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Abstract—This work presents a novel hierarchical control
approach and new mathematical optimization models of green-
houses, which can be readily incorporated into Energy Hub
Management Systems (EHMSs) in the context of smart grids, to
optimize the operation of their energy systems. In greenhouses,
artificial lighting, CO2 production, and climate control systems
consume considerable energy; thus, a mathematical model of
greenhouses appropriate for their optimal operation is proposed,
so that it can be implemented as a supervisory control in existing
greenhouse control systems. The objective is to minimize total
energy costs and demand charges while considering important
parameters of greenhouses; in particular, inside temperature
and humidity, CO2 concentration, and lighting levels should
be kept within acceptable ranges.Therefore, the proposed model
incorporates weather forecasts, electricity price information, and
the end-user preferences to optimally operate existing control
systems in greenhouses. Effects of uncertainty in electricity price
and weather forecast on optimal operation of the storage facilities
are studied through Monte Carlo simulations.The presented
simulation results show the effectiveness of the proposed model to
reduce total energy costs while maintaining required operational
constraints.

Index Terms—Smart grids, energy management systems, en-
ergy hubs, greenhouses, mathematical modeling, optimization.

I. NOMENCLATURE

The sets, indices, subscripts, variables, and parameters used
in the equations throughout the paper are presented here.
Where applicable, the parameter values used for the simu-
lations are provided as well.

Sets
A Set of devices; A = {cf, chl, chlv, co2, dh, fv, fog,

hu, ht, htv, nv}
T Set of time intervals in scheduling horizon;
Z Set of zones;
Indices
i Index of devices; z Index of zones
t Index of time intervals
Functions
J Objective function of the optimization model
Subscripts
a Air; cf Circulation fans
chl Chiller; chlp Chilling pipe
chlv Valve of chilling pipe; co2 CO2 generator
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dh Dehumidifier; ev Evaporation
fv Forced ventilation; fog Fogging system
gh Greenhouse; ht Heating system
htp Heating pipe; htv Heating system valve
nv Natural ventilation; out Outdoor
p Plants; photPhotosynthesis
sl Soil; sr Solar radiation
w Water; wl Wall
Variables
p̂ Peak demand variable (kW)
psat Saturated water vapour pressure (Pa)
ppar Partial vapour pressure (Pa)
φz(t) Relative humidity of zone z at time t (%)
qiz(t) Thermal effect of component i on temperature in

zone z (kJ/h)
θz(t) Temperature of zone z at time t ( ◦C)
si,z(t) Operation state of device i of zone z at time t;

0 ≤ si,z(t) ≤ 1
wz(t) Water content of air in zone z at time t (gw/kga)
ŵz(t) Saturated vapour concentration in zone z at time t

(gw/kga)
c(t) CO2 concentration in zone z at time t (gCO2

/kga)
µs,x Axillary variable to represent s · x
Parameters
Agh,z Area of greenhouse in zone z (m2); 20000
Awl,z Area of greenhouse walls in zone z (m2); 22400
Anv,z Ventilation window area in zone z (m2); 450
Ahtp,z Area of heating pipe in zone z (m2); 1625
Achlp,z Area of cooling pipe in zone z (m2); 1625
C1 Constant (no dim.); 100
C2 Constant (Pa); 1.7001
C3 Constant (Pa); 7.7835
C4 Constant (K−1); 1/17.0789
C5 Constant (kgw/kga); 0.6228
C6 Conversion factor from (1/s) to (1/h); 3600
C7 Coefficients associated with the respiration

rate of the crop ( ◦C); -0.27
C8 Coefficients associated with the respiration

rate of the crop (no dim.); 0.05
Ca Specific heat of air (kJ/(kgK)); 1.006
Ce(t) Cost of energy at time t; ($/kWh)
Cdc Demand charge ($/kW); 8
Cp Specific heat of the plants (woods and leaves)

(kJ/(kg K)); 3
Cw Specific heat of water (kJ/(kg K)); 4.1855
Cre Respiration coefficient of crops in z (g/(m2 hK));

