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Abstract In the last decade, numerous efforts have been de-
voted to design efficient algorithms for clustering the wire-
less mobile ad-hoc networks (MANET) considering the net-
work mobility characteristics. However, in existing algo-
rithms, it is assumed that the mobility parameters of the
networks are fixed, while they are stochastic and vary with
time indeed. Therefore, the proposed clustering algorithms
do not scale well in realistic MANETs, where the mobility
parameters of the hosts freely and randomly change at any
time. Finding the optimal solution to the cluster formation
problem is incredibly difficult, if we assume that the move-
ment direction and mobility speed of the hosts are random
variables. This becomes harder when the probability distri-
bution function of these random variables is assumed to be
unknown. In this paper, we propose a learning automata-
based weighted cluster formation algorithm called MCFA in
which the mobility parameters of the hosts are assumed to
be random variables with unknown distributions. In the pro-
posed clustering algorithm, the expected relative mobility of
each host with respect to all its neighbors is estimated by
sampling its mobility parameters in various epochs. MCFA
is a fully distributed algorithm in which each mobile in-
dependently chooses the neighboring host with the mini-
mum expected relative mobility as its cluster-head. This is
done based solely on the local information each host re-
ceives from its neighbors and the hosts need not to be syn-
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chronized. The experimental results show the superiority of
MCFA over the best existing mobility-based clustering al-
gorithms in terms of the number of clusters, cluster lifetime,
reaffiliation rate, and control message overhead.
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1 Introduction

Dynamic network topology changes, network mobility, se-
vere constraints on network resources such as communica-
tion channel bandwidth, processing power, and battery life,
and the lack of a fixed infrastructure or centralized admin-
istration are the major challenging issues from which the ad
hoc networking protocols suffer. A mobile ad-hoc network
is a self-organizing and self-configuring multi-hop wireless
communication network supporting a collection of mobile
hosts which can be instantly developed in situations where
either a fixed infrastructure is unavailable (e.g., disaster re-
covery), or a fixed infrastructure is difficult to install (e.g.,
battlefields). Two hosts can directly communicate if they are
within the transmission range of each other and otherwise
(i.e., when the source can not directly send the packets to
the destination due to the limitation of the radio transmis-
sion range) the intermediate hosts assume the role of router
and relay the packets toward the final destinations. Hence,
each node in a MANET acts as both host and router. Be-
sides the multi-hop nature of the MANET and the lack of
a fixed infrastructure, these networks inherit the traditional
problems of the wireless and mobile communication sys-
tems. Host mobility brings about a wide range of new chal-
lenges in the design of the MANET protocols. Frequent and
hard to predict topology changes due to the host mobility,
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and sever resource constraints are the most important issues
must be taken into consideration in mobile ad-hoc network-
ing [14, 22, 28].

In MANETs, the network performance is significantly
degraded as the network size grows, and network cluster-
ing is one of the promising solutions. The main idea behind
the network clustering is to group together the network hosts
that are in physical proximity. In a clustered network, some
of the hosts assume the role of a cluster-head and the oth-
ers (that can directly communicate with the cluster-heads)
act as a cluster member. On behalf of the cluster members,
the cluster-heads are responsible for basic functions such as
channel access scheduling, power measurements, and coor-
dination of intra and inter-cluster communications, and this
imposes an extra overhead on the cluster-head [8, 31–33].
After such a network partitioning, some cluster members
may reach more than one cluster-head. These hosts which
are called gateway are used for inter-cluster communica-
tions. In MANETs, due to the mobility and failure of the
hosts, the network topology frequently changes and so the
clusters may rapidly lose their validity. In this case, the net-
work must be clustered again, and reclustering procedure
consumes too much energy and bandwidth which are scarce
resources in MANET. The best, but very difficult, solution is
to construct the resistant-to-mobility clusters [13, 15, 20]. To
achieve this, recently many studies [10–12, 16, 22, 24, 27]
have been conducted on mobility-based network clustering
techniques. Generally, these works aim to form the clusters
with the maximum stability against the host mobility. The
main problem with the above mentioned cluster formation
algorithms is that they do not scale well in realistic mo-
bile ad-hoc environments where each mobile host is free to
change its mobility parameters randomly at any time. This
is due to the fact that the proposed clustering techniques as-
sume the mobility characteristics of the hosts are determin-
istic, while they are stochastic and vary with time. In real
ad-hoc networks, no assumption can be made on the prob-
ability distribution function of the mobility parameters. In
fact, the mobility parameters in MANET are random vari-
ables with unknown probability distributions. Under such
circumstances, finding an optimal solution to form the stable
(resistant to host mobility) clusters is incredibly hard.

In this paper, we propose a learning automata-based
weighted clustering algorithm for wireless MANET in
which the weight associated with each host is defined as its
expected relative mobility which is assumed to be a random
variable with unknown distribution. The proposed cluster-
ing solution is a fully distributed algorithm that can be in-
dependently run at each host. In this method, each mobile
host based solely on the local information received from
its one-hop neighbors chooses the adjacent host having the
minimum expected relative mobility as its cluster-head. One
major advantage of the proposed technique is that the hosts

need not to be synchronized for cluster formation, and this
allows the cluster maintenance can be locally performed
only where it is required. The proposed algorithm taking
advantage of learning automata assures that the cluster-head
selected at each neighborhood has the minimum relative mo-
bility with respect to all its members. To show the perfor-
mance of the proposed algorithm, we have conducted sev-
eral simulation experiments and compared the obtained re-
sults with those of HD [21], GDMAC [22], MOBIC [11],
and MobHiD [24]. The experimental results show that the
proposed algorithm outperforms the others in terms of the
number of clusters, cluster lifetime, reaffiliation rate, and
control message overhead.

The rest of the paper is organized as follows. In the next
section, a brief review of the cluster formation algorithms is
first provided, learning automata theory is presented in a nut
shell, and the expected relative mobility criterion is intro-
duced finally. In Sect. 3, a mobility-based learning clustering
algorithm is proposed for wireless mobile ad-hoc networks
based on learning automata. In Sect. 4, the performance of
the proposed algorithm is evaluated through simulation ex-
periments, and Sect. 5 concludes the paper.

