
Accepted Manuscript

Reducing process delays for real-time earthquake parameter estimation – An
application of KD tree to large databases for Earthquake Early Warning

Lucy Yin, Jennifer Andrews, Thomas Heaton

PII: S0098-3004(17)30596-4

DOI: 10.1016/j.cageo.2018.01.001

Reference: CAGEO 4074

To appear in: Computers and Geosciences

Received Date: 29 May 2017

Revised Date: 2 December 2017

Accepted Date: 10 January 2018

Please cite this article as: Yin, L., Andrews, J., Heaton, T., Reducing process delays for real-time
earthquake parameter estimation – An application of KD tree to large databases for Earthquake Early
Warning, Computers and Geosciences (2018), doi: 10.1016/j.cageo.2018.01.001.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.cageo.2018.01.001


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 1 

Reducing process delays for real-time earthquake parameter estimation – an 1 

application of KD tree to large databases for Earthquake Early Warning 2 
 3 

 4 

Lucy Yin1, Jennifer Andrews2, Thomas Heaton1,2 5 

 6 

1 Department of Civil and Mechanical Engineering 7 
California Institute of Technology 8 

Pasadena, USA 9 
 10 

2 Division of Geological and Planetary Sciences 11 
California Institute of Technology 12 

Pasadena, USA 13 
 14 

 15 

 16 

Corresponding Author: Lucy Yin 17 

 18 

 19 

Department of Civil and Mechanical Engineering 20 
California Institute of Technology 21 
1200 E California Blvd 22 
Pasadena, CA USA 91106 23 
Tel: 1-626-841-9702 24 
Email: lyin@caltech.edu 25 

  26 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 2 

Abstract 27 

     Earthquake parameter estimations using nearest neighbor searching among a 28 

large database of observations can lead to reliable prediction results. However, in 29 

the real-time application of Earthquake Early Warning (EEW) systems, the accurate 30 

prediction using a large database is penalized by a significant delay in the 31 

processing time. We propose to use a multidimensional binary search tree (KD tree) 32 

data structure to organize large seismic databases to reduce the processing time in 33 

nearest neighbor search for predictions. We evaluated the performance of KD tree 34 

on the Gutenberg Algorithm, a database-searching algorithm for EEW. We 35 

constructed an offline test to predict peak ground motions using a database with 36 

feature sets of waveform filter-bank characteristics, and compare the results with 37 

the observed seismic parameters.  We concluded that large database provides more 38 

accurate predictions of the ground motion information, such as peak ground 39 

acceleration, velocity, and displacement (PGA, PGV, PGD), than source parameters, 40 

such as hypocenter distance. Application of the KD tree search to organize the 41 

database reduced the average searching process by 85% time cost of the exhaustive 42 

method, allowing the method to be feasible for real-time implementation. The 43 

algorithm is straightforward and the results will reduce the overall time of warning 44 

delivery for EEW. 45 

Highlights 46 

• Presented a multidimensional binary search (KD) tree database structure for 47 

seismic data 48 
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• Reduced average searching time by 85% for real-time seismology 49 

predictions 50 

• Suggested to directly predict ground motion information for Earthquake 51 

Early Warning due to accuracy 52 

• Evaluated pros and cons of modeling approach and big data search approach 53 

for real-time seismology 54 

Introduction 55 

     Due to the advancement of information technology in the past few decades, 56 

Earthquake Early Warning (EEW) systems are able to analyze ground motions in 57 

real-time and provide alerts before the onset of the destructive wave at specific 58 

facilities (Heaton, 1985) (Allen et al., 2003). EEW is based on the principle that the 59 

damaging earthquake ground motion propagates more slowly than electronic 60 

information, so warnings can be successfully delivered immediately after detecting 61 

the first earthquake signals at a seismic station (Cua, 2005). The speed of the more 62 

damaging S-waves from earthquakes is about 3.5km/s, whereas electrically 63 

transmitted signals from the seismic network sensors travel at about 3.0x105km/s. 64 

