, since it will play an

important role in 5G [19, 20], and it will allow mobile devices to bypass the latency and bandwidth issues

of the current cloud systems, allowing the large number of mobile devices (the company CISCO systems

predicted that there will be 50 billion devices with Internet access by 2020 [21], including Internet of

Things (IoT) [22] devices) to use the services offered by cloud computing without saturating the cloud100

servers and networks.

A solution for FMEC is the use of cloudlets [23], which are composed of trusted, resource-rich nodes

which are located in the near vicinity of a mobile user. This solution is presented in the last MCC model

[13], shown in Figure 3. In this model, cloudlets are used to avoid latency and bandwidth issues related to

cloud computing. A cloudlet (also known as edge server or edge cloud) [24, 25] is a small cloud datacenter105
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located at the edge of the network, and it aims to provide resources with low latency to mobile devices.

In other words, their goal is to bring the cloud closer to mobile users, by offloading the computations from

mobile devices onto virtual machines (VM) [19]. In 2015, researchers from Carnegie Mellon University

created OpenStack++ [26], an open-source OpenStack extension that allows the integration of cloudlets

in an OpenStack infrastructure, in addition to VM provisioning and handoff. The potential for synergy110

between the cloudlet concept and Fog [16] and Mobile Edge Computing [27] (FMEC) has been studied

in [20, 28].
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Figure 3: A cloudlet providing public resources to mobile user devices.

In [29] a drop computing paradigm is introduced. This paradigm proposes the concept of decentralized

computing over multilayered networks, combining cloud and wireless technologies over a social crowd

formed between mobile and edge devices, thus, instead of every data or computation request going115

directly to the cloud, Drop Computing employees the mobile crowd formed of devices in close proximity

for quicker and more efficient access. This solution is similar to the solution proposed in our article.

However, the main problem with this solution is how to locate other drop computing nodes to distribute

data or computation.

Other work that uses the idea of edge computing is [30], where a middleware between the smartphone120

and the mobile cloud is described. The idea is that the computational activity used by a smartphone is

offloaded to other mobile devices, just as it is now often done to desktop or laptop computers. The device

itself then becomes an interface to applications running on different smartphones, and uploads merely

raw data and downloads the processed material when it is needed. This solution is also similar to the

solution proposed in our article. However, the main problem with this solution is the same as the above125
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work, how to locate the other smartphones to offload the computation.

[31] proposes a code offloading framework, called mCloud, which consists of mobile devices, nearby

cloudlets and public cloud services, to improve the performance and availability of the MCC services.

This system uses a discovery service responsible for discovering the mobile cloud infrastructure resources.

This discovery service is similar to a BOINC server that stores the list of volunteer devices. The advantage130

of our solution is that we use BOINC as a volunteer computing platform. On the other hand, mCloud

depends on a discovery service that detects other available mobile devices in the proximity. The main

problem with this solution, as the authors of this paper explain, is the additional overhead an energy

consumption of this solution. This problem does not appear in the solution proposed in this paper.

When a large number of devices of all types access to cloud services, resource allocation (compute135

cycles, temporary memory, etc.) became a crucial issue to adjust cost and to provide the appropriated

service. In order to prevent some peak demand, a cloud federation solution [32] could be used. However,

in ephemeral events (for example, a holiday week where people move to another place) considerable

requirements in a short and temporal period do not justify building a new datacenter, deploying a fast

interconnection network, or moving a massive amount of data. Part of the processing could be done140

near the edge of the network instead of entirely in the core. Extreme edge infrastructures [33] are an

interesting proposal. But again the resources near the edge of the network are limited, not always could

match the number of client devices requests, and it is not easy to deploy a service quickly and cost-

effectively. Anticipation could not always be possible for pre-allocating of any possible workload peak

for both: the Edge part of the cloud and the Core part of the cloud. But what if the clients (devices145

that access to the cloud services) provide their own resources? This on-demand self-allocation strategy

could be combined with other solutions as mentioned above, and it is especially recommended (but not

limited) for non-persistent services.

The software for managing this proposed on-demand non-persistent elements is a significant challenge.

Resource managers for cloud such as Mesos [34] or Kubernetes [35] are used to join semi-persistent devices150

(existing devices where the number of failures in this set of devices is limited) with a push-like control

technique. Volunteer computing was designed with a pull-like control technique in mind in order to work

with a volatile (non-persistent), heterogeneous and unreliable resources (where the devices come and go).

Studies such as [36] demonstrate that under higher load, a pull-like technique is better for improving

scalability.155

As we discuss later, volunteer computing is primarily used for scientific projects for free [37], while

cloud computing is used for an on-demand paid service workload [38]. However, while Mesos and Ku-

bernetes take care of resource in a transparent way for users, in volunteer computing the users have to

configure for which (scientific) projects the device is going to participate, in a flat administration domain.

Cloud resource managers (Mesos, Kubernetes, etc.) use to scale up and down an existing service (for160

load balancing) in a homogeneous pre-existent infrastructure, but volunteer computing projects use to
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scale up as maximum as possible.

Mesos consists of a master daemon that manages agent daemons running on each cluster node, and the

Mesos framework runs tasks on these agents. This resource manager is only available for infrastructures

where the number of agents is known. With Kubernetes, the idea is very similar. The objective of our165

solution is to reduce the number of resources that the cloud provider has to install. The aim is to reduce

the number of local resources in the cloud and use volunteer devices instead. This feature allows reducing

costs on the cloud side, one of the advantages of our solution.