1.224e-3



ACCEPTED IN IEEE TRANSACTIONS ON SMART GRID 2

Cphot Photosynthesis coefficient of crops in z (g/J);
46.03e-3

Cmaxinj Max. carbon injected by CO2 generator in
zone z (g/m2

gh); 0.8
Cmaxz Max. CO2 concentration in zone z (g/m2

gh); 1.3
Cminz Min. CO2 concentration in zone z (g/m2

gh); 0.7
ε Volumetric ratio of air to crops in the green-

house (m3
a/m

3
gh); 0.85

ηchl Performance coefficient of the chilling system; 1
ηfog Fog to vapour conversion factor of the fogging

system (no dim.); 0.05
Hgh Average hight of the greenhouse (m); 4
I(t) Solar irradiation at time t (W/m2)
L Large positive number; 10
λ Percentage of wind speed which enters into the

greenhouse (no dim.); 0.0075
NT Number of intervals in scheduling horizon T ; 24
Pa Actual water vapour pressure (Pa)
Patm Atmospheric air pressure (Pa); 0.65e5
Pi Rated power of device i (kW ); {cf : 30.5, chl: 175

co2: 200, dh: 60, fv:14 }
Qz Volumetric air flow rate of ventilation fans

in zone z (m3
a/(hm

2
gh)); 18.3

Rwl Heat transfer coefficient of greenhouse
walls (kJ/(hKm2)); 180

Rsl Heat transfer coefficient of greenhouse soil
(kJ/(hKm2)); 20.7

Rpipe Heat transfer coefficient of pipes
(kJ/(hKm2)); 1200

Rsr Heat transfer coefficient of greenhouse
cover (kJ/(hKm2)); 0.7

Rpipe,sl Heat transfer coefficient between pipes and
soil (kJ/(hKm2)); 3.6

ρa Density of air (kg/m3); 1.27
ρw Density of water (kg/m3); 1000
ρp Density of plants (kg/m3); 1010.2
Rg Rate of CO2 emissions from natural gas

consumption (tonne/MWh); 0.5148
Ri Required operation time of device i (h); 12
Θsl Soil temperature ( ◦C); 8
Θmin
out Min. acceptable outdoor weather temperature to

allow outdoor air ventilation ( ◦C); -3
Θset
z Inside temperature set point in zone z ( ◦C); 17

Θl
z Min. inside temperature in zone z ( ◦C); 15

Θu
z Max. inside temperature in zone z ( ◦C); 19

Θl0
z Min. average temperature in zone z ( ◦C); 16

Θu0
z Max. average temperature in zone z ( ◦C); 18

Θmin
htp

Min. hot water temperature ( ◦C); 60
Θmax
htp

Max. hot temperature ( ◦C); 95
Θmin
chlp

Min. chilled water temperature ( ◦C); 4
Θmax
chlp

Max. chilled water temperature ( ◦C); 10
τ Length of time interval (h); 1
Vgh,z Volume of greenhouse zone z (m3); 80000
Vhtp,z Volume of water in heating pipes and tank in

zone z (m3); 100
Vchlp,z Volume of water in chilling pipes and tank in

zone z (m3); 50

Wevp(z)Crop evaporation at each hour in zone z
(gw/(hm2

gh)); 125.8
Wmax
fog Max. water rate of fogging systems

(gw/(m2
ghh)); 9.6

Wmax
dh Max. rate of dehumidifier (gw/(m2

gh h); 145
Wout(t) Absolute water content of outdoor air at

time t (gw/kga)
ξz Effect of the fans operation on CO2 concentration

in zone z (h−1); 366000

II. INTRODUCTION

SMART GRIDS are envisioned to support large penetra-
tions of distributed demand-side resources coupled with

system-wide Demand Response (DR) driven by economic
and reliability signals. In this context, utilities are offering
Demand Side Management (DSM) and DR services to better
manage their networks [1], [2]. These DR programs incentivize
customers with payments or economic penalties to reduce
consumption during periods of critical grid conditions or peri-
ods of high energy costs. With the integration of information
technology and Advanced Metering Infrastructure (AMI) into
smart grids, both utilities and customers can have access to
two-way communication infrastructures, control devices, and
visual interfaces that allow them to send, retrieve, visualize,
process and/or control their energy needs [3]. These devel-
opments make automated operational decisions feasible in
energy systems, presenting a significant potential to improve
performance and effectiveness of DSM and DR programs,
allowing customer direct involvement in these programs to
better manage energy and power consumption.

To date, large industrial and commercial customers have
been the most active participants in DSM and DR programs
because of their potential to achieve large peak-load and
energy consumption reductions [1]. Other sectors such as
residential, small commercial, and agricultural customers have
traditionally participated less in DSM and DR activities mainly
because of their individually smaller contributions to the
system peak-load and energy consumption, as well as the
technical difficulties of integrating these customers due to the
nature of their activities [4]. Therefore, in the new era of
smart grids, these small customers also could be important
resources for DR and DSM programs, and thus exploring new
opportunities to better manage energy requirements in these
sectors to reduce their demand is relevant and timely.