     EEW is most beneficial for earthquakes causing a significant level of ground 65 

shaking, so the alert speed is critical to provide a warning to the most strongly 66 

affected areas close to the epicenter. Additionally, for high-cost user actions (such as 67 

halting industrial processes), the accuracy of ground motion predictions at user 68 

sites is important for the widespread adoption and use of EEW (Hoshiba, 2013). In 69 

general, the conventional algorithms use trained models to estimate earthquake 70 

source parameters (such as magnitude and hypocenter distance) from station 71 
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ground motion observations, and then apply ground motion prediction equations to 72 

estimate the peak ground motion experienced at different user sites (Wu et al., 73 

2007) (Zuccolo et al., 2016) (Kuyuk et al., 2014). The predictive models tend to 74 

compress the observed information into a few source parameters, which can overly 75 

simplify the behavior of wave propagation through the Earth (Meier, 2017). 76 

Significant error in final prediction results can be accumulated through the 77 

uncertainties in the underlying models (Bose et al., 2009) (Allen et al., 2009). As a 78 

result, for the purposes of a real-time EEW system, it is a challenge to create a 79 

simple model that fully captures all the attributes that influence the peak ground 80 

motion in a recorded waveform, such as magnitude, location, depth, soil type, local 81 

site condition, directivity, source radiation.  82 

     Fingerprint searching and template match methods are alternative approaches to 83 

EEW and have also recently been employed in other areas of seismology (Yoon et al., 84 

2015). In the fingerprint searching method, important waveform characteristics are 85 

extracted from each earthquake record to form an extensive database of  86 

“earthquake fingerprints”. During the occurrence of an on-going earthquake, the 87 

algorithm searches among the database for the most similar “earthquake 88 

fingerprints”, and then estimates the source parameters or peak ground motions of 89 

the new event based on the searched records. A recently developed method, called 90 

the Gutenberg Algorithm (GbA) (Meier et al., 2015), applies the fingerprint-91 

searching concept to EEW by abstracting the time-frequency amplitude information 92 

of the real-time seismic signal for various filter bands to create a large-scale 93 

database, and then estimates the earthquake source parameters such as magnitude 94 
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and hypocenter distance for on-going earthquakes.  In addition, the template-95 

matching method in FinDer (Böse et al., 2012) compares observations with a 96 

database of theoretical spatial ground motion patterns to estimate earthquake 97 

source parameters and peak ground shaking at various sites. Another example of 98 

real-time earthquake monitoring algorithm using search engine method was 99 

developed for the estimation of source-focal mechanism (Zhang et al. 2014). 100 

Although the predictable variable in the example above are different, all of the 101 

methods share the common approach of searching among a pre-processed database.  102 

     One of the most important factors required of search algorithms is that the 103 

searched database needs to be sufficiently large in order to cover a wide range of 104 

potential earthquakes. In other words, if similar data to the target query are not 105 

included in the database, the searched result could be significantly off from the true 106 

value. As an example, the records in the databases should represent the natural 107 

distribution of earthquake occurrence as described by the Gutenberg-Richter 108 

relationship (Gutenberg and Richter, 1944); there should be many more small 109 

events than large ones because small size earthquakes occur more often than large 110 

earthquakes, so the search should returns reflect real earthquake likelihoods. Of 111 

course, the best strategy is to include all worldwide earthquakes recorded over a 112 

long period of time.  While increasing the database promises to improve estimation 113 

accuracy, the trade-off is that the processing time of searching among a large 114 

database increases significantly due to the rise in comparison operations. A simple 115 

search of the Advanced National Seismic System (ANSS) Composite Catalog 116 

(http://www.quake.geo.berkeley.edu/anss/) reveals that 2090 shallow crustal 117 
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earthquakes (depth <30km) over magnitude 2 occurred in California during 2015. 118 

Similar results are also indicated with searches on USGS/ComCat, Southern 119 

California Earthquake Data Center and other similar earthquake databases. If one 120 

wants to include all records from the network over years for all the earthquake 121 

events worldwide, the size of the database scales exponentially (Yu, 2016). As a 122 

result, the processing delay of the real-time search will significantly increase 123 

because the time required to query databases sequentially is proportional to the 124 

size of the database. While advances have been made in the development of such 125 

algorithms in EEW, very little attention has been paid to optimizing the processing 126 

time of large databases. 127 

      Database searching is often an application of the Nearest Neighbor (NN) search 128 

problem with the Euclidean metric. The problem is commonly encountered in many 129 

computational techniques such as event detection, pattern recognition, and data 130 

analysis (Bhatia, 2010). In general, we seek for a point in the database that 131 

minimizes the Euclidean distance to the target point (sometimes referred as the 132 

least square distance). The problem states that: for the target point � =133 

�����, … , ��	�
 and the ith training point in the database	� = �����, … , ��	�
, we define 134 

the distance between x and yi to be  135 

 