2 Backgrounds and preliminaries

To provide a sufficient background for understanding the ba-
sic structures of the cluster formation algorithm which is
proposed in this paper and its superiority over the existing
methods, in this section we first review the well-known clus-
ter formation techniques reported in the literature. Then, we
provide a brief overview of the learning automata theory and
introduce the expected relative mobility criterion.

2.1 Related work

The host mobility is the main origin of the difficulties with
the design of efficient ad hoc networking protocols. During
the last decade, due to tremendous growth of the wireless
mobile ad hoc networks, many efforts have been done to de-
sign the mobility-based networking protocols for MANET.
Designing the resistant-to-mobility cluster formation proto-
cols is one of the issues that has been extensively considered
in the literature. The following presents a brief overview
of the best existing mobility-based cluster formation algo-
rithms.

Lin and Gerla [25] proposed a straightforward network
clustering algorithm called Lowest ID (LID) in which the
node with the lowest identification number at each neigh-
borhood has the highest priority to be selected as the cluster-
head. The neighboring nodes with higher IDs assume the
role of cluster members and form the cluster. This cluster-
head selection procedure is repeated for the remaining nodes
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until either each node is selected as a cluster-head or a clus-
ter member. The lowest ID is known to be a two-hop clus-
ter formation algorithm, since the distance between each
node and every other node in a cluster is at most two hops.
In [9], a synchronous distributed clustering algorithm was
proposed by Baker and Ephremides in which each node
having the highest ID among all its neighbors is selected
as cluster-head. In the proposed algorithm, hereafter is re-
ferred to as HID, the number of nodes in the network is
assumed to be known a priori. Gerla and Tsai [21] pro-
posed another priority-based clustering technique called HD
in which the priority of each host is defined as its degree.
The degree of a host is defined as the number of its one-
hop neighbors. In this algorithm, the host with the highest
degree (priority) among all its adjacent hosts is selected as
cluster-head. Experimental results show that the number of
clusters into which the network is partitioned in LID and
HID is much more than that in HD. This is due to the fact
that LID and HID do not take into account the network topo-
logical specifications for determination of the hosts’ priori-
ties. Since a larger number of hosts can be dominated by
the cluster-head having the highest degree, HD [21] signif-
icantly reduces the number of clusters. The main problem
with HD is the frequent cluster-head changes due to the
host mobility. A host of proposed clustering algorithms are
based on these three fundamental techniques. In [3], Akbari
Torkestani and Meybodi proposed a cluster formation algo-
rithm based on distributed learning automata for wireless ad
hoc networks. In this paper, the authors show that finding
the weakly connected dominating set (WCDS) of the net-
work topology graph is a promising approach for network
clustering. They first propose a centralized approximation
algorithm called DLA-CC for solving the minimum WCDS
problem. They also propose a distributed implementation of
DLA-CC, called DLA-DC, for clustering the ad hoc net-
works in which the dominator nodes and their closed neigh-
bors assume the role of the cluster-heads and cluster mem-
bers, respectively. DLA-DC is composed of a number of
stages, and at each stage a cluster-head set (or WCDS) is
found. At each stage, if the size of the cluster-head set is
smaller than that of the minimum cluster-head set found so
far, it is rewarded and set to the minimum cluster-head set,
otherwise it is penalized.

Basagni [10] generalized the algorithm proposed by
Gerla and Tsai [21], by using a generic weight as a criterion
for cluster-head selection. In the proposed distributed and
mobility adaptive clustering (DMAC) algorithm, a weight is
associated with each host in the network that indicates the
suitability of the host for selecting as a cluster-head. This
weight could be computed as the residual energy or the mo-
bility speed of a host. In DMAC, all hosts are initially in
an undecided state and in the course of algorithm decide to
be a cluster-head or a cluster member. A host decides when

all its neighbors with larger weight have decided. When the
time comes, a host decides to be cluster member if one of its
neighbors is cluster-head. Otherwise, it decides to be cluster-
head. This simple scheme can be somewhat optimized by
letting hosts to be cluster member as soon as a neighbor gets
cluster-head. The cluster-heads form a maximal indepen-
dent set (i.e., the minimal dominating set) by which the net-
work is clustered. In [22], Ghosh and Basagni investigated
the impact of the different mobility degrees and mobility
patterns of the mobile hosts on the performance of DMAC
protocol. They showed that the cluster reorganization rate
of DMAC protocol considerably increases in the presence
of the host mobility. To alleviate the negative effects of the
host mobility on the performance of DMAC, Ghosh and
Basagni [22] proposed a generalization of DMAC protocol
called GDMAC in which the clusters are more stable against
the host mobility. GDMAC dramatically reduces the rate of
unnecessary cluster updates by applying the following two
limiting rules. The first rule controls the rate of reclustering
and says that a cluster reorganization is required only when
the weight of the new cluster-head exceeds the weight of
its current one. The second rule controls the spatial density
of the cluster-heads. Experimental results reported in [22]
show the superiority of GDMAC over DMAC in terms of
the cluster reorganization and reaffiliation rate. A reaffilia-
tion happens when a host leaves its current cluster and joins
to a new cluster. Basu et al. [11] proposed a weighted clus-
tering algorithm called MOBIC which is similar to DMAC.
MOBIC makes use of a new mobility parameter called ag-
gregate local mobility (ALM) to select the cluster-heads. In
this method, the ALM of each host is computed based on the
strength of the signals that it receives from its neighboring
hosts. In this algorithm, a host is elected as a cluster-head,
if it has the minimum ALM among its adjacent hosts. Chat-
terjee et al. [12] proposed a mobility–based clustering algo-
rithm in which the average speed of each mobile host, which
is measured by tracking the changes in the position coordi-
nates, is defined as its weight. In the proposed method, the
hosts with the lowest weight (average mobility speed) are
more likely to assume the role of a cluster-head.