In the USA, poultry farms, dairy farms, and greenhouses
are some of the major energy consuming customers in the
agricultural sector, being about 16% of the total energy con-
sumption [5]. Most of the existing DSM programs in this
sector are focused on energy efficiency programs in farms to
reduce total energy consumption by installing more energy
efficient technologies and the reduction of energy losses [6]–
[8]. The potential for DSM and DR participation in green-
houses is much higher than farms because of the nature of
activities that take place in these places. In this context, climate
control systems are the main mechanism that regulate energy
and power consumption in greenhouses [9]. Therefore, these
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systems could be the principal means by which these loads
could participate in DSM and DR programs.

In the literature, the main types of climate control for
greenhouses are: feedback controllers [10], [11]; optimal con-
trol [12]; Neural Networks (NN) [13], [14]; Fuzzy Logic
Controllers (FLC) [15], [16]; Model Predictive Control (MPC)
[17]–[19] and hierarchical control [12], [20]. Most of the work
reported in the literature only focus on improving climate
control of greenhouses without taking into account energy
costs. However, there is some reported work on greenhouse
climate control with energy cost minimization, mostly focus-
ing on minimization of CO2 production and heating costs
(e.g., [15], [19]). Nevertheless, in general, existing methods
for energy management in greenhouses fail to fully optimize
total energy utilization mainly due to a lack of a general
optimization framework based on comprehensive internal and
external information such as weather and energy price forecast,
and other associated variables.

In view of the above discussions, this paper focuses on the
optimal operation of energy systems of greenhouses in the
context of smart grids, making the following novel contribu-
tions:

• A hierarchical operation strategy is proposed and demon-
strated.

• A detailed mathematical model of greenhouses is de-
veloped and presented, considering their operational re-
quirements and appropriate for the optimal and real-
time scheduling of these hubs’ electricity, gas, and heat
equipment.

• Tests and validation of the proposed optimization ap-
proach are presented and discussed for a realistic green-
house, demonstrating the benefits and feasibility of the
proposed approach.

The proposed models can be readily incorporated into Energy
Management Systems (EMS) and implemented as a super-
visory real-time control in existing greenhouse controllers,
thus empowering greenhouses to effectively manage their
overall energy demand, production, and storage in real-time.
The objective is to minimize total energy costs while impor-
tant parameters of greenhouses, i.e., inside temperature and
humidity, CO2 concentration, and lighting levels, are kept
within acceptable ranges. The proposed supervisory control
in conjunction with current existing climate controllers would
allow coordinated optimal operation of greenhouse while con-
sidering the user preferences, thus facilitating the integration
of these agricultural customers into smart grids.

The remainder of the paper is organized as follows: The
EMS of greenhouses is discussed in Section III, together with
the proposed supervisory operation strategy. The developed
mathematical models are presented and discussed in Section
IV. Numerical results of the application of the proposed
models to a realistic greenhouse are presented and discussed
in Section V. Finally, the main conclusions and contributions
of the paper are highlighted in Section VI.
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Fig. 1. Greenhouse energy system.

III. EXISTING AND PROPOSED GREENHOUSE EMS

A. Existing EMS

Figure 1 shows an overview of a greenhouse energy system.
All growing phases of crops can be modified by the control of
temperature, humidity, light, and CO2 in a greenhouse, making
climate control in greenhouses a multi-variable problem.

Operational constraints of physical devices such as max-
imum window opening, flow rate of fans, rate of fogging
systems, and temperature of hot water tubes are limiting
features which need to be considered in these control systems.
Also, predefined ranges for controlled variables should be
chosen properly considering the physical limits of devices
and related physical and thermodynamic laws (e.g., saturation
bounds enforced by saturation law [10]).

In greenhouses, transpiration of a crop can be controlled by
manipulating the temperature and ventilation rate of the green-
house [21], and photosynthesis is a function of irradiance,
temperature and CO2 concentration [22]. CO2 enrichment is
usually used to decrease the amount of supplemental lighting,
as this is a much less expensive alternative; however, it is
expensive to maintain elevated CO2 concentrations inside a
greenhouse during periods of high ventilation rates. It should
also be noted that the greenhouse layout and available equip-
ment, as well as the type of plants grown in the greenhouse
affect the climate control strategy and model.

Automated Control Systems (ACS) in most greenhouses
consist of central computers, sensors and a data acquisition
system connected through communication protocols such as
RS-232 and ModBus [23]. These ACS coordinate and integrate
the control of greenhouse equipment and systems such as
heaters, coolers, motors for windows opening and closing,
pumps and irrigation systems in real time.