���, �� = ������� − ������
	

���
�
� ��

 [1] 

NN searches for the �� with the closest distance to the target point, mathematically 136 

represented as �� = ������ !����, ���. In most cases, the k-Nearest-Neighbor (k-137 

NN) search method is applied by finding the k closest training points to the target 138 
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point; this method provides a more robust estimation that avoids outliers in the 139 

database. The corresponding parameters associated with the ��	are used to classify 140 

or estimate the parameters of interest for the target point. 141 

     In this study, we use a data structure, multidimensional binary search tree (KD 142 

tree) NN searching concept, to organize the seismic data, and evaluate the reduction 143 

of NN searching time for large datasets. KD-tree is a binary tree data structure that 144 

links the relative position of all the data points, so data with similar patterns cluster, 145 

thereby allowing the search procedure to become faster (Bentley J. L., 1975). 146 

Although it requires initial effort to construct the tree data structure, the searching 147 

process is quick. The goal is to introduce the concept of data structures in EEW to 148 

minimize the processing time for waveform record searching without loss of 149 

accuracy, and thereby earthquake alerts can be delivered to the sites of interest 150 

much earlier. The effectiveness of fast alerts is especially valuable in the proximity 151 

of the epicenter where the strongest damage occurs very quickly after event onset. 152 

In this study, we describe a searching procedure that uses the KD tree NN search 153 

method that identify the EEW fingerprints characterized by the Gutenberg 154 

Algorithm. We 1) evaluate the influence of database size on the prediction accuracy 155 

of the earthquake source parameters (magnitude and hypocenter distance) and 156 

peak ground motion parameters (PGA, PGV, PGD), 2) estimate the processing 157 

efficiency of the KD tree searching for databases with different sizes and extrapolate 158 

the future performance by scaling to larger data sets. The KD tree is well-established 159 

NN searching algorithm that has been implemented in a wide range of engineering 160 

and database applications (Bentley J. , 1979). Although the method parallel 161 
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processing can reduce real-time latencies, the cost of allocating additional resources 162 

could be unfeasible in long term. Only by efficiently design the computational 163 

algorithms to optimize the processing time can EEW start to adopt the databases for 164 

real-time seismology applications, and the fingerprint searching algorithms with big 165 

data reveal their full practical potential. 166 

Data 167 

     Theoretical analysis of the KD tree searching shows the performance complexity 168 

being O(log N) verses O(N) for the linear sequential search, where N is the number 169 

of data points in the database (Friedman et al., 1977). Although the theoretical 170 

average search time of KD tree is much shorter than the linear sequential search, the 171 

performance varies depending on the distribution of the data. Our goal is to 172 

determine the searching efficiency of the KD tree method for our GbA seismic 173 

database. We ran a series of offline tests on the earthquake filterbank database to 174 

mimic potential performance of EEW using true seismic records. The dataset used is 175 

pre-processed by (Meier et al., 2015) for the GbA. The database consists of 182,805 176 

near-site records with 9 feature dimensions in each record. Each of the feature 177 

dimensions represents the peak ground velocity in octave-wide frequency bands for 178 

a given ground motion record with a fixed time window. The frequency bands used 179 

in GbA features are shown in Table 1. GbA creates such a dataset table for every 180 

half-second increment in time after the P-wave arrival. In general, EEW tends to 181 

consider at least 3 to 4 sec data after the P-wave arrival for the trade-off of accuracy 182 

and time delay. For the purpose of this investigation we selected the database for a 183 

10-sec time window because the predictions are stabilize with more data collection. 184 
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The collected earthquakes cover a large range of magnitude, spanning from M 2.0 to 185 

M 8.0, compiled from shallow crustal earthquakes collected from Japan, Southern 186 

California, and Next Generation Attenuation-West 1 (Chiou and Youngs, 2008). 187 

 188 

Feature Dimension No. Frequency Band (Hz) 