Palit et al. [27] proposed a mobility-aware pro-active low
energy (MAPLE) protocol for clustering the wireless ad-hoc
networks. The proposed technique exploits the host mobility
information to design a proactive energy-efficient clustering
protocol. In this method, the mobility pattern of the wireless
hosts and the cost associated with the wireless links are es-
timated based on the radio link level information. MAPLE
also considers the problem of cluster formation in a medium
access control (MAC) layer, and uses a channel reservation
technique to reduce the contention rate among the hosts in
the course of cluster formation. In MAPLE, each host esti-
mates its distance from its cluster-head by the signal strength
received from the cluster-head. This estimation is used by
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the host to make a proactive decision on cluster reaffilia-
tion. That is, a host joins another cluster, if it predicts that
it would be out of the current cluster in the near future.
However, MAPLE does not take into consideration the host
mobility in the course of the cluster-head selection phase.
Er and Seah [16] proposed a mobility-based d-hop (Mob-
DHop) clustering algorithm that partitions the mobile ad-
hoc networks into variable-diameter clusters based only on
the mobility information each host receives from its one-
hop neighbors. To improve the cluster stability, MobDHop
groups the hosts with the similar mobility pattern together.
For this purpose, the following three mobility metrics are
used: variation of estimated distance between nodes over
time, local variability, and group variability. In this method,
all hosts periodically broadcast Hello messages. Each host
then calculates the estimated distance based on the strength
of the received signals. The variability of the estimated dis-
tance (VED) is computed for each host with respect to all its
neighbors. In the proposed method, the host with the lowest
VED among its neighbors has the most stability and so is se-
lected as cluster-head. Konstantopoulos et al. [24] proposed
a novel mobility-aware technique for cluster formation and
maintenance called MobHiD. The main idea behind Mob-
HiD is to predict the future mobility behavior of the hosts so
as to form the most stable clusters. In [24], the authors define
a new mobility prediction scheme as the probability of hav-
ing the same neighbors for sufficiently long time. This prob-
abilistic measure exhibits the stability of the host among its
neighbors, and indicates the suitability of the host for elect-
ing as a cluster-head. In fact, this mobility metric computes
the variability of the neighborhood of the hosts over time.
The proposed mobility prediction method is then combined
with the highest degree clustering technique given in [21]
to partition the network into a minimum number of stable
clusters.

2.2 Learning automata theory

A learning automaton [26, 29, 30] is an adaptive decision-
making unit that improves its performance by learning how
to choose the optimal action from a finite set of allowed ac-
tions through repeated interactions with a random environ-
ment. The action is chosen at random based on a probabil-
ity distribution kept over the action-set and at each instant
the given action is served as the input to the random envi-
ronment. The environment responds the taken action in turn
with a reinforcement signal. The action probability vector is
updated based on the reinforcement feedback from the envi-
ronment. The objective of a learning automaton is to find the
optimal action from the action-set so that the average penalty
received from the environment is minimized. Figure 1 shows
the relationship between the learning automaton and random
environment.

Fig. 1 The relationship between the learning automaton and its ran-
dom environment

The environment can be described by a triple E ≡
{α,β, c}, where α ≡ {α1, α2, . . . , αr} represents the finite
set of the inputs, β ≡ {β1, β2, . . . , βm} denotes the set of
the values that can be taken by the reinforcement signal,
and c ≡ {c1, c2, . . . , cr} denotes the set of the penalty prob-
abilities, where the element ci is associated with the given
action αi . If the penalty probabilities are constant, the ran-
dom environment is said to be a stationary random environ-
ment, and if they vary with time, the environment is called
a non stationary environment. The environments depending
on the nature of the reinforcement signal β can be classified
into P -model, Q-model and S-model. The environments in
which the reinforcement signal can only take two binary
values 0 and 1 are referred to as P -model environments.
Another class of the environment allows a finite number of
the values in the interval [0, 1] can be taken by the reinforce-
ment signal. Such an environment is referred to as Q-model
environment. In S-model environments, the reinforcement
signal lies in the interval [a, b].

Learning automata can be classified into two main fam-
ilies [26]: fixed structure learning automata and variable
structure learning automata. Variable structure learning au-
tomata are represented by a triple 〈βα,T 〉, where β is the set
of inputs, α is the set of actions, and T is learning algorithm.
The learning algorithm is a recurrence relation which is used
to modify the action probability vector. Let α(k) and p(k)

denote the action chosen at instant k and the action probabil-
ity vector on which the chosen action is based, respectively.
The recurrence equation shown by (1) and (2) is a linear
learning algorithm by which the action probability vector p

is updated. Let αi(k) be the action chosen by the automaton
at instant k.

pj (n + 1) =
{

pj (n) + a[1 − pj (n)] j = i

(1 − a)pj (n) ∀j �= i
(1)

when the taken action is rewarded by the environment (i.e.,
β(n) = 0) and

pj (n + 1) =
{

(1 − b)pj (n) j = i

( b
r−1 ) + (1 − b)pj (n) ∀j �= i

(2)

when the taken action is penalized by the environment (i.e.,
β(n) = 1), r is the number of actions that can be taken by
learning automaton, a(n) and b(n) denote the reward and
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penalty parameters and determine the amount of increases
and decreases of the action probabilities, respectively. If
a(n) = b(n), the recurrence equations (1) and (2) are called
linear reward-penalty (LR−P ) algorithm, if a(n) � b(n) the
given equations are called linear reward-ε penalty (LR−εP ),
and finally if b(n) = 0 they are called linear reward-Inaction
(LR−I ). In the latter case, the action probability vectors re-
main unchanged when the taken action is penalized by the
environment.

Learning automata have been found to be useful in sys-
tems where incomplete information about the environment,
wherein the system operates, exists. Learning automata are
also proved to perform well in dynamic environments. It has
been shown in [1, 2, 7, 34–36] that the learning automata
are capable of solving the NP-hard problems. Recently, sev-
eral learning automata-based protocols have been designed
for improving the performance of the wireless ad hoc net-
works [4–6, 37, 38] or sensor networks [17–19].

2.3 Expected relative mobility

The mobility speed and movement direction of a host are the
parameters upon which the relative mobility of a host can be
defined. Let vt

i and θ t
i denote the mobility speed and move-

ment direction of host Hi at instant t , respectively. The rel-
ative mobility of host Hi with respect to host Hj at instant t

is defined as

RMt
(i,j) = 2

√
(vt

i )
2 + (vt

j )
2 − [2vt

i v
t
j cos(θ t

i − θ t
j )] (3)

vt
i and θ t

j denote the mobility characteristics (speed and di-
rection) of host Hj .