A typical existing climate control system in a greenhouses
is depicted in Fig. 2, together with the proposed supervisory
control described below. Currently, most control algorithms
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Fig. 2. Greenhouse existing and proposed supervisory control architecture.

in ACS work on logical On-Off and Proportional-Integral-
Derivative (PID) based controllers. These algorithms use cli-
mate control settings which usually include daily or multi-day
schedules, in which temperature and humidity targets can be
defined for a number of periods in a day. The goal is to keep
a given variable (e.g., temperature, relative humidity, and CO2

concentration) within a predefined range or follow predefined
set points. Greenhouses usually have weather stations that
provide external and internal information on temperature,
relative humidity, radiation, and wind speed to be used for
their real-time climate control.

B. Proposed Supervisory Operation Strategy

As just discussed, common existing ACSs coordinate and
integrate real-time control of greenhouse equipment and sys-
tems using logical On-Off and PID based controllers, and
typically do not optimize the energy utilization in such multi-
carrier facility. Therefore, a hierarchical supervisory frame-
work is proposed and discussed here based on a mathematical
model of greenhouses, using internal and external information
such as weather and energy price forecasts for optimal oper-
ation of greenhouses. The proposed framework maintains the
greenhouse climate within proper conditions to achieve the
best plant growth, and controls important parameters such as
greenhouse temperature, relative humidity, lighting levels, and
CO2 concentrations while reducing total energy costs.

1) Hierarchical Operation Scheme: Nowadays, appropriate
day-ahead electricity price forecasts and weather forecasts for
the next few days, updated every few hours, are available.
These forecasts are used here to design a hierarchical opera-
tion strategy to improve the operation of greenhouse climate
control systems to reduce total energy costs and demand.
The architecture of the proposed hierarchical scheme for
the optimal operation of greenhouses is presented in Fig. 2.
The existing feedback control systems remain at the lower
hierarchical level, while at the higher level the proposed super-
visory control generates set points for the existing controllers,
considering appropriate set-point ranges and user preferences
to optimize the operation of the climate control system.

The proposed optimization greenhouses model, presented
in Section IV, reside at the supervisory level to generate set
points for the existing feedback control systems, which per-
form the actual control actions such as turning devices on and
off. The optimization model looks ahead in time and updates

the optimal outputs every hour, while the feedback controller
continuously monitors the parameters under control and tracks
the target set points in real time. The supervisory control
also monitors the system, and in case of large discrepancies
between the calculated and measured parameters, re-runs the
model and updates the set points, using an MPC approach.

2) External Information: External information used in the
proposed supervisory control of Fig. 2 is weather forecasts
such as average hourly outdoor temperature, humidity, wind
speed, and solar irradiations. Day-ahead forecasts of the elec-
tricity and gas prices and peak-demand charges are also used
to calculate the expected energy costs of greenhouses. This
external information is assumed to be exogenous inputs to the
proposed optimization model.

3) Scheduling Horizon: The scheduling horizon in the
optimization model can vary from a few hours to days, with
the selection depending on the type of the activities which take
place within the greenhouse and the accuracy of weather and
energy price forecasts. A daily scheduling horizon with time
intervals of one hour is used in this work for optimal energy
management of greenhouses.

IV. MATHEMATICAL MODELING OF GREENHOUSES

In a typical greenhouse, the following categories of energy
consuming components can be identified: supplementary light-
ing; climate controls of temperature, humidity, and CO2 levels
through heating and cooling systems; and natural and forced
air ventilation and circulation. The mathematical models that
represent the components of the system considering their
operational constraints are described next.

A. Objective Functions

1) Minimization of costs of energy consumption: The fol-
lowing objective function corresponds to the minimization of
the customer’s energy costs over the scheduling horizon:

J1 =
∑
t∈T

∑
i∈A

τ Ce(t)Pi si,z(t) (1)

2) Minimization of peak demand charges: The following
objective seeks to minimize the customers’ demand charges:

J2 = Cdc ∗ p̂ (2)

where p̂ is a non-negative variable used along with the
following constraint to represent the peak demand during the
scheduling horizon:

p̂ ≥
∑
i∈A

i/∈{co2,dh,ht}

Pi si,z(t) ∀t ∈ T (3)

3) Minimization of total energy costs: Total energy costs
includes costs of energy consumption plus peak demand
charges as follows:

J3 = J1 + J2 (4)
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B. Model Constraints

1) Indoor Humidity: Humidity inside a greenhouse needs
to be controlled to provide a suitable environment for plant
growth and to prevent fungal diseases. In the case of high
humidity, which usually happens in winter nights, the plants
stop transpiration, and condensation from the roof and plant
leaves may cause fungal diseases. In the case of low humidity
the plants stop absorbing CO2 and the photosynthesis process,
resulting in slow plant growth. Therefore, controlling relative
humidity in greenhouses should be modeled properly in the
mathematical model.