While Docker, a container-based technology, is proposed as a platform for Edge Computing [39], still is

experimental [40] for volunteer computing (as a light way to solve execution on heterogeneous resources).170

As far as the authors know, there is no proposal for an on-demand self-allocation client-based solution

that could be added to Edge and Core cloud for non-persistent services (for example, for mobile IoT [41]).

2.3. Volunteer Computing

Volunteer computing is a type of distributed computing in which ordinary people donate processing

and storage resources to one or more scientific projects. Luis Sarmenta coined the term volunteer comput-175

ing (VC) during his Ph.D. research [42]. BOINC [43] is the main middleware system for VC that makes

it possible for scientists to design and operate public-resource computing projects. The applications sup-

ported by BOINC are diverse and include communication and large storage data-intensive applications.

For computer owners to become volunteers, they have to download and run a BOINC client program on

their computers. Each volunteer can participate in multiple BOINC projects. If they choose to do so,180

they have the freedom to specify how they would like their resources to be allocated among the projects.

Examples of BOINC projects include Einstein@Home, Enigma@Home, LHC@Home, MilkyWay@Home,

SETI@Home, and Universe@Home.

The basic BOINC architecture has a central server that is responsible for dividing applications into

thousands of small independent tasks. As the worker nodes request workunits, the central server dis-185

tributes the tasks among them. If this server initiated the communications, NAT (Network Address

Translation) issues might arise from a bidirectional communication. For this reason, when a worker is

ready to submit results or needs more work, it initiates the communication. The centralized servers never

initiate the connection with worker nodes.

Moreover, VC can be used on mobile devices for executing tasks. In this kind of platforms, the BOINC190

application only computes when the device is plugged into a power source (AC or USB), and the battery

is over 90% of charge, so it will not significantly reduce the battery life or the recharge time. Besides,

BOINC transfers data only when the devices are connected to a WiFi network, and the device screen is

off. It is true that mobile devices only perform volunteer computing tasks when they are plugged and

almost charged. This situation seems to be unusual; however, most of the people charge their phones195

overnight. Considering an average sleeping time of 8 hours, and around one or two to hit a 100% of
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battery, every mobile device can contribute between 6 or 7 straight hours during the night to volunteer

computing projects. Also, there are current studies that try to exploit this model by using the idle

computing resources of smart TV sets as volunteer nodes [44], which shows that this type of computing

can become part of the IoT world.200

Apart from BOINC, there are other VC systems, such as WeevilScout [45] and Comcute [46]. Both

solutions consist of using web browsers from anonymous users to perform master-slave VC tasks. In fact,

the solution described in [46] proposes a multi-level volunteer computing architecture, and it is similar to

the approach introduced in [47] since both have volunteer users computing parallel executions. The use

of VC systems for Big Data processing has been studied in [48]. In this article, the authors describe an205

architecture of intelligent agents to optimize Big Data processing. In [49], the authors present a VC solu-

tion called FreeCycles, which supports MapReduce jobs. FreeCycles improves data distribution (among

mappers and reducers) by using the BitTorrent protocol to distribute data and improves intermediate

data availability by replicating files throughout volunteers to avoid losing intermediate data. However,

these solutions are not based on BOINC, and they have plenty of future challenges.210

The use of VC in cloud computing has been explored in [50]. In this paper, the authors introduce

Cloud@Home, a combination of the VC and cloud computing paradigms used for scientific purposes.

Cloud@Home consists of creating a cloud by the combination of multiple low-power volunteer nodes.

However, this approach is entirely different to ours, because our solution can be applied to any existing

cloud system that wants to expand their resources, and it is not an alternative to the current cloud215

systems, unlike Cloud@Home. Besides, we wanted to propose a new MCC model based on BOINC,

because it is the most relevant middleware for VC, and there are currently hundreds of thousands of

volunteers participating in their projects.

2.3.1. BOINC

In BOINC, servers are responsible for managing projects. The architecture of the server side is shown220

in Fig. 3-2. The server side of a project consists of two parts:

• A project back end that supplies applications and workunits, and that handles the computational

results. It includes: a work generator, which creates workunits and their corresponding input files;

a validator that examines sets of results and selects canonical results; an assimilator that handles

workunits that are completed; and a file deleter, which deletes input and output files that are no225

longer needed.

• A BOINC server complex that manages data distribution and collection. It includes: one or more

scheduling servers (sometimes called task servers), that communicate with participant hosts; and

data servers, that distribute input files and collect output files. For small projects, if there are no

data servers, scheduling servers also operate as data servers.230
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Figure 4 shows how BOINC currently works. It contemplates a scenario with just one Volunteer Node

(VN-1: Ordinary client) and one project. When a volunteer (in this case, VN-1) wants to execute a task,

it first makes a request to the Scheduling Server of the project (step 1 of Fig. 3-1). Then, the server

answers with a workunit (step 2), which stores the computation to be performed and a list of addresses

where the input files needed to perform the computation can be downloaded. Therefore, the next step235

for the client is to download the necessary files from the list addresses, which correspond to the data

servers of the project (steps 3 and 4). Once the client has downloaded the files, it computes the task

(step 5). When the execution is finished, the client simply has to send the output files generated during

the execution to the data servers (step 6), and report the results obtained to the scheduling server (step

7).240

3. Proposed Model

In this section, we describe our solution in detail. More specifically, Section 3.1 defines some basic

terms. Section 3.2 outlines the aims and goals of this approach, Section 3.3 shows the architecture of the

proposed model, Section 3.4 describes the volunteer platforms that we consider in our solution, Section

3.5 depicts the two main application scenarios, Section 3.7 presents the incentive scheme we propose for245

the volunteer users, and finally Section 3.8 depicts the security aspects needed.

