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The signals in the electrical power system always have some power quality disturbances and noise con-
tents which is the biggest obstacle in detection and time localization. In this paper, an integrated rule
based approach of discrete wavelet transform – fast Fourier transform is proposed. For the detection of
power quality disturbance present in the input signal, the input waveform is processed by discrete wave-
let transform. The discrete wavelet coefficients are used to calculate average energy entropy of squared
detailed coefficients feature. The various power quality disturbances are initially detected and then clas-
sified into four main categories as disturbances related to sag, swell, interruption and harmonics using
this feature. Further classification of each main category is done using fast Fourier transform features.
The total twelve types of power quality disturbances including seven basic and five combinations which
are very close to real situations, are considered for the classification which are generated by parametric
equations. Also four another cases are considered by adding noise to four basic disturbances sag, swell,
harmonics and flicker. All sixteen cases are simulated using Mathworks Matlab R2008b. The performance
of classifier is tested for 150 test signals for various durations with different disturbances with and with-
out noise. The developed classifier is able to achieve 99.043% accuracy. From the simulation results, it can
be seen that the proposed approach is effective for the detection and classification of various power qual-
ity disturbances.

� 2014 Elsevier Ltd. All rights reserved.
Introduction

The ability of an equipment or system to function satisfactorily
in its electromagnetic environment without introducing intolera-
ble electromagnetic disturbances to anything in that environments
is called power quality (PQ) [1]. The interest in PQ has been
increased enormously since 1995 due to many reasons. All power
equipments have become less tolerant to bad power quality. With
the power system deregulation, there has been an increased need
for study of various PQ issues since electricity consumers are
demanding better power quality. The analysis of sources of PQ
disturbances is an important task in order to understand the
behaviors of the power system, to identify and implement an
effective mitigation measures.

In recent years, the researchers have studied and proposed
various methods for analysis, detection and classification of vari-
ous PQ issues. The Fourier transform (FT) is used to process and
analyze the stationary signals only. The FT is time independent
and tells about frequency contents in the signal. The Discrete Fou-
rier transform (DFT) is used for analysis of frequency content in
steady state periodic signal and is suitable for harmonic analysis.
However it is not capable to detect sudden or fast changes in wave-
form i.e. voltage dip, transients and voltage flickers, etc. The DFT
has major drawbacks such as resolution, spectrum leakage as well
as picket-fence effects [1]. The basics of wavelets and wavelet
transform can be referred in [2]. The short time Fourier transforms
(STFT) has the limitation of the fixed window width, hence it is
inadequate for the analysis of the non-stationary PQ disturbances.
The problem of all above signal processing methods are the princi-
ple of Heisenberg’s uncertainty in which one cannot know what
spectral components exist at what instance of time. The unique
features that characterize power quality disturbances and tech-
niques to extract from recorded disturbances are also presented
[1,3]. The STFT fixed resolution problems have been solved using
wavelet transform (WT) approach which does not need to assume
the signal conditions. This makes it highly suitable for tracing
changes in signal including fast changes in high-frequency compo-
nents. The WT approach automatically adjusts the window width
to give good time resolution and poor frequency resolution at high
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frequencies and good frequency resolution and poor time resolu-
tion at low frequencies [3,4]. The unique features that characterize
power quality events and methodologies to extract them from
recorded voltage or current waveforms using Fourier and wavelet
transforms. Converter operation, transformer energization, and
capacitor energization (which includes normal, back-to-back, and
restrike on opening energization), representing three common
power quality events at the distribution level, are presented [5].
The discrete short-time Fourier transform (STFT) is used for the
time–frequency domain; dyadic and binary-tree wavelet filters
for the time-scale domain. Dyadic wavelet filters are not suitable
for the harmonic analysis of disturbance data. With a properly cho-
sen window size, discrete STFT is also able to detect and analyze
transients in a voltage disturbance [6]. The wavelet transform
was introduced as a method for analyzing electromagnetic tran-
sients associated with power system faults and switching [7]. In
their method, authors provide information related to the frequency
composition of a waveform, it is more appropriate than the famil-
iar Fourier methods for the non-periodic, wide-band signals asso-
ciated with electromagnetic transients. It appears that the
frequency domain data produced by the wavelet transform may
be useful for analyzing the sources of transients through manual
or automated feature detection schemes. The basic principles of
wavelet analysis are set forth, and examples showing the applica-
tion of the wavelet transform to actual power system transients
were presented. The WT based on line disturbances detection
and characterization of transients in transformers using DWT
was also presented [8,9]. The basic ideas of discrete wavelet anal-
ysis for power quality detection is used, in which a variety of actual
and simulated transient signals are then analyzed using the dis-
crete wavelet transform that help demonstrate the power of wave-
let analysis [10].