In real life applications, since the mobility characteristics
of the mobile host vary with time, the relative mobility of
the host (with respect to the adjacent hosts) changes in dif-
ferent epochs, and so the instant relative mobility (the rela-
tive mobility determined for a single epoch) can not exhibit
the realistic mobility behavior of the mobile host. Therefore,
for a true prediction of the mobility parameters, the expected
relative mobility is defined as the average of the instant rel-
ative mobilities over different epochs. The expected relative
mobility between two hosts Hi and Hj is defined as

ERMT
(i,j) = 1

k

k∑
t=1

RMt
(i,j) (4)

where T denotes the time period over which the relative mo-
bility is averaged, and k is the number of times each host and
its neighbors experience new epochs during time interval T .
As time interval T becomes larger, the expected relative mo-
bility estimated by (3) gets closer to the mean of relative mo-
bility distribution between hosts Hi and Hj . As stated ear-
lier, an epoch is defined as a time interval during which both

the mobility speed and the movement direction of a mobile
host are constant. A host enters a new epoch, once one (or
both) of these parameters changes. Each mobile host (e.g.
Hi ) broadcasts its mobility information (average mobility
speed and movement direction) to its neighboring hosts im-
mediately, if it experiences a new epoch. Then, each neigh-
boring host (e.g., Hj ) calculates its new relative mobility,
on the basis of the recently received mobility information as
shown in (4).

To extend the clustering lifetime and to reduce the reaffil-
iation rate of the hosts, our cluster formation algorithm se-
lects a mobile host as a cluster-head, if it has the minimum
expected relative mobility with respect to all its neighbors.
Hence, we define the relative mobility of a given host Hi

with respect to all its neighbors as

ERMT
i = 1

|Ni |
∑

∀Hj ∈Ni

ERMT
(i,j) (5)

where Ni is the set of all neighbors of host Hi .
ERMT

i is assigned to each host Hi as a weight. It de-
notes the expected mobility degree that host Hi exhibits with
respect to all its neighbors. A host with a higher mobility
degree is more prone to the unstable mobility behaviors.
Therefore, to prolong the lifetime of the clusters, the pro-
posed clustering algorithm attempts to select the hosts with
less relative mobility as cluster-heads. In this algorithm, the
expected relative mobility of each host (with respect to all its
neighbors) is defined as its weight. This weight is updated as
the host or one of its neighbors experience a new epoch.

3 Description of clustering algorithm

Due to the strict resource limitations and host mobility in
MANETs, the performance of the network rapidly declines
as the network size grows. Among the solutions proposed
for solving the scalability problem of MANETs, the net-
work clustering is a promising approach in which the ad-
jacent hosts are grouped together in physical proximity and
managed locally. In this section, a learning automata-based
cluster formation algorithm is proposed for MANETs. In
this algorithm, the expected relative mobility of each host
with respect to all its neighbors is defined as a mobility cri-
terion to find the most stable clusters against the network
dynamics. In MANETs, the mobile hosts freely move any-
where at random, and so the even most stable structures
lose their validity soon. To relieve the negative effects of the
frequent network topology changes on the clusters (i.e., to
keep the clusters up to date), the proposed algorithm offers
a self-maintenance procedure to repair the damaged clus-
ters. Therefore, the proposed algorithm is composed of two
main parts. The first part is the initial clustering which is
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performed as the network starts up, and the second one is
the cluster maintenance which is performed whenever and
wherever it is required.

3.1 Initial clustering

Let triple 〈H,L,R〉 describe the stochastic ad-hoc network,
where H = {h1, h2, . . . , hn} is the set of network hosts,
L = {(hi, hj )} denotes the set of links connecting every host
pairs (hi, hj ) where hi and hj are within the transmission
range of each other, and R = {ERMi |i = 1,2, . . . , n} de-
notes the set of expected relative mobilities associated with
the network hosts such that ERMi is the expected relative
mobility of host hi . In this algorithm, a network of learn-
ing automata isomorphic to the stochastic ad-hoc network is
initially formed by equipping each host hi of the network
with a LR−P learning automaton Ai . The expected relative
mobility of each host hi with respect to all its neighbors is
also defined as the weight associated with learning automa-
ton Ai . The resulting network can be described by a triple
〈A,α,W 〉, where A = {A1,A2, . . . ,An} denotes the set of
the learning automata corresponding to the network hosts,
α = {α1, α2, . . . , αn} denotes the set of action-sets of learn-
ing automata, and W = {w1,w2, . . . ,wn} denotes the set of
weights associated with network hosts such that wi is the
expected relative mobility of hosts hi which is assumed to
be a positive random variable with unknown probability dis-
tribution. The set of actions that can be taken by learning
automaton Ai (corresponding to host hi ) is denoted as αi

and defined as

αi = {αj
i |hj is adjacent to hj or i = j}

The action-set of learning automaton Ai includes an ac-
tion, α

j
i , for each of its neighboring host hj (or its adjacent

learning automaton Aj ) and an action for hi itself. To form
the action-set, each host sends a ASFREQ (i.e., Action-Set
Formation REQuest) message to all its one-hop neighboring
hosts. The hosts which are within the transmission range of
the sender host, upon receiving the ASFREQ message re-
ply it. Each host waits a short period of time for the re-
ply messages and then constructs its action-set as follows:
Host hi adds an action α

j
i to its action-set for each host hj

from which it receives the reply message. It also adds an ac-
tion for itself (i.e., α

j
i , where i = j ). The action-set of each

learning automaton Ai comprises the hosts that can be se-
lected by host hi as a cluster-head. Choosing action α

j
i by

host hi means that host hi selects host hj as its cluster-head.
Therefore, the here considered action-set formation method
means that each host either selects one of its neighbors as its
cluster-head or declares itself as a cluster-head to its neigh-
bors. At first, all the actions are chosen with the same proba-
bility. For host hi , the probability of choosing each action is
initialized to 1

�i+1 , where �i is the degree of host hi . This

probability increases, if an action is rewarded and decreases
otherwise.