Relative humidity of greenhouses is defined as [24]:

φ =
ppar
psat

100% (5)

where the saturated vapor pressure and the partial pressure can
be approximated by:

psat = C1

(
−C2 + C3e

C4θ
)

(6)

ppar =
wPatm
C5

(7)

The saturated vapor pressure equation is linearized as follows,
based on a Taylor series expansion:

psat =C1

{
−C2 + C3e

C4(Θl+Θu)/2 (8)[
1 + C4(θ − (Θl + Θu)/2)

]}
(9)

The linearization of this and other equations is done to make
the optimization model a Mixed Integer Linear Programming
(MILP) problem, for practical application purposes. To model
the humidity inside the greenhouses, the water content of air
inside the greenhouse needs to be modeled based on the mass
balance principle, as follows [9]:

wz(t) =wz(t− 1) +
τ

ρaVz
[Wevp,zAz

+QzρaAzsfv,z(t) (Wout(t)− wz(t))
+vw(t)λzρaAzsnv,z(t)(Wout(t)− wz(t))
+sfog,z(t)W

max
fog,zAz

−sdh,z(t)Wmax
dh,z Az

]
∀t ∈ T (10)

This equation states that the water content of the greenhouse
air at time t is a function of its water content at time t − 1;
moisture ventilated by the forced and natural air ventilation
system; and the operation of the fogging and dehumidification
systems.

Using (5) and substituting the associated terms from (7)
and (9), the following constraints guarantee that the relative
humidity of inside air is kept within the desired limits:

wz(t) ≤ φmaxz

psatC5

Patm
∀t ∈ T (11a)

wz(t) ≥ φminz

psatC5

Patm
∀t ∈ T (11b)

2) Indoor Temperature: Thermal dynamics of the green-
house are modeled based on the energy balance principle, as
follows [9]:

θz(t) = θz(t− 1) +
τ

Cz

[
qsrz (t) + qhtpz (t)− qchlpz (t)− qwlz (t)

−qnvz (t)− qfvz (t)− qslz (t) + qliz (t) + qco2z (t) + qdhz (t)

−qevz (t)] (12)

This constraint states that the temperature of the greenhouse
space at time t is a function of its temperature at time t− 1;
absorbed heat from sunshine; heat transfer through heating and
chilling pipes; heat loss through walls, soil, air leakage and
ventilation; heat produced by the lighting, CO2 generation and
dehumidification systems; and evaporation heats of the fogging
system.

Temperatures of hot and chilled water inside pipes are
calculated based on the energy balance principle, as follows
[9]:

θhtp,z(t) = θhtp,z(t− 1)

+
τ

CwρwVhtp,z
[3.6× Pmaxht sht,z(t)

−RpipeAhtp,zshtp,z(t)
(
θhtp(t)− θz(t)

)
−RslAhtp,z

(
θhtp(t)−Θsl(t)

)]
∀t ∈ T (13)

θchlp,z(t) = θchlp,z(t− 1)

+
τ

CwρwVchlp,z
[3.6× Pmaxchl schl,z(t)

−RpipeAchlp,zschlv,z(t)
(
θchlp(t)− θz(t)

)
−RslAchlp,z

(
θchlp(t)−Θsl(t)

)]
∀t ∈ T (14)

These constraints state that the average temperature inside the
pipes at time t is a function of: its temperature at time t −
1; absorbed heat (cold) from operation of heating (chilling)
system; heat transfer through pipes to the greenhouse space;
and heat loss through soil.