The continuous wavelet transform to detect and analyze voltage
sags and transients is used. A recursive algorithm is used and
improved to compute the time–frequency plane of these electrical
disturbances. The characteristics of investigated signals were mea-
sured on a time–frequency plane. Detection and measurement
results are compared using classical methods [11]. The DWT is
used to extract the features of transients caused by the load/capac-
itor switching. The wavelet coefficients are then served as inputs to
the hybrid self-organizing mapping neural network for detecting/
identifying switching types and phase angles [12]. An effective
MRA method has been presented for analyzing the power quality
transients based on standard deviation and RMS value. The WT
based de-noising techniques to remove noise effects on PQ distur-
bances is also proposed but it is also mentioned that its effective-
ness degrades with decrease in signal to noise ratio [13,14]. The
squared wavelet transform coefficients (SWTC) based approach
and its effectiveness for detection and localization of transients
due to load and capacitor switching is also presented [15].

A new time–frequency analysis Gabor–Winger transform
(GWT) method is investigated for analysis of different PQ prob-
lems. Using this GWT only the beginning of PQ disturbances is
detected [16]. An energy difference of multi-resolution analysis
method is proposed for PQ disturbances detection and classifica-
tion [17]. Hybrid signal processing combined with machine intelli-
gence, WT based feature extraction approach, multi-resolution
signal decomposition (MSD) technique, WT based de-noising, S-
transform integrated with neural network, optimal feature selec-
tion methods and PQ events using WT and least squares support
vector machines have been proposed for PQ events identification,
detection and classification [18–22]. A prototype wavelet-based
neural network classifier for recognizing PQ disturbances is imple-
mented and tested under various transient conditions [23]. A
noise-suppression scheme of noise-riding signals and an energy
spectrum of the WTC in different scales calculated as well as the
neuro-fuzzy classification system is then used for fuzzy rule con-
struction and signal recognition [24]. The concept of DWT for fea-
ture extraction of power disturbance signal combined with
artificial neural network and fuzzy logic incorporated as a powerful
tool for detecting and classifying PQ problems. In this a different
type of univariate randomly optimized neural network combined
with DWT and fuzzy logic to have a better PQ disturbance classifi-
cation accuracy is implemented [25].

Even though there has been lot of development in this area but
still it is challenging and needs to be studied. The conventional
analyzing methods does not provide clear and sufficient informa-
tion on the time domain. In this paper, DWT based MSD technique
with percentage energy entropy of squared detailed coefficient
(EESDC) feature extraction method to detect, localize and for an
automatic classification of PQ disturbances an integrated DWT–
FFT approach with and without noisy environment is proposed.
The paper is organized as follow. In Section ‘‘DWT and multi-reso-
lution signal decomposition (MSD) analysis’’, DWT and multi-reso-
lution analysis concepts are presented. The DWT algorithm
implementation and PQ disturbance detection is presented in Sec-
tions ‘‘Application of DWT algorithm for PQ disturbance detection’’
and ‘‘Power quality signal disturbance detection’’ respectively.
Various feature selected are discussed in Section ‘‘Feature extrac-
tion using DWT for classification of PQ disturbances’’. In Sec-
tion ‘‘Performance of DWT based MRA under noisy environment’’,
the proposed method performance is analyzed under noisy
environments. Integrated approach of DWT–FFT is implemented
in Section ‘‘Rule based system for an automatic classification of
PQ disturbances’’. The proposed method comparison is discussed
in Section ‘‘Performance comparison of proposed method’’
followed by conclusion in Section ‘‘Conclusions’’.

DWT and multi-resolution signal decomposition (MSD) analysis

The DWT uses the wavelet function (w) and scaling function (/)
to perform simultaneously the multi-resolution analysis (MRA)
and reconstruction of the distorted signal. The DWT automatically
makes narrow window size for high frequency and wide window
size for low frequency. This feature of DWT make it possible to
maintain an optimum time–frequency resolution at all frequency
intervals.