3.1. Terms

We have split the actors of our model into three types:

• Mobile users: the final clients that consume the cloud services.

• Participating devices: desktop computers or mobile devices that collaborate in a cloud system by250

donating their idle resources. In other words, they act as intermediate service providers. They form

the volunteer platforms.
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• Cloud infrastructure: hardware and software components that provide the cloud services, without

considering the participating devices.

3.2. Aims and Goals255

As we showed in previous work [51], some clouds are experiencing a saturation of their networks

and servers due to the high number of user devices accessing the services offered. In fact, this issue

is only going to worsen in the next few years because, as we mentioned in Section 2, the company

CISCO systems predicted in 2011 that there will be 50 billion devices with Internet access by 2020 [21],

and a huge percentage of these devices is going to access mobile cloud services. Some solutions from260

previous literature provide mechanisms to solve this bandwidth saturation issues, in addition to allowing

for communications with less latency (even real-time applications). In Section 2 we have also described

these solutions, which consist of deploying small-scale clouds or servers on the edge of the network.

Unfortunately, these solutions have not been implemented yet worldwide. Besides, not all mobile cloud

applications have real-time execution as their priority, and most importantly, many companies lack enough265

equity to cope with the expense of deploying small clouds at multiple base stations or other locations at

the edge of the network.

For all these reasons, we propose a new Mobile Cloud Computing (MCC) model that, unlike the

existing solutions, can be applied to the current clouds without substantial disbursement. Our solution

involves groups of volunteer users forming virtual platforms that act as resources to one or more clouds.270

Apart from cost-savings, the goals of our proposed model are:

• Elasticity: a cloud system that uses our solution can use the computing resources provided by the

volunteer platforms whenever needed, enabling the system to adapt to significant workload changes.

With our solution, a mobile cloud application can have many volunteers subscribed and can adapt

the execution of the mobile clouds application in a elastic way.275

• Scalability: after all, the volunteer platforms provide an extension to the cloud computing and

storage capabilities, so cloud systems that use our proposed model would allow more users to access

their resources. As we demonstrate in the evaluation section, the performance with our solution

improves the scalability of the system when the number of mobile users increase.

• Efficiency: in some cases, mobile users would rather access a device from a volunteer platform than280

from a remote cloud server (geographical proximity means fewer hops), thus reducing latency.

• Load balancing: as we explain later, the cloud controllers process the user requests and provide

the mobile users with the corresponding cloud services, either by their own clouds or by devices

from the volunteer platforms that collaborate with the cloud system. This scenario allows for the

implementation of various load balancing schemes not to saturate the cloud. This features is not285

analyzed in this work as is provided as future work.
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• Easy deployment: the clouds and the devices from the volunteer platforms must run an open-

source BOINC server and client software, respectively, so this solution does not require significant

alterations of the cloud infrastructure. We describe this deployment in section 3.6.

3.3. Architecture290

The architecture of our proposed model is shown in Figure 5, which is a variation of the MCC basic

architecture presented in Section 2.
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Figure 5: Architecture of our proposed model, based on the utilization of volunteer platforms.

The novel part of this approach is the utilization of volunteer platforms. A volunteer platform consists

of multiple participating devices that want to donate their idle computing and storage resources to cloud

systems, in a similar way to the millions of devices that currently contribute to BOINC scientific projects.295

A participating device that wants to contribute to a cloud system should download a variation of the

BOINC open-source software [52] (available on Docker container 3 and Virtual Machine 4), which executes

in the idle CPU periods of the device, and should request work to the clouds that the device collaborates

with. By the time a cloud system has the collaboration of multiple participating devices, it can distribute

the devices in logical volunteer platforms or even define hierarchies, depending on their capabilities. For300

example, the volunteer platforms can be defined based on the storage capacity of the participating nodes,

so that when a mobile user requests storage of a file to a cloud application, the cloud system should

3https://boinc.berkeley.edu/trac/wiki/BoincDocker
4https://boinc.berkeley.edu/trac/wiki/VmServer
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replicate this file in a number of cloud servers and participating devices (from a volunteer platform) that

are able to store a file of such size.

Each mobile user application that wants to use a cloud service should access the cloud system in305

an ordinary way (via the Internet). The cloud controller is then responsible for dealing with the user

application request and providing the mobile user with the requested service. Nevertheless, in this model

there are two options: providing the services using (1) the cloud servers of the system or (2) the volunteer

resources of some participating devices (see Algorithm 1b 5). From the point of view of a device that

wants to donate resources to cloud services, it is necessary that it first subscribe to a cloud system as310

a participating device. Then, the cloud system would run some benchmarks on the participating device

in order to test its capabilities. Once this has been done and depending on the type of service, the

participating device should ask the cloud for tasks during its idle CPU time (see Algorithm 1a).

1: procedure Subscribe(srvc) . Subscription of device into

cloud service srvc

2: if not subscribed then . list is not empty

3: send subscription request to srvc

4: benchmarks← receive answer from cloud . the

cloud sends the benchmarks in order to know the capabilities

of the device

5: res← execute benchmarks

6: device info file← create response file .

this file should contain the benchmark results (res) and all

other device information required (CPU model, RAM, GPS

location, etc.)