The calculated inside temperature of the greenhouses must
be kept within a range specified by minimum and maximum
limits:

Θl
z ≤ θz(t) ≤ Θu

z ∀t ∈ T (15)

And the average inside temperature over the scheduling hori-
zon must be within a tighter predefined temperature range:

Θl0
z ≤

∑
t∈T

θz(t)/NT ≤ Θu0
z (16)

3) Indoor CO2 Level: Plants need sunlight and CO2 for
photosynthesis. When there is sunlight, plants consume CO2

inside the greenhouse and thus CO2 concentration drops; thus,
to keep a high level of photosynthesis and plant growth, it
is essential to supply CO2 into the greenhouse and maintain
CO2 concentration within a desired range. CO2 concentration
within the greenhouse is modeled as follows, based on the
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mass balance principle [9]:

cz(t) = cz(t− 1) +
τ

ρaVgh,z

[
Cmaxinj,zsco2,z(t)Agh,z

+C6vwλzAnv,zsnv,z(t) (Cout(t)− cz(t))

+ξzsfv,z(t) (Cout(t)− cz(t))

+Cres,zAgh,z (C7 + C8θz(t))

−C6Cphot,zI(t)ηsrAgh,z] ∀t ∈ T (17)

This constraint states that CO2 balance within the greenhouse
is determined by the CO2 supply, the plants consumption of
CO2 and the air exchange by ventilation.

Concentration of CO2 inside the greenhouses must be kept
within a range specified by minimum and maximum values,
as follows:

Cminz ≤ cz(t) ≤ Cmaxz ∀t ∈ T (18)

4) Lighting: Supplemental lighting for greenhouses is re-
quired to increase photosynthesis and plants growth especially
in areas that receive few hours average daily sunshine. High
Intensity Discharge (HID) lamps such as metal halide and high
pressure sodium lamps are commonly used for the purpose
of supplying artificial lighting in greenhouses. Operational
requirements of these supplementary lighting systems in the
proposed model are formulated and included in the model.
Since HID lamps are not designed for cyclical On/Off opera-
tion, minimum up time and minimum down time requirements
of these lighting systems need to be modeled as well.

Minimum and maximum aggregated lighting requirements
of the plants from sunshine and supplementary lighting sys-
tems installed in each zone are also modeled. Constraints
that enforce maximum successive On time of the lighting
system, and the minimum duration and the minimum lighting
of cloudy weather to turn on the supplementary lighting
systems are included to ensure that the plants use the artificial
lighting more efficiently. The required equations to model
these systems are similar to those used in conventional unit
commitment problems in power systems, and are not provided
here due to space limitation, but can be found in [25]

5) Air Circulation: Air circulation is needed in greenhouses
to maintain a uniform temperature and CO2 concentration
throughout the greenhouse. The circulation fans should operate
for at least a user-defined required operation time (Rcf ), which
can be modeled as follows:

NT∑
k=1

scf,z(t) ≥ Rcf (19)

The circulation fans should also operate whenever the CO2

generation unit is On to distribute CO2 uniformly; this is
modeled as follows:

scf,z(t) ≥ sco2,z(t)− L (1− sco2,z(t)) (20)

6) Other Devices’ Operational Constraints: As previously
mentioned, the operation of the ventilation fans are controlled
in the proposed model based on their effects on greenhouse
temperature, humidity, and CO2 concentration. However, when
the outdoor temperature is less than a pre-specified value
Θmin
out , forced ventilation and natural ventilation should not

operate and circulate very cold air into the greenhouse. Also,
fogging and dehumidification systems should not operate
simultaneously, and the valves of the heating and chilling
pipes do not open simultaneously to inject heat and clod
into the greenhouse at the same time. Notice that the heating
system (boiler) and the cooling system (chiller) may operate
simultaneously to take advantage of storing heat and clod
during low electricity prices.

C. Exact Linear Equivalent of Bi-linear Terms

In the problem formulation presented in the previous sec-
tions, there are products of binary and continuous variables
that make the model nonlinear. Thus, all these bi-linear terms
in the developed model are linearized to obtain an MILP
problem which is more suitable for real-time applications. For
that, assume that s is a binary variable and x is a positive
continuous variable bounded by x ≤ x ≤ x. Hence a new
variable µs,x can be defined to obtain the exact equivalent of
the product s x as follows:

µs,x ≥ x− (1− s)x (21a)
µs,x ≤ x (21b)
s x ≤ µs,x (21c)
µs,x ≤ s x (21d)

Therefore, all the bi-linear variable terms in the model, e.g.,
shtp,z(t) θhtp(t) and shtp,z(t) θz(t) in (13), are replaced
with the corresponding µs,x = s x variables and constraints,
resulting in an MILP mathematical optimization model.