In the proposed algorithm, each host can be in one of
three states, UN (unknown), CH (cluster-head) and Cm
(cluster member). All hosts are initially set to an UN state.
Each host changes its state to CH, if it is selected by itself
or at least one of its neighboring hosts as a cluster-head, else
its state is set to CM. The proposed algorithm consists of a
number of stages, and at each stage, each host independent
of the other hosts elects its cluster-head among its one-hop
neighbors or itself assumes the role of a cluster-head. There-
fore, the proposed cluster formation algorithm guarantees to
cluster the entire network at each stage. At each stage, the
proposed algorithm tries to select the host having the mini-
mum expected relative mobility (with respect to all its neigh-
bors) at each neighborhood as cluster-head. It modifies the
prior selection as soon as it finds another host with a lower
expected relative mobility in the next stages. Therefore, as
the proposed algorithm proceeds, the most stable clusters
(against the network mobility) with the minimum expected
relative mobility are found. In the following, we describe a
stage of the proposed algorithm for host hi .

Learning automaton Ai corresponding to host hi ran-
domly chooses one of its possible actions according to its
action probability vector. The host corresponding to the se-
lected action is defined as its cluster-head. Let us assume
that chi denotes the cluster-head selected by host hi at the
current stage. According to the action-set formation method
described earlier, each host may choose one of its adja-
cent hosts as its cluster-head or itself assumes the role of a
cluster-head. If the selected cluster-head (i.e., chi ) is one of
its neighbors, host hi sends a request message called RERM
(short for request to expected relative mobility) to chi for
receiving its current expected relative mobility. RERM mes-
sage includes the ID number of the sender host (sender ID),
hi , and the ID number of the selected cluster-head (cluster-
head ID), chi ). Host hi then waits for a reply message. Upon
receiving a RERM message, each host checks the message
to see if its ID is equal to the cluster-head ID. If so, it sends
its expected relative mobility calculated as given in (5) to the
sender host and drops it otherwise. Let ERMk

chi
denotes the

expected relative mobility associated with cluster-head chi

until kth stage (i.e., the cluster-head selected by host hi ).
Host hi sets wi to the expected relative mobility of its se-
lected cluster-head ERMk

chi
. No RERM message is required,

if host hi selects itself as cluster-heads. In this case, wi is
set to ERMk

hi
. Then, host hi compares weight wi (the ex-

pected relative mobility of the selected cluster-head) with a
dynamic threshold T k

i . The action selected by learning au-
tomaton Ai is rewarded as given in (1), if weight wi is less
than or equal to the dynamic threshold T k

i . Otherwise, the
selected action is penalized by using (2). At stage k, dy-
namic threshold T k

i is computed as the average expected
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Algorithm MCFA (hi,P ) The proposed cluster formation algorithm

01:Input: Host hi , Stop condition P

02:Begin algorithm
03:Assumptions
04: All hosts are initially set to a UN state
05: Let chi denotes the cluster-head selected by hi

06: Let wi be the weight of the selected cluster-head chi

07: Let k be the stage number
08: Let T k

i be the dynamic threshold associated with hi at stage k

09: T k
i ← 0, k ← 0

10:Host hi forms its action-set as αi = {αj
i }, where hj is adjacent to hi or i = j

11:Repeat
12: Host hi randomly chooses one of its actions as its cluster-head (say chi )
13: If chi �= hi Then
14: Host hi sends a RERM message to chi

15: wi ← ERMk
chi

16: Else
17: wi ← ERMk

hi

18: If wi ≤ T k
i Then

19: Host hi rewards the action corresponding to chi

20: Else
21: Host hi penalizes the action corresponding to chi

22: Host hi computes T k
i using Equation (6)

23: k ← k + 1
24:Until the probability with which host hi chooses a cluster-head is greater than P

25:If chi = hi Then {if host hi assumes the role of cluster-head itself }
26: Host hi changes its state to CH
27:Else
28: Host hi sends a CHSEL message to final cluster-head chi

29:End algorithm

Fig. 2 The pseudo code of the proposed cluster formation algorithm

relative mobility of host hi and its one-hop neighbors. T k
i

is defined as

T k
i = 1

�i + 1

∑
∀hj ;(hi ,hj )∈Lor i=j

ERMk
hj

(6)

where �i denotes the degree of host hi . Figure 2 shows the
pseudo code of the proposed clustering algorithm which is
run at host hi .

After updating the action probability vectors, each host
computes the dynamic threshold for the next stage as given
in (6). Host hi begins a new iteration, if one of its adja-
cent hosts or itself experiences new epoch. This process
continues until the probability with which host hi chooses
a cluster-head exceeds a predefined threshold (i.e., P ).
Threshold P is called the stop condition. For each host,
the cluster-head which is chosen just before the stop con-
dition is satisfied is declared as its final cluster-head. After
the stop condition is met, each host sends a CHSEL (i.e.,

Cluster-Head SELection) message to its final cluster-head, if
the selected cluster-head is one of its neighbors. Otherwise,
it changes its state to CH and plays the role of a cluster-
head thereafter. Upon receiving a CHSEL message, each
host calls procedure CHSEL given in Fig. 3. In this proce-
dure, each host first checks to see if its ID number is equal
to the selected cluster-head ID number contained in CHSEL
message. If so, the host assumes the role of a cluster-head
and changes its state to CH when it receives such a mes-
sage for the first time. It then also adds the ID number of the
sender host to the list of its cluster members. A host changes
its state to CM, if no host selects it as a cluster-head. For
each network host, the information by which it chooses its
cluster-head is confined only to its one-hop neighbors, and
so the proposed algorithm can be localized at each host well.
Figure 3 shows the pseudo code of procedure CHSEL, where
host hj sends a CHSEL message to host hi . In this proce-
dure, it is assumed that chj is the cluster-head selected by
host hj .
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Procedure CHSEL (hi )

01:Begin procedure
02:If hi = chj Then
03: Host hi changes its state to CH
04: Host hi adds the sender ID to the list of its cluster members
05:Else
06: Host hi changes its state to CM
07:End if
08:End procedure

Fig. 3 Pseudo code of procedure CHSEL

Procedure JREQ (hi )

01:Begin procedure
02:If hi receives a JREQ message from host hk Then
03: �i ← �i + 1
04: For all α

j
i ∈ αi do

05: p
j
i ← �i

�i+1 · pj
i

06: αi ← αi + {αk
i } {hi creates a new action}

07: pk
i ← 1

�i+1
08: End for
09:End if
10:If hi is a cluster-head Then
11: Host hi sends back host hk a JREP message
12:End if
13:End procedure