7: send device info file to the cloud

8: url← receive URL from cloud . this

URL has the code the participating device should execute in

order to collaborate in the service (e.g., a code that is able to

receive computation requests and execute a neural network

for a music identification service)

9: code← download code from url

10: subscribed← true

11: end if

12: run code in background

13: end procedure

(a)

1: procedure Execute(tsk) . Remote execution of task tsk

(e.g., a recorded audio)

2: send request to cloud

3: list← receive answer from cloud . list of participating

devices that are able to process the task; if the list is empty,

that means the task should be executed by the cloud

4: if list then . list is not empty

5: err ← send tsk to N participating devices

6: if not err then . there is no error

7: res list← receive answers from the N participat-

ing devices

8: res, err ← verify res list . check if the quorum

is reached

9: end if

10: end if

11: if err or not list then . list is empty or there was an

error related to the participating devices

12: send tsk to cloud

13: res← receive answer from the cloud

14: end if

15: return res . computational result of tsk (e.g.,

identification that the short audio stored in tks corresponds

to the song X)

16: end procedure

(b)

Algorithm 1: Examples of: (a) subscription of a participating device in a cloud service; (b) remote execution of a mobile

user task.

5BOINC provides a form of redundant computing in which each computation is performed on multiple clients, the results

are compared, and are accepted only when a consensus is reached. In some cases, new results must be created and sent. In

Algorithm 1b, N is the replication factor, and the cloud administrators should choose it.
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3.4. Volunteer Platforms

Volunteer platforms consist of groups of multiple participating devices with similar computing capa-315

bilities (decision of the company). As participating devices are going to run the BOINC client software,

there are basically desktop computers and mobile devices. Since the participating devices are going to

process tasks or store data of the mobile users, it is important to exercise caution over the battery lifetime

for mobile devices. Fortunately, the BOINC client software for mobile devices computes only under the

following conditions (as we mentioned in Section 2.3):320

• The mobile device is plugged into a power source (AC or USB).

• The battery is over 90% of charge.

• The screen is off.

Volunteer platform C

Cloud computing

                                             
Cloud A

Cloud 
controller

Data center

Volunteer platform B

Volunteer platform A

Mobile 
device

Mobile 
device

Mobile 
device

Mobile 
device

Mobile 
device

Mobile 
device

Internet

Internet

Internet

Figure 6: Mobile users access participating devices from volunteer platforms that are closer and are able to process the

tasks needed.

In this way, the cloud tasks will not significantly reduce the battery life or the recharge time. For

instance, an anonymous user can collaborate with a cloud system by just plugging their mobile volunteer325

14



device into a power source before going to sleep. Hence, the mobile volunteer device can participate

in a cloud service while its owner is sleeping. Moreover, the ideal of this model is that mobile users

leverage the computing and storage idle resources of volunteer devices that are geographically closer

than the cloud remote servers, thereby preventing saturation of cloud networks and servers and also

bypassing latency issues (because participating devices may be much nearer than the remote servers,330

so fewer hops are needed in order to arrive at the destination), as Figure 6 shows. However, as the

resources provided by the participating nodes are volunteered, there is no assurance that these resources

are going to be long-lasting. We can just say that they are ‘volatile’ resources and that the availability of

participating devices is therefore vitally important. That is why our solution does not consist exclusively

of volunteer platforms. The main processing and storage resources would be the ones provided by the335

cloud infrastructure in order to allow fault tolerance of the participating devices and therefore data loss.

That said, the volunteer platforms will provide lots of benefits because they can back up files in storage

services, process tasks, etc. even when there are no more available resources in the cloud. In other words,

this solution does not change the current behavior of cloud services; it only provides more (inexpensive)

resources to them and reduces the workload of the cloud.340

3.5. Application Scenarios

Our proposed solution can be applied to different scenarios, among which we highlight storage and

computing services.

3.5.1. Storage Services

Our solution, which consists of the usage of volunteer platforms as resource providers, can be applied to345

typical storage mobile cloud services [53], such as Dropbox, Google Drive, or OneDrive. In this scenario,

once a participating device has subscribed to the cloud service when a mobile user wants to upload a

file to the cloud, it sends the file to the cloud (for simplicity, we are ignoring all the protocol matters of

these kinds of services). Then the file is stored in a number of cloud nodes (depending on the replication

factor of the storage system), and then the encrypted file is sent to a number of participating devices of350

one or more volunteer platforms. In this way, each file is backed up in several places (for example, in

two cloud servers and in two participating devices) so that the mobile user can download the file from

both the cloud servers or the participating devices (for instance, based on proximity), and then verify its

integrity by checking the hash against the cloud. This behavior is shown in Figure 7.

In addition, as the files stored by the participating devices are encrypted (e.g., using AES-256 [54]),355

there are no security risks in untrusted users storing private information, since the participating devices

cannot access the file contents. Finally, we also assume that the mobile users can specify the maximum

storage they want to donate. For example, the default value can be a 5% of the total storage capacity of

the device (e.g., 25 GB for a computer with a hard disk of 500 GB).
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Figure 7: Example of a storage scenario.

3.5.2. Processing Services360

Our model allows for the execution of multiple processing services. Music identification services (e.g.,

Shazam or ACRCloud) or optical character recognition (OCR) services are examples of this kind of

processing services. In these scenarios, a mobile device sends a task (an audio file or a picture) to a

remote cloud where the data is processed (identifying the song from the audio or recognizing a text

from the picture) and the results of the computation performed are sent back to the mobile device.365

Without our solution, all the processing is performed within the cloud infrastructure. With our model,

the processing task should be performed by the participating devices, thus reducing the load in the cloud.