MSD analysis

The recursive mathematical representation of MSD is given
below:

Aj ¼ Djþ1 � Ajþ1 ¼ Djþ1 � Djþ2 � � � � � An ð1Þ

where, Ajþ1 is the approximated (smooth) signal at scale jþ 1; Djþ1

is the detailed version for displaying all types of transient phenom-
ena of the signal at scale jþ 1; � denotes an orthogonal summa-
tion, n represents the signal decomposition levels.

Modeling of DWT and MSD

A DWT gives a number of wavelet coefficients as per the num-
ber of discrete steps according to the dilation m and translation n
integers. The wavelet coefficient can be described by two integers
m and n. It can be done by selecting a ¼ am

0 and q ¼ nq0am
0 , where a0

and q0 are fixed segmentation step sizes for the scale and transla-
tion with a0 > 1; q0 > 0; m;n 2 z and z is the set of positive
integers. The mother wavelet in DWT is given by [1],

wm;nðtÞ ¼
1ffiffiffiffiffiffi
am

0

p w
t � nq0am

0

am
0

� �
ð2Þ



Table 1
Characteristics of various wavelets.

Name of
wavelet

Compact
support

Support
width

Symmetry Filter
length

Daubechies Yes 2DL� 1 Far from 2DL
Symlets Yes 2DL� 1 Near from 2DL
Coiflets Yes 6DL� 1 Near from 6DL
Harr Yes 1 Yes 2

Table 2
Power quality disturbance signal modeling and its controlling parameters.

PQ disturbances Models Parameters

Sine-wave xðtÞ ¼ A sinðxtÞ A = 1.0,
f = 50 Hz

596 S.A. Deokar, L.M. Waghmare / Electrical Power and Energy Systems 61 (2014) 594–605
and the corresponding DWT is given by

DWTwf ðm;nÞ ¼ f ðtÞ;wm;n

� �
¼
Z �1

1
f ðtÞw�m;nðtÞdt ð3Þ

The scaling factor am
0 and the shifting factor nq0am

0 are functions of
the integer parameter mðm ¼ 0;1;2; . . .Þ, where m and n are scaling
and sampling numbers respectively. We normally choose a0 ¼ 2, so
that the sampling of the frequency axis corresponds to dyadic
sampling. For the translation factor we choose q0 ¼ 1 for dyadic
sampling of the time axis. With the appropriate choice of a0 and
q0, an elegant algorithm is obtained and is multi-resolution signal
decomposition technique. The discrete wavelet function w and
scaling function / can be defined as [2,17],

wj;nðtÞ ¼ 2j=2
X

n

dj;nwð2jt � nÞ ð4Þ

/j;nðtÞ ¼ 2j=2
X

n

cj;nwð2jt � nÞ ð5Þ

where, dj is the detailed wavelet coefficient at scale j and cj is the
scaling coefficient at scale j.

For calculating DWT coefficients for each level requires more
processing and large data information results in huge memory
space requirements. Hence to have an efficient signal analysis, if
the scaling and shifting based on the multiples of 2 are selected.
The signals are decimated by 2, simply by discarding every other
signal samples. From the MSD technique, the decomposed signals
at scale 1 are c1ðnÞ and d1ðnÞ, where, c1ðnÞ is the smoothed version
of the original signal, d1ðnÞ is the detailed representation of the ori-
ginal signal and, c0ðnÞ is the signal to be decomposed. This consti-
tutes first level decomposition. The approximate and the detailed
coefficients are obtained recursively in the same way for all
decomposition levels from the input signal cj�1ðnÞ. Mathematically
it can be expressed by the following equations [2,9],

cjn ¼
X

k

hðk� 2nÞcj�1 ð6Þ

djn ¼
X

k

gðk� 2nÞcj�1 ð7Þ

where, cj is the coefficients of the approximate signal at level j and
dj represents coefficients of the detailed signal at level j [1,4].