Fig. 4 Pseudo code of procedure JREQ

3.2 Cluster maintenance

As stated earlier, in wireless mobile ad hoc networks, due
to the host mobility and failures, the network topology fre-
quently changes. In these networks, the intra-cluster links
are fragile, and so the clusters are decomposed after a short
while. The major superiority of the proposed clustering al-
gorithm over the other methods is that it can be indepen-
dently and locally run at each host. In existing cluster for-
mation techniques, the normal operation of the network
must be stopped until the reclustering process is completed.
In this algorithm, the cluster-head selection (reclustering)
process can be performed only for a single host or for a
group of hosts, while the others continue their normal op-
eration. Since the mobile hosts are free to move anywhere
in MANETs, they may leave a cluster or join to another one
at any time. Therefore, the cluster membership is highly dy-
namic due to the frequent topology changes of these net-
works. Another advantage of the proposed cluster forma-
tion and maintenance technique is that during the recluster-
ing phase, each host quickly converges to its new optimal
cluster-head. This is because during the initial clustering, the

choice probability of the candidate cluster-heads (for a given
host) grows proportional to their optimality, and so in the
absence of the optimal cluster-head, algorithm rapidly con-
verges to the second (or sub-) optimal cluster-head which
have the highest choice probability.

3.2.1 Joining the network

When a new host joins the network or a host can not be
connected to its cluster-head any longer, it must be affili-
ated with a cluster-head in its neighborhood. In our proposed
cluster maintenance procedure, when a mobile host receives
no response from its cluster-head or when a host joins the
network for the first time, it sends a JREQ (i.e., Join RE-
Quest) message to its one-hop neighboring hosts. Each adja-
cent host calls procedure JREQ shown in Fig. 4 upon receiv-
ing the JREQ message. Each cluster-head which receives
this message replies it by sending back a JREP (i.e., Join
REPly) message. A JREP message includes the ID numbers
of the sender host and the cluster-head (which replies the
join request) as well as the expected relative mobility of the
replying cluster-head. The sender host waits for a while to
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Procedure LREQ (hi )

01:Begin procedure
02:If hi receives a LREQ message from host hk Then
03: �i ← �i − 1
04: αi ← αi − {αk

i } {hi removes the action corresponding to chk}

05: For all α
j
i ∈ αi do

06: p
j
i ← p

j
i + p

j
i · pk

i

1−pk
i

07: End for
08:End if
09:If host hk is a cluster-head Then
10: Host hi calls MCFA(hi,P )
11:End if
12:End procedure

Fig. 5 Pseudo code of procedure LREQ

receive the JREP messages, and then selects its cluster-head
as follows:

(I) If the sender host receives no JREP messages, it
chooses the neighboring host with the minimum ex-
pected relative mobility as cluster-head. If the sender is
a newly joining host, to acquire the mobility informa-
tion of the neighboring hosts, it must first send a RERM
(i.e., Request to Expected Relative Mobility) message
to all its neighbors and then chooses its cluster-head.
After choosing the cluster-head, a CHSEL message is
sent to it. The selected cluster-head changes its state to
CH, if it has not yet changed it. Cluster-head then adds
the sender ID to its list.

(II) If the sender host (i.e., the newly joining host or the
host that can not be connected to its cluster-head) re-
ceives a JREP message, it chooses the sender of the
JREP message as its cluster-head, and sends a CHSEL
message to it.

(III) If the sender host receives more than one JREP mes-
sages, it chooses the sender host with the minimum ex-
pected relative mobility as its cluster-head, and sends
it a CHSEL message. In this case, if the sender host is
a newly joining host, it must acquire the mobility in-
formation of its adjacent hosts as described in (I) prior
to choosing the cluster-head.

In this algorithm, when a host joins (or leaves) the net-
work or a cluster, the action-set of the hosts which are (or
have been) within its radio transmission range must be up-
dated. As described in Sect. 3.1, the action-set of learning
automaton Ai (associated with host hi ) is defined as αi =
{αj

i |hj is adjacent to hi or i = j}. Let pi = {pj
i |∀j ; i = j

or hi} denotes the action probability vector of the learning
automaton Ai . p

j
i is the probability with which host hi se-

lects hj as its cluster-head. If the newly joining host is within

the transmission range of host hi , the forwarding JREQ mes-
sage is heard by hi . In this case, host hi updates its action
probability vector by calling procedure JREQ.

3.2.2 Leaving the network

When a host decides to leave the network or a cluster, two
different approaches must be taken depending on whether
the host is a cluster-head or a cluster-member. If a mobile
host decides to leave the network, it sends a LREQ (i.e.,
Leave REQuest) message to all its one-hop neighbors. Each
host checks to see if the leaving host is its cluster-head, upon
receiving a LREQ message. If so, the members by which this
host has been selected as cluster-head (i.e., its cluster mem-
bers) must be clustered again. Whether the leaving host is
a cluster-head or a cluster member, each adjacent host that
hears the LREQ message must keep its action probability
vector up to date. To do so, each neighboring host removes
the action corresponding to the leaving host and distributes
the choice probability of the leaving host between the re-
maining hosts proportional to their probability values (see
Lines 04–07 of procedure LREQ). If the leaving host is a
cluster member no more action is required. However, if the
leaving host is a cluster-head, each (orphan) cluster member
must be reaffiliated with another cluster-head. Since the pro-
posed cluster formation algorithm is executed at each host
independent of the others and locally, it can be also used for
reclustering some portions of network as a partial clustering.
Therefore, after updating the action probability vectors, each
host calls algorithm MCFA for exploring a new cluster-head,
if it receives a LREQ from a cluster-head. Figure 5 shows the
procedure which is run by each host upon receiving a LREQ
message.
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4 Experimental results

To study the performance of the proposed cluster formation
algorithm, several simulation experiments have been con-
ducted in NS2. In these experiments, a mobile ad-hoc net-
work is modeled by randomly and uniformly distributing N

(where N ranges from 50 to 100) mobile hosts within a
square simulation area of size 1000 m × 1000 m. The mo-
bility speed of each host changes from 1 km/h to 80 km/h.
IEEE 802.11 DCF [23] (Distributed Coordination Function)
with CSMA/CA (Carrier Sense Multiple Access/Collision
Avoidance) is used as the medium access control protocol,
and two ray ground as the propagation model. The commu-
nication channel through which the wireless hosts commu-
nicate is a common broadcast channel of capacity 2 mb/s.
All mobile hosts are equipped with omnidirectional anten-
nae and have the same radio propagation range changing
from 100 m to 200 m. CBR (Continuous Bit Rate) traffic
sources are used to generate the traffics with a rate of 20 p/s
(packet per second). The packet size is set to 512 bytes. Each
host is modeled as a store-and-forward queuing station and
assumed to be aware of its mobility information with the aid
of a reliable positioning system. Each simulation experiment
is run for 20 min, and the obtained results are averaged over
100 different runs. For our proposed algorithm, the reward
and penalty parameters are set to 0.1, and the stop condition
P is set to 0.95.