In our approach, when a participating device subscribes to a cloud service, it downloads from the cloud

the application that it needs to execute (e.g., the binaries with the algorithms or the neural network to

use). A mobile user device that wants to process some data first sends the processing request to the cloud370

system, which answers with a list of addresses of the participating devices (usually the addresses of all

the devices of the same volunteer platform). Then, the user sends the task to a number of participating

devices (two or more) in order to rely on the results of untrusted users. If the replies received from the

participating devices match, the result is considered correct. This behavior is shown in Figure 8.
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Figure 8: Example of a processing scenario.

In contrast to storage services, where the participating devices receive and store encrypted files, in375

processing services the computation tasks may be performed by untrusted users (the participating devices)

over unencrypted data, so, in order to avoid security risks, it is compulsory that the participating devices

only receive public content, such as street pictures or music audios that the user wants to identify. There

are some novel techniques that try to perform computation over encrypted data [55], so probably in the
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future, our processing model can be applied also to tasks that use private information.380

3.6. Deployment and Mobile Application Adaptation

This section describes the deployment of our solution for a typical application. This deployment is

based on the BOINC behavior described in Section 2.3.1.

The first step is to transform the cloud application into a BOINC project. This step does not require

changes in the BOINC software, since only some transformations in the cloud application are needed. In385

this transformation, we obtain two BOINC applications: one for the participating devices and other for

the mobile user. Each application consists of a program and a set of workunits and results. The BOINC

servers receive two types of requests:

• Requests from the mobile users.

• Requests from the participating devices. The server also stores the addresses of the different par-390

ticipating devices.

From the BOINC point of view, there are two types of clients: participating devices and mobile users.

Both execute different applications. When a mobile user wants to execute a mobile cloud application, it

sends the request to the server and obtains a new workunit. This workunit only includes a list containing

the addresses of the participating devices. Then the mobile device selects one of these addresses (as shown395

in Algorithm 1) and sends the data to the selected participating device. After that, the participating

device processes the application and returns the result to the mobile device, without the intervention of

the BOINC server, lowering in this way the cloud load.

In order to avoid possible bottlenecks, several BOINC servers can be deployed similarly to other

BOINC projects, like the SETI@Home project. Moreover, we can deploy several BOINC servers in400

different clouds, to reduce bottlenecks.

As other BOINC projects, all services needed for the application are installed on the device when it

subscribes to the system. BOINC uses virtualization to allow the execution of applications in different

hardware or operating system. The virtualization solution used by BOINC is VirtualBox, which is free

and multiplatform. In this case, the recommended BOINC installer for Windows includes VirtualBox as405

well, and this is transparent for the user that installs BOINC. Similarly, the BOINC client installer can

provide the installation of Docker in a transparent way to the users, simplifying its deployment on the

volunteer nodes.

From the installation point of view, we have evaluated the time for installing BOINC in a typical

project on several desktop computers and smartphones, and subscribing them to different projects. On410

the one hand, the installation process took an average of 30 seconds for both the desktop computers and

the smartphones. On the other hand, the subscription phase took less than 10 seconds for all devices.
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3.7. Incentive Scheme

Why would anonymous users want to donate their resources to cloud services? In BOINC, users

donate their idle processing and storage resources to contribute to scientific projects, such as Climatepre-415

diction.net6, that helps fight climate change; Rosetta@Home7, that helps to find the cure for cancer and

Alzheimer’s; or SETI@Home8, that helps to find extraterrestrial intelligence. However, this is not enough;

that is why BOINC has an incentive scheme based on credits. BOINC projects grant credit to users to

encourage the volunteer users to contribute to the system. Credit has no monetary value; it is only a

measure of how much a volunteer has contributed to a project (credits are calculated from the floating420

point operations that a device has computed) [56]. In our solution, companies and organizations should

also include an incentive scheme based on credits in their services, as BOINC does. In this way, volunteer

users would be rewarded by their contribution to the mobile cloud computing services they collaborate

with.

Apart from that, the enterprises that want to deploy our model can also reward the volunteer users425

with some ‘special’ functionalities. For example, a company that offers storage services to their mobile

clients could grant the volunteer users with some premium features or even a professional account of one

of their mobile applications for free.

3.8. Security Aspects

BOINC allows the project designers to use Secure Socket Layer (SSL) in their projects, so HTTPS430

(port 443) can be used in the log-in processes. Besides, BOINC uses the ports 31416 and 1043 to exchange

data, so the client has to unblock them if they are behind a firewall. Similarly, the implementation of

our approach must use specific ports that should be unblocked from the firewall to manage the access

between clients. We propose two alternatives to ensure secure communication between the mobile users

and the participating devices:435

• Transport Layer Security (TLS, the last version is 1.2) [57]: it is available to most TCP applications

(e.g., FTPS, SMTPS, and HTTPS).

• Simple Object Access Protocol (SOAP, last version is 1.2) [58]: it is a protocol for exchanging data

using XML files. It can be combined with WS-Security (last version is WS-Security 1.1) [59] in

order to add security. WS-Security is a protocol that guarantees authentication, confidentiality,440

and integrity of the data exchanged.

As we explained in Section 3.5.1 (see Figure 7), when a mobile user wants to upload a file using a

storage service, it first has to specify an encryption key with the cloud through a key-agreement protocol.