V. NUMERICAL RESULTS OF GREENHOUSE MODEL

Several case studies have been conducted to examine the
performance of the developed mathematical model for optimal
operation of greenhouses, of which the most relevant ones are
presented here. In case studies shown here, the mathematical
model is run for a typical greenhouse, for which parameters
and device ratings are suitably chosen (see Section I), and
realistic data inputs for outside temperatures, humidity, wind
speed, solar irradiation, electricity price and demand charges
are used [25]. Figures 3 and 4 show the electricity price and
outdoor temperature, respectively, used in the simulations for
summer and winter days; other input data can be found in [25].
Real-Time Pricing (RTP) and demand charges for electricity
costs, and Flat Rate Price (FRP) for natural gas in Ontario,
Canada are used to calculate total energy costs. AMPL [26], a
modeling language for mathematical programming, is used to
implement the developed mathematical models of the green-
house, and CPLEX [27], a popular solver for LP and MILP
problems, is used to solve these models.

A. Simulations

The case studies presented in Table I are considered here
to examine various operation paradigms of greenhouses using
the developed model. The solution presented for Case 0 is
just a feasible solution of the model, thus representing the
actual operation of a greenhouse for typical existing climate
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Fig. 4. Outdoor Temperature for a summer day and a winter day used in the
simulations.

control systems, and hence is considered here to correspond
to a realistic “base case” for comparison purposes. Case 1,
Case 2, and Case 3 represent different applications of the
proposed models for the optimal operation of greenhouses.
The constraints of the model for all cases are the same as,
with only the objective functions changing.

Optimal operational decisions and resulting trajectories gen-
erated by the proposed model for a winter day are presented
in Fig. 5, showing the decision variables for all devices and
the resulting inside temperatures, relative humidities, and CO2

concentrations for Case 3. Observe that the model operates
the heater, dehumidifier, chiller, CO2 generator, natural ven-
tilation, and circulation fans to maintain greenhouse climate
conditions within predefined ranges. Observe that the model
reduces total costs by operating the devices during lower
energy price periods and by lowering the peak demand of the
greenhouse, while the inside temperature, relative humidity,
and CO2 concentrations vary within the predefined ranges.
Similar results were found for a summer day.

The resulting electric power demands of the greenhouse for

TABLE I
SUMMARY OF CASE STUDIES.

Cases Description
Case 0 The optimization model is solved with a constant value as

the objective function, thus finding a feasible solution for the
model with all constraints on operation of the devices, inside
temperature, humidity, and CO2 concentration being met.

Case 1 The objective is to minimize energy consumption costs.
Case 2 The objective is to minimize electricity demand charges.
Case 3 The objective is to minimize total energy costs, including

energy consumption and demand charges.
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Fig. 5. Optimal values of the variables in Case 3 using RTP for a winter day.

TABLE II
ENERGY COSTS AND DEMAND CHARGES FOR A SUMMER DAY.

Item Energy
(kWh)

Peak 
demand

(kW)

Energy costs 
($)

Demand 
charges ($)

Energy costs 
savings w.r.t
Case 0 (%)

Demand charges 
savings w.r.t
Case 0 (%)

Case 0 6029.47 206.00 161.47 1648.00 0.00 0.0

Case 1 7535.11 206.00 108.34 1648.00 32.90 0.0

Case 2 5737.65 106.00 157.50 848.01 2.46 48.5

Case 3 4933.54 106.02 135.69 848.16 15.97 48.5

ZONES Energy EnergyCost PeakDemand DemandCharg TCOST_Zone
CTE 6029.474101 161.473393 206 1648 1809.473393
EC 7535.109297 108.3439853 206 1648 1756.343985
DC 5737.645242 157.5023277 106.0017507 848.0140053 1005.516333
TC 4933.537553 135.6914758 106.0194256 848.1554049 983.8468806

each case on a winter day are shown in Fig. 6. For a winter day,
the peak demand cannot be significantly reduced due to the
need to operate the supplementary lighting system; however,
the model reduces total costs by operating the devices during
lower energy price periods, as shown in Fig. 5.

A comparison of energy costs and demand charges for
optimal operation of the greenhouse in all cases for summer
and winter days are presented in Tables II and III, respec-
tively. In Case 1, the energy costs are reduced significantly
as compared to Case 0 and are the least among all cases,
while the demand charges remain the same as the base case
for both summer and winter days. In Case 2, the demand



ACCEPTED IN IEEE TRANSACTIONS ON SMART GRID 8

0

2000

4000

6000

P
(k
W
)

Case 0

0

2000

4000

6000

P
(k
W
)

Case 1

0

2000

4000

6000

P
(k
W
)

Case 2

0

2000

4000

6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
(k
W
)

Time (h)

Case 3

Fig. 6. Electric power demand of the greenhouse for all cases on a winter
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TABLE III
ENERGY COSTS AND DEMAND CHARGES FOR A WINTER DAY.