To show the outperformance of the proposed cluster for-
mation algorithm, its results are compared with those of
HD (a priority-based cluster formation algorithm proposed
by Gerla and Tsai [21]), GDMAC (a mobility-based clus-
tering algorithm proposed by Ghosh and Basagni [22]),
MOBIC (a weighted clustering algorithm proposed by Basu
et al. [11]), and MobHiD (a neighborhood stability-based
mobility prediction algorithm for clustering the MANETs
proposed by Konstantopoulos et al. [24]). In conducted ex-
periments, the efficiency of the proposed clustering algo-
rithm is compared with the above mentioned algorithms in
terms of the following metrics of interest.

• Number of clusters. This metric is defined as the num-
ber of partitions into which the entire network is divided.
This metric is inversely proportional to the cluster size.
As the cluster size increases, the load on the cluster-head
becomes considerable, leading to issues with energy con-
sumption, channel access scheduling, latency, contention,
complexity and so on.

• Cluster lifetime. The time interval during which a given
host assumes the role of a cluster-head in the cluster is
defined as the cluster lifetime. This metric is also called
cluster duration and shows the stability of the network
clusters. Cluster lifetime is measured in second and re-
duces as the mobility speed of the hosts increase. This
metric represents the resistance of the clustering algo-
rithm against the host mobility and network dynamics.

Fig. 6 The average number of clusters as a function of number of hosts
for transmission range 100 m

• Reaffiliation rate. This metric shows how often a mobile
host changes its cluster-head per unit time. Every ordinary
(non cluster-head) host must be affiliated with a neigh-
boring cluster-head. A host reaffiliates to another cluster-
head, if the current cluster-head resigns its role or the host
can not be connected to its cluster-head any more. It can
be seen that reaffiliation rate is inversely proportional to
the cluster lifetime.

• Control message overhead. This metric is defined as the
number of (extra) control messages required for network
clustering. This metric is measured as the number of con-
trol messages that must be sent per second.

4.1 Number of clusters

In this group of simulation experiments, we measure the
number of clusters into which the network is partitioned as
the number of network hosts changes from 50 to 500 with in-
crement step of 50. The mobile hosts travel through the sim-
ulation area of size 1000 m × 1000 m with the random way-
point mobility model. We set the maximum mobility speed
of each host to 70 km/h, and the radio transmission range
of the hosts to 100 m. Figure 6 shows the average number
of clusters (or cluster-heads) versus the network size (i.e.,
the number of mobile hosts within the network). From the
results shown in Fig. 6, it is obvious that in all algorithms
the number of clusters increases as the number of hosts in-
creases. Comparing the curves shown in Fig. 6, we observe
that GDMAC has the worse results, and the number of clus-
ters constructed by MOBIC is slightly smaller than that of
GDMAC. The reason for such a large number of clusters is
that these algorithms do not aim at minimizing the number
of clusters. The results also show that our proposed algo-
rithm (MCFA) outperforms the other clustering algorithms.
For number of hosts larger than 100, HD performs better
than MobHiD and is ranked after MCFA.

We changed the radio transmission range to 200 m and
repeated the same experiments. The results are shown in
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Fig. 7 The average number of clusters as a function of number of hosts
for transmission range 200 m

Fig. 7. The obtained results show that the number of clus-
ters significantly decreases as the radio transmission range
increases. This is due to the fact that a larger area, and con-
sequently a larger number of hosts, can be dominated by a
cluster-head having a higher transmission range. Therefore,
the entire network can be covered by a smaller number of
cluster-heads. Comparing the results shown in Fig. 7, we
find that the ranking given in Fig. 6 for the clustering algo-
rithms remains unchanged here and the proposed algorithm
outperforms the others and GDMAC produces the largest
number of clusters.

4.2 Cluster lifetime

In these experiments, we study the impact of the host speed
on the cluster duration. It is expected that the cluster lifetime
reduces as the mobility speed increases. This set of simula-
tion experiments is conducted on the ad hoc networks in-
cluding 50 hosts each of radio transmission range 200 m.
The average cluster lifetime is measured in seconds as the
host speed ranges from 1 km/h to 80 km/h, and the obtained
results are shown in Fig. 8. The curves depicted in Fig. 8
show the major superiority of the proposed clustering al-
gorithm over the others in terms of the cluster stability. As
mentioned earlier, the mobility characteristics of the host in
the existing methods are assumed to be constant while they
vary with time, and so they can not pragmatically predict the
long-term mobility behavior of the host. In MCFA, the clus-
ter members stay connected to the cluster-head for a longer
time. This is because in MCFA the most stable hosts are
found by estimating the expected mobility characteristics
of the host over different epochs, and selected as cluster-
head. Comparing the results shown in Fig. 8, we find that
MobHiD lags far behind MCFA, and MOBIC is ranked be-
low MobHiD. GDMAC outperforms HD and so it is ranked
lower than MOBIC. Therefore, the clusters constructed by
HD have the lowest stability against the host speed. This

Fig. 8 Cluster lifetime versus the host speed for transmission range
200 m

Fig. 9 Cluster lifetime versus the host speed for transmission range
300 m

is because HD does not involve the mobility parameters of
the host in cluster formation process. To study the effects of
the radio transmission range on the cluster lifetime, we in-
creased the transmission range to 300 m, repeated the same
experiments, and reported the obtained results in Fig. 9. The
results show that the cluster lifetime is meaningfully im-
proved when we increase the transmission range. When the
radio transmission range of the cluster-head increases, its
neighboring hosts remain within its neighborhood (or stay
connected to the cluster-head) for a longer time, and this ex-
tends the cluster lifetime.