6http://www.climateprediction.net/
7https://boinc.bakerlab.org/
8https://setiathome.berkeley.edu/

18



For that reason, we propose the Diffie Hellman Ephemeral (DHE) or the Elliptic Curve Diffie Hellman

Ephemeral (ECDHE) [60] key-agreement protocols because they ensure the Perfect Forward Secrecy [61].445

Then, encryption key should be stored in a secure local keystore by both the mobile device and the cloud.

Besides, the file should be transmitted from the mobile device to the cloud via a secure channel (e.g.,

TLS), and then the file should be encrypted in the cloud side in order to offload the computation from

the mobile device. A good option is to use a symmetric-key algorithm, such as AES256 [54] or 3DES [62].

Once the file is encrypted, the cloud can send it to multiple participating devices ensuring confidentiality.450

When the mobile device downloads the encrypted file from a participating device, it just has to verify

the file hash with the cloud (to check integrity) and decrypt it using the encryption key previously stored

in its keystore.

Apart from that, when a mobile user wants to execute a task, the cloud can reply to the mobile user

with the list of participating devices that are able to execute the task. Exactly as BOINC works, the455

mobile user has to send the task to N different users, and, after receiving the computation results from

all of them, check if the quorum is reached. For instance, suppose that a mobile user wants to apply an

OCR program over a text in a poster, N is 3 and quorum is 2, so the user first takes a picture of the text,

then requests to process this text to the cloud service, so the cloud replies with the list of participating

devices that are able to process the task (normally, a whole volunteer platform). Then, the mobile user460

application sends the picture to three different participating devices (N value) and then it checks if at least

two of the answers (quorum value) match. If the quorum is reached (e.g., two of the participating devices

answer “Mr. Bean Street”), the result is considered to be correct. Otherwise, the mobile user requests

it directly to the cloud. This behavior is also shown in Algorithm 1b. Apart from that, as described in

[63], BOINC prevents to distribute malware among the volunteer computers because applications have465

only access to their own input and output files via sandboxing. Besides, the BOINC software is also able

to use virtualization support [64], which would facilitate the deployment of our proposed model.

4. Evaluation

In this section we present the evaluation performed. In Section 4.1 we detail an analysis of the

volunteer devices that participate in the famous SETI@Home project, apart from the description of how470

we managed to characterize three different individual devices. We have used these results in order to

perform the experiments presented in Section 4.2, that consist of different case studies we have analyzed

through realistic simulations.

4.1. Devices characterization

We have analyzed the CPU performance of the 138,252 computers of the SETI@Home project that475

were active on June 12, 2017, 22:02:19 UCT (published in [65]). After analyzing all the CPU models,
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we found that 134,182 (97.06%) of the total number of devices were desktop computers and laptops,

while the remaining 4,070 (2.94%) computers were mobile devices. Figure 9 shows the CPU performance

(GigaFLOPS/core or GigaFLOPS/computer) of the aforementioned SETI@Home volunteer devices. This

huge difference (3.13 over 17.5 GigaFLOPS) between the performance per core (Figure 9a) and per480

computer (Figure 9b) is because the SETI@Home tasks use the maximum number of cores available for

computation, ranging from 1 to 102 cores. As can be seen in the figure, mobile devices are much less

powerful than the desktop and laptop computers on average (4.46 vs 17.91 GigaFLOPS/computer). We

have used these SETI@Home CPU traces to model the power of the participating devices that form the

volunteer platforms of the simulations presented in Section 4.2.485
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Figure 9: CPU performance of the volunteer computers of the SETI@Home project: (a) GFLOPS/core, (b)

GFLOPS/computer.

In order to model the availability of the participating devices, we used the results obtained in [66].

This research analyzed about 230,000 availability traces obtained from the volunteer computers that

participate in the SETI@Home project. According to this paper, 21% of the volunteer computers exhibit

truly random availability intervals, and it also measured the goodness of fit of the resulting distributions

using standard probability-probability (PP) plots. For availability, the authors noted that in most cases490

the Weibull distribution is a good fit. For unavailability, the distribution that offers the best fit is the

log-normal. The parameters used for the Weibull distribution are shape = 0.393 and scale = 2.964. For

the log-normal, the parameters obtained and used in ComBoS are a distribution with mean µ = −0.586

and standard deviation σ = 2.844. All these parameters were obtained from [66] too. The availability

and unavailability modeling, allow us to simulate the entrance and leaving of volunteer resources in the495

system.

Furthermore, because the software the participating devices in our proposed model is based on a small

variation of the BOINC client software, we are also interested in evaluating the performance of individual

devices participating in a real BOINC volunteer computing project. To make this possible, we have used
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the following devices:500

• Desktop computer: Intel R©CoreTM i7-4790 (4 cores (8 threads), 3.60 GHz), OS: Ubuntu 16.04.2

LTS, 8 GB of RAM memory.

• Mobile device: Woxter Zielo ZX840HD (8 cores, 1.7 GHz), OS: Android 4.4.2, 2 GB of RAM

memory.

• ARM device: ODROID-C2 (4 cores, 1.5 GHz), OS: Ubuntu 16.04.2 LTS, 2 GB of RAM memory.505

Each device has collaborated in the most famous BOINC project: the SETI@Home project. The

results obtained are shown in Table 2, and demonstrate that the desktop computers currently provide

more computational power to volunteer computing than the other kind of devices that participate in

these projects.

Table 2: Computational results (GigaFLOPs executed in 2 days of uninterrupted computation) of the three devices after

collaborating in the SETI@Home project.