1 0.09375 – 0.1875 

2 0.1875 – 0.375 

3 0.375 – 0.75 

4 0.75 – 1.5 

5 1.5 – 3 

6 3 – 6 

7 6 - 12 

8 12 - 24 

9 24 - 48 

Table 1. Frequency bands for feature input in Gutenberg Algorithm. The GbA 189 

database consists of 9 feature dimensions. Each feature takes the observed peak 190 

ground velocity in the given frequency band. 191 

 192 

KD Tree and Method 193 

KD Tree 194 

     KD tree is a binary tree structure that stores the finite set of database points with 195 

k-dimensional feature space. In our case, we have 9 variables corresponding to 9-196 

dimensions. The method involves two steps. First, we construct the tree to organize 197 

the information in the database. Then, the NN algorithm is applied on the KD tree to 198 

search to the most similar point to the target record during an on-going earthquake. 199 

In KD tree implementation, a point in the database is also called a node in the tree. 200 

• Construction of KD-tree 201 

     The construction of the KD-tree is a recursive process. Starting with the root of 202 

the tree, the first feature dimension (frequency band: 0.09375 – 0.1875Hz) is chosen 203 

as the splitting hyperplane. All nodes are ordered with respect to the value in this 204 
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feature dimension, and the node with the median value is inserted into the root of 205 

the tree. All nodes with coordinates less than the median in the splitting hyperplane 206 

create the left subtree, and the nodes with coordinates larger than the median in the 207 

splitting hyperplane create the right subtree. All the feature dimensions rotate in 208 

becoming the splitting hyperplane to create the next level of subtrees.  209 

• Nearest Neighbor Search in KD-tree 210 

      Starting with the root node of the tree, the nearest distance is initialized to be the 211 

distance between the target node to the root. Then recursively move down to the 212 

next level in the tree, and checks if the splitting hyperplane intersects with the 213 

hypersphere centered at the target record with a radius of the current nearest 214 

distance. If the node falls outside of the hypersphere created by the current nearest 215 

node (indicating the point is further to the target node than the current nearest 216 

node), then this node and any extended child nodes further away can be eliminated 217 

from the investigation. The process is repeated, recursively moving down to the 218 

next level in the tree until reaching the leaves of the tree. The searching time is 219 

reduced since large subsets of the database are not visited. Therefore, the average 220 

searching time in a KD tree is significantly lower, especially when the size of the 221 

database is large.  222 

     To better visualize the concept, Figure (1) demonstrates a KD tree structure for a 223 

2-dimensinal featured database with 10 earthquake records described by the peak 224 

velocity and acceleration at initial 3 sec after triggering a station. The goal is to 225 

predict magnitude of the new event based on the velocity and acceleration recorded 226 

at the first 3 sec of the p-wave. We start the search process of the nearest neighbor 227 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 11

of the target data (the yellow star) with node E, which is the root of the tree. The 228 

radius of the initial hypersphere is set between the target data and node E. In a 2D 229 

feature space, the hypersphere is simply a circle. Since the left branch (link between 230 

node A and E) does not cross the hypersphere, indicating all the nodes in the left 231 

subtree (node C, A, B, D) can be eliminated from the search because their Euclidean 232 

distance to the target point is clearly further than node E. This eliminates the 233 

computational effort of going through almost half of the database at the first step. 234 

Since the target node is closest to node H, the magnitude associated with node H 235 

(M=4.0) is the prediction result for the target node. 236 

 237 

 238 

 239 

 240 

 241 

 242 

a) 243 
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 244 
b) 245 

 246 
 247 

Figure 1: A 2-dimensional KD tree example: a) visual distribution of the database in 248 

feature dimensions, b) tree structure of the database. A database of 10 earthquake 249 

records (A - J) is organized using KD tree data structure (grey lines are the branches 250 

of the tree). As a comparison, the linear sequential search requires going through all 251 

10 records, which doubles the computation effort. 252 

 253 

      The algorithm can be easily extended to k nearest neighbor (k-NN) search to find 254 

k most similar points to the target point in order to give a more probabilistic 255 

estimate of target parameters. It requires two modifications. First, we need to keep 256 
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track of all the current nearest points in an ordered queue with length k; if the 257 

queue contains fewer than k points, the subtrees on both sides need to be visited. 258 