The high pass and low pass filters are not independent of each
other, and they are related by [2],

gðnÞ ¼ ð�1ÞnhðL� 1� nÞ ð8Þ

where, gðnÞ is the high pass filter (HPF), hðnÞ is the low pass filter
(LPF), and L is the filter length. Let the original distorted signal sam-
pling frequency range is 0� fsp. The typical three level of MSD based
on DWT is shown in Fig. 1. Here reference frequency is 50 Hz and
the sampling frequency is fsp. The frequency range at each level of
MSD for approximate signal is 0� fsp

2nþ1 and that for the detailed
signal is fsp

2nþ1 � fsp

2n where n is the level of decomposition.
Fig. 1. Typical three level MSD based on DWT.
Application of DWT algorithm for PQ disturbance detection

The MSD can be implemented by set of successive filter banks in
which the wavelet acts as a high pass filter (gdðnÞ) and the scaling
function acts as a low pass filter (hdðnÞ). The choice of analyzing
mother wavelet plays very important role in the detection and
classification accuracy. From the various studies and research, it
has been observed that the different wavelets families have been
used for multi-resolution signal decomposition analysis and fea-
ture extraction of distorted signals. For testing the performance
of various feature vector extracted, the families of daubechies have
been used and tested. After studying and comparing performances
of Daubechies family wavelets, the db4 has more efficient in fea-
ture extraction and hence is used as a mother wavelet for PQ dis-
turbance signal analysis. The various wavelets used in signal
processing application are Daubechies, Symlets, Coiflets and Haar
wavelets. Table 1 shows the various features of wavelets used in
application [17]. In this DL is the number of decomposition levels.
The Daubechie’s family wavelet filter db4 is an appropriate choice
as a mother wavelet for analysis of PQ disturbances because of
larger energy contents at each level. As compared to other wave-
lets, the db4 has shorter filter length, shorter computational time
as well as good compact support in real time applications [19].
Power quality signal disturbance detection

A pure sine wave with frequency 50 Hz and magnitude at 1.0 p.u.
as well as 11 other PQ disturbances such as voltage sag, swell, har-
monics, interruption, sag + harmonics, swell + harmonics, flicker,
high frequency transients (HFT), low frequency transients (LFT),
capacitor switching, load switching and 4 other signals with 20 dB
peak magnitude noise are generated using parametric equations
[19,22] and Mathworks Matlab simulation software. The power
quality disturbance signal generation models and their control
parameters are shown in Table 2. All other PQ signal combinations
can be generated using these basic models. Squared wavelet trans-
form coefficients are very powerful in detecting power quality
Voltage sag xðtÞ ¼ A sinðxtÞ � ½1� aðuðt � t1ÞÞ � uðt � t2Þ� 0:1 < a < 0:9
Voltage swell xðtÞ ¼ A sinðxtÞ � ½1þ aðuðt � t1ÞÞ � uðt � t2Þ� 0:1 < a < 0:8
Harmonics xðtÞ ¼ A sinðxtÞ þ a3 sinð3xtÞ þ a5 sinð5xtÞ 0:1 < a3 < 0:2
(HR) 0:05 < a5 < 0:1
Voltage flicker xðtÞ ¼ A sinðxtÞ½1þ b sinðcwtÞ� 0:1 6 b 6 0:2

0:1 6 c 6 0:2
High frequency

transient
(HFT)

xðtÞ ¼ A sinðxtÞ þ ae�t=k sinðbwtÞ 20 6 b 6 80
0:1 6 k 6 0:2
0:1 6 a 6 0:9

Low frequency
transient
(LFT)

xðtÞ ¼ A sinðxtÞ þ ae�t=k sinðbwtÞ 5 6 b 6 20
0:1 6 k 6 0:2
0:1 6 a 6 0:9
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events disturbance. Therefore, squaring wavelet transform coeffi-
cients improves the detection accuracy if the wavelet transform
coefficients are inadequate to indicate the disturbance features.