Project Desktop computer Mobile device ARM device

SETI@home 3,628,800 345,600 322,600

4.2. Case Studies510

We have evaluated three different mobile cloud computing services as case studies: a generic processing

service, a storage service, and a speech recognition processing service. In terms of evaluation, we have

used ComBoS [67], a complete BOINC simulator created by the authors as a previous work, as a starting

point. ComBoS is a public source software9 and was implemented in C programming language, with the

help of the tools provided by the MSG API of SimGrid [68] and is able to perform realistic simulations515

of the whole BOINC infrastructure, considering all its features: projects, servers, network, redundant

computing, scheduling, etc. In order to evaluate both case studies, we have modified ComBoS to evaluate

the scenario shown in Figure 10. This scenario consists of two groups of mobile devices, that access a cloud

in order to use the services. It also has four volunteer platforms that provide computing and storage

resources to the cloud. The bandwidth and latency values of the networks that connect the different520

components are also specified in Figure 10. All other parameters relevant to the simulations (number of

devices of each type, power, etc.) are specified in each case study.

Table 3 shows the details of the platform used to simulate the case studies. Every execution in this

section has simulated 100 hours. In order to account for the randomness of the simulations and to deem

9ComBoS can be downloaded from: https://github.com/arcos-combos/combos

21



cloud controller data center

m
obile devices (cloud users)

m
obile devices (cloud users)

volunteer 
platform A

volunteer 
platform B

volunteer 
platform C

volunteer 
platform D

- bandwidth: 1 Gbps
- latency: 5 ms

- bandwidth: 1 Gbps
- latency: 10 ms

- bandwidth: 1 Gbps
- latency: 3 ms

- bandwidth: 2 Gbps
- latency: 7 ms

- bandwidth: 2 Gbps
- latency: 15 ms

- bandwidth: 2 Gbps
- latency: 2 ms

- bandwidth: 2 Gbps
- latency: 1 ms

- bandwidth: 1.5 Gbps
- latency: 5 ms

- bandwidth: 500 Gbps
- latency: 3 ms

- bandwidth: 1 Gbps
- latency: 7 ms

Figure 10: Scenario simulated in the experiments.

Table 3: Platform used in the evaluation.

Value

Processor Intel R©CoreTM i7-920 (4 cores (8 threads), 2.67GHz)

RAM 32 GB

Operating System Ubuntu 14.04.5 LTS

Kernel 3.13.0-119-generic

SimGrid version 3.11

the results reliable, each simulation result presented in this section is based on the average of 20 runs.525

For a 95% confidence interval, the error is less than ± 2% for all values.

4.2.1. Case study 1: Processing Service

A good case study to evaluate our proposed model is to analyze its performance of processing services.

These processing services can range from a music identification service (e.g., Shazam) to a text recognition

service (e.g., an OCR). We considered the scenario shown in Figure 10, where each volunteer platform has530

250 participating devices, and there are from 20,000 to 100,000 mobile users. The cloud infrastructure

consists of 20 nodes with a computing power of 50 GigaFLOPS each, and each mobile device requests the
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cloud to compute a task of 20 GigaFLOPs10 (based on the results of [69]) and 5 MB every 30 minutes

on average. We have considered three different configurations:

• Configuration 1: it corresponds to the original behavior of a cloud system (without using volunteer535

platforms). All the processing tasks are performed in the cloud.

• Configuration 2: both volunteer platforms are formed by participating devices in the same pro-

portion and with the same properties (power and availability) as in the SETI@Home project (see

Section 4.1).

• Configuration 3: both volunteer platforms are formed only by mobile devices - the participating de-540

vices are only mobile devices in this configuration - with the same properties (power and availability)

as in the SETI@Home project (see Section 4.1).

In configurations 2 and 3, the tasks are computed either by the cloud or by the participating devices

on a round-robin basis. In the case a task is computed by a volunteer platform instead of by the cloud,

three different participating devices should compute the task with a quorum of two.545

Processing service performance

 0

 20

 40

 60

 80

 100

 20000  40000  60000  80000  100000

c
lo

u
d
 l
o
a
d
 (

%
)

number of mobile users

 0

 20

 40

 60

 80

 100

 20000  40000  60000  80000  100000

v
o
l.
 p

la
tf
o
rm

s
 l
o
a
d
 (

%
)

number of mobile users

 7

 14

 21

 28

 35

 42

 20000  40000  60000  80000  100000to
ta

l 
th

ro
u
g
h
p
u
t 
(P

F
L
O

P
s
)

number of mobile users

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 20000  40000  60000  80000  100000a
v
e
r.

 t
im

e
 p

e
r 

ta
s
k
 e

x
e
c
. 
(s

)

number of mobile users

conf. 1 conf. 2 conf. 3

Figure 11: Case study 1: performance of the processing service for the three different configurations.

Figure 11 shows the results of this experiment: the load11 of both the cloud and the volunteer

10We distinguish between FLOPS (floating point operations per second) and FLOPs (floating point operations).
11We considered the load as the maximum of the network and the CPU load.
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platforms, the total throughput of the system in PetaFLOPs, and the average time a task is executed.