Second, instead of comparing the splitting hyperplane with the hypersphere of the 259 

nearest point, we should check if the hyperplane intersects with the hypersphere of 260 

the last nearest point in the queue. If they intersect, the new node is inserted into 261 

the queue of k-nearest neighbors to the target point. At the end of the search, the 262 

algorithm returns k points from the database that are located with minimum 263 

distances to the target point. 264 

Method 265 

     Since one of the ultimate goals of EEW aims to predict ground shaking, we 266 

extracted 500 records from the entire database to validate the prediction of 267 

earthquake source and ground motion parameters.  The validation set was sampled 268 

uniformly with even spacing on the Peak Ground Acceleration (PGA) of the records. 269 

The reason is to cover the full spectrum of ground shaking intensity, in order to 270 

mimic all circumstances that could be encountered in the future. The performance 271 

of parameter estimations is evaluated with different dataset sizes. The estimated 272 

seismic parameters include station-specific ground motions: Peak Ground 273 

Acceleration (PGA), Peak Ground Velocity (PGV), Peak Ground Displacement (PGD), 274 

and earthquake source parameters: magnitude, hypocenter distance. The procedure 275 

first requires a 30-NN search in the Euclidean distance defined in Eq (1), and then a 276 

prediction using the Gaussian mean of the corresponding parameters from the 30-277 

NN matched records. The value 30 is chosen to match the original model parameter 278 
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in the GbA. Later, we compared the searching time of the KD-tree search to the 279 

Linear Sequential search, in both the CPU time and the number of operations. 280 

 281 

Results 282 

     We computed the earthquake parameter estimation error of the validation set for 283 

databases with different sizes. Figure 2 shows the 100th, 75th, 50th, 25th, and 0th 284 

percentile residual errors for the estimated PGA, PGV, and PGD of the 500-validation 285 

dataset, respectively. The residual error is defined as the absolute difference 286 

between the true observed parameter and the predicted parameter. The 50th 287 

percentile is the average residual errors; the 100th and 0th percentile indicate the 288 

maximum error and minimum error, respectively. As expected, the residual error 289 

decreases as the database size increases on average. The 50th percentile is not 290 

flattened near the largest given database size showing that the residual errors might 291 

not yet reached the global minimum; this suggests that the estimation accuracy 292 

could further be improved by increasing the size of the database. Since there is 293 

always a possibility of outlier data regardless how large the database gets, the 294 

maximum error residuals are not affected by the size of databases as shown in the 295 

100th percentile line in Figure 2. Statistically, there will always be residuals on the 296 

predictions, unless the features are truly uniquely diagnostic. Of course, if a 297 

sufficiently large database were compiled, the probability of encountering outliers 298 

would decrease.  299 
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a)  300 

b)  301 
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c)  302 

Figure 2. Ground motion residuals for the 500-validation dataset with different 303 

database sizes. a) Peak Ground Acceleration, b) Peak Ground Velocity, c) Peak 304 

Ground Displacement residuals are given in absolute ground motion units. The lines 305 

show the percentile according to the legend. The 50th percentile is the average 306 

residual error; the 100th and 0th percentiles indicate the maximum and minimum 307 

errors respectively. 308 

 309 

     We also estimated the earthquake source parameters using the databases: 310 

magnitude and hypocenter distance. Although ground motion parameters are more 311 

useful outputs for EEW alerts, predicting source parameters is the conventional 312 

approach in real-time seismology (Minson et al., 2017). Figure 3 shows that the size 313 

of the database has less impact on hypocenter distance than magnitude estimation. 314 

Since hypocenter distance predictions from the observed waveform are a result of 315 

source energy and soil properties, the additional constraints might be necessary. 316 

For example, seismicity location forecast could be introduced as prior knowledge to 317 

reduce the uncertainties in earthquake location estimation (Yin et al., 2017). This 318 

analysis implies that it is essential to select data features intelligently to 319 
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characterize the parameters we are aiming to predict. Frequency band features 320 

might be more suitable to predict the ground motions than source parameters, since 321 

local site effects may be implicitly being accounted for.  322 

 323 

a)  324 

b)  325 
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Figure 3: Source parameter residual for the 500-validation dataset with different 326 

database size. a) Magnitude, b) hypocenter distance residuals are given in absolute 327 

units. The lines show the percentile according to the legend. The 50th percentile is 328 

the average residual error; the 100th and 0th percentiles indicate the maximum and 329 

minimum errors respectively. 330 

 331 

     Through the performance analysis for databases with different sizes, we conclude 332 

that large databases can help to provide more accurate ground motion estimations 333 

for EEW. Next, we compare the computational time difference for the 30-NN search 334 

using the KD tree methods for each validation test. The implementation is in Matlab. 335 