4.3 Reaffiliation rate

This set of simulation experiments is concerned with inves-
tigating the impact of the speed and the radio transmission
range of the hosts on the reaffiliation rate. Reaffiliation rate
represents the number of times a mobile host changes its
cluster-head and affiliates to a new cluster per unit time.
A mobile host reaffiliates to a new cluster, if the current
cluster-head resigns its role or the host can not stay con-
nected to its cluster-head any longer. It is expected that the
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Fig. 10 Reaffiliation rate as a function of host speed

reaffiliation rate increases as the mobility speed of the host
increases. This is because the mobiles leave their clusters
faster as the host speed increases. In these experiments, it is
assumed that 50 mobile hosts, each of transmission range
200 m, are travelling within the simulation area of size
1000 m × 1000 m with random waypoint mobility model.
The average reaffiliation rate is measured as the host speed
changes from 1 km/h to 80 km/h. Figure 10 shows the av-
erage reaffiliation rate in second versus the changes of the
host speed. The curves depicted in this figure shows that
the reaffiliation rate of all algorithms increases when the
host speed becomes faster. Comparing the results shown in
Fig. 10, it is observed that our proposed algorithm has the
lowest reaffiliation rate. This could be also predicted from
the results obtained for the cluster lifetime. This is due to
the fact that in our proposed algorithm the expected relative
mobility of the cluster-head with respect to all its members
is minimized. Therefore, the cluster-head duration increases
and the mobile hosts leave their clusters at a very lower rate.
From the obtained results, we find that among the previous
algorithms, MobHiD has the lowest reaffiliation rate. This
is because in MobHiD each host selects the host which re-
mains its cluster-head for a longer time, and so it dramat-
ically decreases the probability of reaffiliation. The results
also show that HD has the highest reaffiliation rate as com-
pared with the other algorithms. The reason for such a result
is that HD does not take into account the movement charac-
teristics of the host to improving the reaffiliation rate and to
constructing the stable clusters.

We also conducted several experiments to examine the ef-
fects of the radio transmission range on the reaffiliation rate.
The results are shown in Fig. 11. In these experiments, the
maximum host speed is set 40 km/h, and the transmission
range changes from 100 m to 400 m with increment step of
50 m. From the results shown in Fig. 11, we observe that for
almost all algorithms the reaffiliation rate increases as the
transmission range changes from 100 m to 200 m, and there-
after it decreases for transmission ranges larger than 250 m.

Fig. 11 Reaffiliation rate as a function of radio transmission range

This is because for small radio transmission ranges, between
100 m and 200 m, the host degree is small (i.e., each host has
a few neighbors) and so the hosts rarely find another cluster-
head to affiliate. On the other hand, for large radio ranges,
between 250 m and 400 m, the time interval during which a
host stays connected to (or is within the transmission range
of) its cluster-head becomes longer as the transmission range
increases. Therefore on two ends of the spectrum, the min-
imum reaffiliation rates can be achieved, and the maximum
reaffiliation rate are obtained in the middle of the spectrum.
The curves depicted in Fig. 11 show that MCFA outperforms
the other algorithms in terms of the reaffiliation rate for all
values of radio range.

4.4 Control message overhead

In these experiments, the control message overhead of the
proposed clustering algorithm is measured and the obtained
results are compared with those of GDMAC, MOBIC, and
MobHiD. The control message overhead is measured as the
number of control messages that must be sent per second.
In this group of simulation experiments, 50 mobile hosts are
randomly and uniformly distributed within the simulation
area of size 1000 m × 1000 m. The mobility model is as-
sumed to be random waypoint. The radio transmission range
is initially set to 200 m and the control message overhead is
measured as the host speed ranges from 1 km/h to 80 km/h.
Then, the radio transmission range increases to 300 m and
the same experiments are repeated. The obtained results are
depicted in Figs. 12 and 13. The experiments show that the
control message overhead of HD is much higher in com-
parison with the other algorithms. Therefore, to show the
obtained results and performance of the other algorithms
with more clarity (in a larger scale) HD was excluded from
Figs. 12 and 13. From the obtained results, it can be seen that
in all algorithms the control message overhead increases as
the host mobility increases. Comparing the results shown in
Figs. 12 and 13, we observe that the control message over-
head significantly decreases as the radio range increases.
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Fig. 12 Control message overhead versus the host speed for transmis-
sion range 200 m

Fig. 13 Control message overhead versus the host speed for transmis-
sion range 300 m

This is because the cluster lifetime increases and the reaf-
filiation rate decreases as the radio transmission range in-
creases. As shown in Figs. 12 and 13, GDMAC and MCFA
have the highest and lowest control message overhead, re-
spectively. The reasons for outperformance of MCFA are
as follows. In comparison with the other algorithms, MCFA
has the longest cluster duration and the lowest reaffiliation
rate. Therefore, MCFA forms the most stable clusters and so
has the lowest reclustering rate. The reduction in recluster-
ing rate reduces the control message overhead rate. Further-
more, in MCFA, each host independently selects its cluster-
head based solely on the local information received from its
neighbors, and so no message needs to be flooded within
network. For mobility speeds faster than 50 km/h, it can be
seen that the obtained results for MobHiD are very close to
those of MCFA.

5 Conclusion

In this paper, we proposed a weighted learning automata-
based clustering algorithm for wireless mobile ad hoc net-

works. In our proposed method, the relative mobility of each
host with respect to all its neighbors is defined as its weight.
In this algorithm, it is assumed that the mobility character-
istics of the host and so the weight associated with the host
are random variables with unknown distribution parameters.
Therefore, the expected weight (relative mobility) of each
host is estimated by sampling its mobility parameters in var-
ious epochs. In the proposed method, at each neighborhood,
the host with the highest expected weight is selected as the
cluster-head. This ensures the stability of the clusters against
the host mobility. In this algorithm, each host chooses its
cluster-head based solely on the local information received
from its neighboring hosts. To show the performance of the
proposed algorithm, we conducted several simulation ex-
periments and compared the obtained results with the well-
known existing clustering methods. The numerical results
show that the proposed algorithm outperforms the others in
terms of the number of clusters, cluster lifetime, reaffiliation
rate, and control message overhead.
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