
Strategic Management of Technical Debt
Tutorial at ICSA 2017

Philippe Kruchten
Electrical and Computer Engineering

University of British Columbia
Vancouver, Canada

pbk@ece.ubc.ca

Abstract— The technical debt metaphor acknowledges that
software development teams sometimes accept compromises in a
system in one dimension (for example, modularity) to meet an urgent
demand in some other dimension (for example, a deadline), and that
such compromises incur a “debt”. If not properly managed the
interest on this debt may continue to accrue, severely hampering
system stability and quality and impacting the team’s ability to
deliver enhancements at a pace that satisfies business needs.
Although unmanaged debt can have disastrous results, strategically
managed debt can help businesses and organizations take advantage
of time-sensitive opportunities, fulfill market needs and acquire
stakeholder feedback. Because architecture has such leverage within
the overall development life cycle, strategic management of
architectural debt is of primary importance. Some aspects of
technical debt --but not all technical debt-- affect product quality.
This tutorial introduces the technical debt metaphor and the
techniques for measuring and communicating this technical debt,
integrating it fully with the software development lifecycle.)

Keywords—Technical debt, software evolution, maintainability,
evolvability

I. OBJECTIVE
The goal of the tutorial is to give the attendees a better

appreciation of the rather fuzzy concept of Technical Debt,
articulate the differences between technical debt at the code
level, versus technical debt at the architectural or structural
level, or at the process level. It will give attendees techniques
and tools to reason about technical debt: identify it, and
manage it, that is, decide when and why it is wise to ”repay”
some of that technical debt.

II. AUDIENCE & SCOPE
This tutorial is primarily intended for:

• Software project managers,

• product managers, product owners

• and software architects

Level basic; no required prerequisites.

This presentation is of value for both practitioners and for
academics/researchers, but mostly targeted at practitioners.

III. OUTLINE OF TUTORIAL
This half day tutorial will have the following structure:

1. Introduction to Technical Debt (80 minutes)

a. Game: hard choices

b. Definitions of technical debt

c. Examples of various types of debt

2. Practical measures (60 minutes)

a. Examples, results of interviews from industry

b. Tools and techniques

c. Requirements for support (tool or otherwise),
metrics and measures of success

3. Future Directions (30 minutes)

a. Agile architecting and technical debt

b. Vision for technical debt analysis framework

c. Discussion on key problems and challenges faced
by practicing software engineers who need to
elicit, communicate, and manage technical debt at
different facets of their projects

IV. PRESENTER
Philippe Kruchten is professor of software engineering at

the University of British Columbia in Vancouver, Canada,
which he joined in 2004 after a 30+ year career in the software
industry, developing systems in telecommunications, defense
and aerospace. His main interests are in software architecture,
software project management and software development
processes. During his time with Rational Software (now IBM)
he led the development of the RUP, which embeds an
architecture-centric method. He is the co-founder and secretary
of the IFIP WG2.10 on Software Architecture (1998), Chair of
the ICSA steering committee, and co-founder and chair of
Agile Vancouver (2004). He’s a senior member of IEEE
CompSoc and of ACM.

Kruchten has organized a series of workshops on technical
debt every year since 2010, including a Dagstuhl Seminar in

2017 IEEE International Conference on Software Architecture Workshops

978-1-5090-4793-2/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSAW.2017.40

202

2016. He will be the program chair for the conference on
technical debt collocated with ICSE in 2018 in Gothenburg.

He blogs occasionally on the topic of technical debt, and do
research funded by NSERC and Mitacs.

ACKNOWLEDGMENT
This tutorial was originally prepared with Ipek Ozkaya and

Rod Nord from the Software Engineering Institute, CMU,
Pittsburgh, PA, USA.

Earlier versions of this tutorial have been offered at ICSE
2012, and QSIC 2012, as well as at the Saturn series of
conferences in 2014 and 2015.

203