For comparison, a Linear Sequential search method is also implemented as a base 336 

case. The Matlab function follows the pseudo code concept from the Appendix with 337 

optimization modules that efficiently process the data. In Figure 4, the solid lines 338 

show that the average CPU search time of a database with 130, 000 points is about 339 

0.2 sec for the Linear Sequential search method and 0.03 sec for the KD tree search 340 

method; the significant reduction in time reduces computational effort by 85%. 341 

Although the Linear Sequential search is capable of handling the real-time 342 

processing with limited delay using the current size of the database, a significant 343 

delay would be introduced as the database size rapidly increases in the future. The 344 

dashed lines show extrapolated computational time up to double of the current 345 

database size. The results anticipate that the advantages of the KD tree application 346 

would be emphasized in the future as global seismic databases are growing 347 

significantly (Yu, 2016). 348 
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 349 
Figure 4: CPU searching time for different database sizes using linear sequential 350 

search and KD tree search. The implementation is in Matlab.  351 

 352 

     The measured operational time for the searching process varies significantly 353 

between different software languages and implementations; different optimization 354 

modules with parallelization might also bias towards one method over another. 355 

Implementations in C++ tend to be much faster than Matlab. In order to compare the 356 

true efficiency of the method across all platforms, we further compared the number 357 

of data points visited for both NN search algorithms. Since the majority of the 358 

searching time is made up by the visit to each data point to compute the Euclidean 359 

distance to the target point, the fewer data points visited ensures less time effort. In 360 

the Linear Sequential search, the operation is required for all the data in the 361 

database in a serial manner. However, in KD tree, subsections of the database can be 362 

eliminated depending on the distribution of the tree structure and location of the 363 

target point. As shown in Figure 5, the number of data points visited in the KD tree 364 
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for each validation varies; on average, the KD tree approach only visits about 10% of 365 

the entire database to find the closest data point to the target, confirming the 366 

performance in CPU searching time in Matlab. In the worst-case scenario, all the 367 

data points are visited, which leads to the same operational complexity as the 368 

exhaustive approach (linear sequential search). 369 

 370 

 371 
Figure 5 Number of data points visited for linear sequential search and KD tree 372 

search. The dashed lines are extrapolated to estimate the performance for larger 373 

database in the future. 374 

 375 

 376 

Discussion and Conclusion 377 

     In this study, we evaluated the viability of earthquake fingerprint searching 378 

methods for EEW, using database structure to reduce searching time for large 379 

databases. Specifically, we evaluated the GbA as an example of the EEW fingerprint 380 

search algorithm. We found that database size is a critical factor in providing 381 
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reliable predictions of ground motion (PGA, PGV, PGD) and source parameters 382 

(magnitude and hypocenter distance) for EEW. We also present the KD tree 383 

approach to reduce the searching time, so that large database searching is feasible 384 

for real-time implementations in EEW.  By empirical validation, we demonstrated 385 

that the searching time using KD tree can be approximately 85% less than the 386 

exhaustive approach for the GbA EEW earthquake database. (Strauss et al, 2017) 387 

has studied extensively on the cost-benefit effects of a warning system in the United 388 

States; the study has shown that the number of injuries from earthquakes can be 389 

reduced by more than 50% if EEW can provide timely and accurate alerts. 390 

     One of the potential applications of the database searching method is to directly 391 

estimate peak ground motions from the observed ground motions for any given site 392 

in real-time seismology application such as EEW; it avoids the multi-step modeling 393 

errors that could be accumulated through source parameter estimation and the 394 

ground motion attenuation relationship, since the final errors can lead to significant 395 

uncertainties in the final shaking information. Ideally, the goal of EEW is to serve as 396 

an alarm for severe ground shaking in real-time rather than source characterization. 397 

The fingerprint searching methodology could also be extended to tackle other 398 

challenges in EEW, such as event detection (i.e. earthquake/noise discrimination). 399 