Item Energy
(kWh)

Peak 
demand

(kW)

Energy 
charges ($)

Demand 
charges ($)

Energy costs 
savings w.r.t
Case 0 (%)

Demand charges 
savings w.r.t
Case 0 (%)

Case 0 54169.50 4031.00 1167.39 28217.00 0.00 0.0

Case 1 55638.43 4031.00 948.21 28217.00 18.77 0.0

Case 2 54959.19 4000.00 1135.06 28000.00 2.77 0.8

Case 3 55133.69 4000.50 949.39 28003.50 18.67 0.8

ZONES Energy EnergyCost PeakDemand DemandCharg TCOST_Zone
CTE 54169.49772 1167.386009 4031 28217 29384.38601
EC 55638.432 948.2132 4031 28217 29165.2132
DC 54959.19158 1135.058206 4000 28000 29135.05821
TC 55133.69094 949.38585 4000.5 28003.5 28952.88585

charges of the greenhouse is reduced significantly for the
summer day, whereas this reduction is not considerable for
the winter day, as the supplementary lighting system has to
be operated, which results in larger electricity demand for the
greenhouse; furthermore, the energy cost reductions of 2.46%
and 2.7%, which are much less than the corresponding energy
cost reductions in Case 1 and Case 3, as expected, are an
extra benefit resulting from the optimization approach and
the associated scheduling of the various greenhouse systems.
In Case 3, energy costs and demand charges are reduced as
compared to the base case for both winter and summer days.
Observe that energy costs and demand charges in this case
are less with respect to Case 0; however, the energy costs ($
135.69) are not as low as the energy costs in Case 1 ($ 108.34),
and the demand charges ($ 848.16) are slightly more than Case
2 ($848.01), as expected. In general, the proposed model for
optimal operation of greenhouses significantly reduces energy
costs and demand charges for a summer day, and achieves
considerable energy costs reductions for a winter day.

B. Monte-Carlo Simulations

To study the impacts of various uncertainties in the input
data (e.g., prices and weather), Monte Carlo Simulations
(MCS) are used here, determining the expected total cost
savings over a billing period (one month) for summer and
winter. Thus, randomly generated inputs from actual data of
outdoor temperature, humidity, wind speed, solar irradiation,
and RTP variations are used to perform multiple simulations.
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Fig. 7. Energy costs and peak demand charges at each MCS iteration and
their cumulative expected values for Case 3 in a summer day.

Random values of RTP (Hourly Ontario Electricity Price),
temperature, and humidity for each hour are generated using
a normal distribution with associated mean and standard
deviations for each hour of a day obtained from actual data
for each season for Ontario, Canada, thus representing worst
case scenario since no correlation in considered among these
input data. For wind speed, random values are generated using
a Weibull distribution with the scale and shape parameters
obtained from actual hourly data for each each season for
Ontario. Random solar irradiation inputs are generated using
uniform distribution with reasonable minimum and maximum
values for each hour a day for each season for Ontario.

Energy costs and peak demand charges at each MCS iter-
ation and their cumulative expected mean values obtained for
a summer day in Case 3 are shown in Fig. 7; observe that the
expected values converge in about 150 iterations. Expected
average energy costs and peak demand charges in Case 0 are
$269.8 and $8721.3, respectively, while these values for Case
3 are $159.6 and $5258.4, respectively. Hence, the expected
monthly total costs, which are assumed to be 30 times the
expected daily energy costs plus the expected peak demand
charges, are $16816.8 and $10046.4 over a summer month
for Case 0 and Case 3, respectively. Therefore, even when
considering large variations in weather and energy price data,
the model yields a significant total cost reduction of 40% for
summer months. Similar MCS show that the model yields
more than 19% and 2% reductions in expected energy costs
and demand charges, respectively, for a winter day; these
reductions yield a 13% expected monthly total cost savings
for winter days.

VI. CONCLUSIONS

A hierarchical control approach was proposed for optimal
operation of greenhouses in the context of smart grids, which
includes novel mathematical models for the optimal operation
scheduling of greenhouse’ electricity, gas, and heat systems.
Thus, optimization models were formulated to optimally op-
erate supplementary lighting, CO2 generation, air circulation
and ventilation, and heating and cooling systems in existing
greenhouses control systems. The developed models incorpo-
rated weather forecasts, electricity price information, and the
end-user preferences to minimize total energy costs and peak
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demand charges while considering important parameters of
greenhouses climate control. The presented simulation results
showed the effectiveness of the proposed model to reduce
total energy costs while maintaining required operational con-
straints of a greenhouse, even in the presence of uncertainties.
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