With configuration 1, the cloud became saturated with almost 85,000 mobile users. By contrast, this

did not happen with configurations 2 and 3, because the computation of the tasks is shared by both

the participating devices and the cloud, not only by the cloud as in the previous configuration. As it is550

shown in the figure, the use of volunteer platforms allows for an increase in the scalability and in the

total throughput of the system, since more users can process their tasks in the system. Finally, although

the average time per task execution in configuration 1 is less than in the rest of configurations (except

when the cloud is saturated), this difference is not significant, especially for configuration 2 (less than

200 ms), which shows that our approach would not have a negative impact on the user experience.555

4.2.2. Case study 2: Storage Service

This second case study is about a file storage service. The scenario is the same as in the previous case

(Figure 10), where each volunteer platform has 25.000 participating devices. The cloud infrastructure

consists of 200 nodes, each with 3.2 Terabytes, making a total of 640 Terabytes of storage. In this case

study there are 1 million cloud users and each one uploads an average of 4.5 files of 50 MB each (following560

an exponential distribution) to the cloud service. We have again considered three different configurations:

• Configuration 1: it corresponds to the original behavior of a cloud system (without using volunteer

platforms). All the files are downloaded from the cloud. Each file should be replicated three times

in the cloud servers.

• Configuration 2: both volunteer platforms are formed by participating devices with a storage ca-565

pacity that follows a statistical normal distribution, with µ = 5 and σ = 0.75 (average 5 GB

per device). Each file should be replicated two times in the cloud servers and two times in the

participating devices.

• Configuration 3: both volunteer platforms are formed by participating devices with a storage ca-

pacity that follows an statistical normal distribution, with µ = 10 and σ = 1 (average 10 GB570

per device). Each file should be replicated two times in the cloud servers and two times in the

participating devices.

Figure 12 shows the results of this experiment. As it can be seen in graphs (a) and (b), with the first

configuration (without using volunteer platforms), the cloud is not able to store more files because there

is no more available space in their nodes. On the other hand, with configurations 2 and 3, the cloud575

is not saturated, and the service is then able to store and back up all the files from the 1 million users

thanks to the storage resources donated by the participating users. Moreover, in graph (c) we show the

average time required to download a file by the mobile users, assuming the mobile users download a file

every 2 hours on average. With configuration 1, the cloud network becomes saturated soon; that is why
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Figure 12: Case study 2: performance of the storage service for the three different configurations.

the download time is higher than in configurations 2 and 3, where the mobile users also download files580

from the volunteer platforms.

4.2.3. Case study 3: Speech Recognition

In [70], the authors show that the new multimedia applications are changing the current cloud com-

puting architecture. They analyze different multimedia applications, such as face and speech recognition,

or mobile augmented reality. In the paper, the authors made all the experiments using a Dell Latitude585

2102 as the unique mobile device. However, in this section, we have simulated their speech recognition

application considering the scenario of Figure 10, and using the same configurations as in the first case

study (Processing Service, Section 4.2.1). Each volunteer platform has 250 participating devices, and

there are from 20,000 to 200,000 mobile users. The speech recognition application is based on an open-

source speech-to-text framework that uses Hidden Markov Models (HMM) recognition systems [71]. In590

this application, the average request size is 243 KB, and the cloud response size is 60 bytes on aver-

age. The request and response size and the rest of the parameters are obtained from [70] too. We have

simulated cases in where 1 to 22 words are recognized.

Figure 13 shows the results of this last experiment, considering the cloud and volunteer platforms

load, the total throughput, and the average time a task is executed (similarly as in the first case study).595

With configuration 1, the cloud became saturated with almost 120,000 mobile users. As in the generic

processing service, this did not happen with configurations 2 and 3. As it is shown in the figure, the

use of volunteer platforms allows for an increase in the scalability and in the total throughput of the

system, since more users can process their tasks in the system. Finally, although the average time per

task execution in configuration 1 is less than in the rest of configurations (except when the cloud is600

saturated), this difference is not significant, especially for configuration 2 (less than 50 ms), which shows

that our approach would not have a negative impact on the user experience. The participating devices
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Figure 13: Case study 3: performance of the speech recognition service for the three different configurations.

allow avoiding a performance loss when a high number of clients consume the services, also improving

the availability and the usability of the service.

5. Conclusion and Future Work605

This paper gave an overview of mobile cloud computing (MCC), in addition to a new MCC model that

can provide more computing and storage resources to public, private or hybrid clouds. The proposed

heterogeneous model uses the computing and storage resources of devices from the general public to

contribute to cloud systems, so the organizations can leverage the idle periods of these devices to gain

computing and storage resources for their cloud services, in a similar way that volunteer devices contribute610

to BOINC projects. As we have shown throughout the paper, our proposed model can provide several

benefits to the cloud systems, including cost savings, as it avoids monetary investments in infrastructure,

since the resources are volunteered; elasticity, as it enables the system to adapt to significant workload

changes in the cloud just by using the volunteered resources; scalability, as it provides more computing

and storage resources to the system, so more users can use these resources; efficiency, as the volunteer615

devices can be closer than the cloud servers for the mobile users, thus reducing the network latency; load

balancing, as the cloud controllers can choose to use the cloud’s own resources or the volunteer resources,

so different load balancing algorithms can be implemented; easy deployment, as we propose to use the
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current BOINC open-source software in order to deploy our solution in current cloud systems. Moreover,

with the evaluation performed we have also shown that our proposed model is a feasible solution for620

cloud services that have a large number of mobile users. This evaluation demonstrate the scalability of

our solution.

For future work, we plan to use the BOINC software to deploy a prototype of this approach. We look

forward to analyzing the impact of the proposed model in different scenarios, not only the ones showed

in this document. Moreover, we want to analyze different load balancing policies, in order to increase the625

performance and scalability.
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