In such a problem, characteristics of additional ambient noise and teleseismic 400 

records need to be incorporated in the database. This would vastly increase the 401 

database size, since incorporating many different types of noise, teleseisms, regional 402 

events, and calibration/maintenance signals could potentially be huge. The vision is 403 
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to be able to accomplish efficient searching for large databases, so that these novel 404 

EEW methods are feasible in real-time in the future. 405 

      Although we emphasized the importance of having a large number of data, a 406 

question is often raised about what should be the minimum size of database in order 407 

to get reasonable accurate solutions. Assuming the standard deviation of log10(PGV) 408 

estimation of 0.309 by (Kanamori, 2007) is acceptable, the database size needed to 409 

achieve this marginal error of ground motion in EEW is about 70 000 to 100 000 410 

data points, as shown in Figure 2b). The (Kanamori, 2007) study focuses on two 411 

EEW parameters, "#  and $	 , that are extensively used in the existing EEW 412 

algorithms, such as Onsite (Bose et al., 2009). The minimum database size calculated 413 

varies with geological region, event types, predictive parameters, etc. 414 

 415 

     Creating a database for real-time seismology is not simple. In addition to the sizes 416 

of databases, feature engineering also significantly affects the prediction results. 417 

Selecting parameters that correlate to the predictive results requires extensive 418 

scientific domain knowledge. In the observation of local earthquake records, the 419 

higher frequency band features are more informative than the low frequency 420 

features because the high frequency amplitude of ground motion decays rapidly 421 

with distance (Hanks & McGuire, 1981) (Kong & Zhao, 2012). Although it is out of 422 

the scope of this study, we plan to further investigate in the effects of using a 423 

weighted Euclidean distance in the Nearest Neighbor Search to emphasize the high 424 

frequency information as a significant attribute in the feature space. Continuous 425 

monitoring and modifying of the features will help to improve the performance of 426 
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the system. As the number of features increases, the process time saved by KD tree 427 

search decreases (Andoni & Indyk, 2008). For features over 20 or 30 dimensions, 428 

alternative approximation to approach high dimensional searching, such as Locality 429 

Sensitive Hashing, would be more appropriate [e.g. (Yoon et al., 2015)]. 430 

     EEW is an interdisciplinary project that involves collaboration among different 431 

scientific and engineering communities. The accuracy and speed of rapid 432 

earthquake source parameter algorithms has significantly improved over the past 433 

decade, but are potentially limited by the simplification involved in model 434 

parameterization. The earthquake fingerprint searching techniques have the 435 

capacity to guide the development of EEW to a new phase with the assistance of 436 

better computational power and data mining techniques.  437 
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Appendix – Pseudo Code 544 

KD Tree Construction 545 

Function construction_kdtree(points in database, depth) 546 

Split_axis=depth mod k_dim; 547 
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Median = select median from fingerprints(split_axis) 548 

Leftdatabase={fingerprints in database| fingerprints(split_axis)<median} 549 

Rightdatabase={fingerprints in database| fingerprints(split_axis)>median} 550 

 551 

%create node 552 

node.location=median 553 

node.left= kdtree(leftdatabase,depth+1) 554 

node.right= kdtree(rightdatabase,depth+1) 555 

 556 

Searching in KD tree 557 

Function search_kdtree(target, node, nearest_dist) 558 

Split_dim= split dimension at the depth of the tree 559 

Hyperplane_dist=target(split_dim)-node(split_dim) 560 

 561 

If nearest_dist > |hyperplane_dist| then 562 

 curr_dist:= distance between target and curr_node 563 

 If curr_dist<nearest_dist then 564 

  nearest_dist:=curr_dist 565 

nearest_fingerprint=curr_node 566 

 search_kdtree(target, curr_node.left, nearest_dist) 567 

 search_kdtree(target, curr_node.right, nearest_dist) 568 

else 569 

 if hyperplane_dist<0 then 570 

search_kdtree(target, curr_node.left, nearest_dist) 571 

else 572 

search_kdtree(target, curr_node.right, nearest_dist) 573 

 574 
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Highlights 

• Presented a multidimensional binary search (KD) tree database structure for 

seismic data 

• Reduced average searching time by 85% for real-time seismology 

predictions 

• Suggested to directly predict ground motion information for Earthquake 

Early Warning due to accuracy 

• Evaluated pros and cons of modeling approach and big data search approach 

for real-time seismology 

 