All the input signals are generated with total 1280 samples for
five cycles (256 samples per cycles). It’s recording time is 0.1 s
hence sampling frequency (fsp) of the signal is 12.8 kHz. The refer-
ence frequency is 50 Hz. Even though ten level distorted signals
MSD has been carried out using db4 mother wavelet but only four
levels of MSD are shown here during the detection. For feature
extraction and for more critical analysis, ten level decomposition
is done for classification purpose of PQ disturbances. Figs. 2–7
show four level squared discrete wavelet transform coefficients
(DWTC) decomposition for detection of voltage sag, voltage swell,
harmonics, voltage interruption, sag + harmonics and capacitor
switching respectively. The starting (ts ¼ 0:025 s) and ending
(te ¼ 0:075 s) duration for all PQ disturbances are same (i.e. time
duration (ttdÞ ¼ ðte � ts)). The total 16 PQ signals are modeled and
processed but only following six signals detection have been
shown.
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Fig. 2 shows that the squared DWT detailed signal coefficients
DWTC-1 and DWTC-2 at first two finer levels in the vicinity of sam-
ple points 160 and 82 can locate and detect voltage sag efficiently.
The DWTC-3 and DWTC-4 locate and detects low frequency com-
ponents of the voltage sags as the high frequency components have
been extracted. Fig. 3 shows the four finer levels of detail signal
decomposition of the voltage swell in pure sine wave. From the sig-
nal decomposition waveform, DWTC-1, DWTC-2 and DWTC-3 in
the vicinity of sample points 160, 82 and 40 respectively can locate
and detect voltage swells efficiently. Fig. 4 shows the four finer lev-
els of detailed signal decomposition of harmonics in pure sine wave.
Even though harmonics is steady state power quality event, from
the signal decomposition waveform it is observed that the squared
DWT detailed signal coefficients DWTC-1 and DWTC-2 at first two
finer resolution levels in the vicinity of sample points 160 and 80
can locate and detect harmonics efficiently. The DWTC-3 and
DWTC-4 does not locate and detect correctly but indicates har-
monic content duration in the signals. The voltage interruption
detection is shown in Fig. 5. From the signal decomposition
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waveforms, it is observed that the squared DWT detailed signal
coefficients DWTC-2 and DWTC-3 in the vicinity of sample points
80 and 40 can locate and detect interruption efficiently. Figs. 6
and 7 show the four finer levels of detail signal decomposition of
sag + harmonics and capacitor switching in pure sine wave. From
the signal decomposition waveforms, it is observed that the
squared DWT detailed signal coefficients DWTC-2 and DWTC-3 in
the vicinity of sample points 80 and 40 can locate and detect these
two PQ disturbances efficiently. The energy distribution in the MRA
curve for 12 PQ disturbances at ten levels is shown in Table 3.

Feature extraction using DWT for classification of PQ
disturbances

Feature extraction is the process of transforming original
disturbed time domain signal into a new signal form, from which
a suitable feature can be extracted for classification of PQ distur-
bances. The energy distribution of a distorted signal can be used
as a discriminatory feature for classification. The proper feature
extraction is the key for an efficient classifier performance. To
get efficient performance of classifier, it is an important to get a
useful feature vector which can reduce the data size and helps in
indicating and recognizing the main characteristics of the signal.

Application of Parseval’s theorem in DWT for PQ classification

In DWT, signal energy at each level of the wavelet transform
coefficients (WTC) can be separated in time and frequency
Table 3
Energy contents in sine wave and other PQ disturbances during ten level of decompositio

Disturbances ED1 ED2 ED3 ED4 ED5

Pure sine wave 0 0.002 0.0244 0.061 0.3
Voltage sag 0.006 0.0165 0.0861 0.077 0.4
Voltage swell 0.0027 0.0086 0.0523 0.7115 3.1
Harmonics 0.1496 0.3659 1.5670 0.4614 2.4
Voltage inter. 0.1496 0.3659 1.5670 0.4614 2.4
Sag + harmonics 0.0167 0.0427 0.1892 0.7382 3.3
Swell + harmonics 0.0007 0.0035 0.0388 0.7169 3.0
Voltage flicker 0.003 0.0093 0.0552 0.0696 0.4
HFT 1.1453 5.5246 0.0316 0.0793 0.3
LFT 0.0002 0.0065 0.3415 5.5611 1.2
Capacitor switch. 0.0654 0.1369 0.7184 0.4279 0.8
Load switch. 0.00395 0.01244 0.6345 2.3987 11.6
domains. Hence the relationship between the energy in PQ signal
f ðtÞ each scale of the WTC can be calculated using the Parseval’s
theorem by using the following expression [17,23]:

1=N
Xt

jx½t�2 ¼
XN

j¼1

jAi;jj2 þ
XN

j¼1

jDi;jj2 i ¼ 0;1;2; . . . ; l ð9Þ

The first term on the right site of Eq. (9) consists an average power
of the approximated version of the decomposed signal and the sec-
ond term denotes the detailed version of the decomposed signal.
The second term in the equation contents maximum required infor-
mation hence can be used to extract features from distorted PQ
signals.

The Parseval’s theorem in the DWT application can be imple-
mented by separating the total energy of the discrete time domain
signal. This can be done using the following expression:

WDi ¼
XN

j¼1

jDi;jj2 i ¼ 0;1;2; . . . ; l ð10Þ

and

WAl ¼
XN

j¼1

jAi;jj2 ð11Þ

where, i; N are the wavelet decomposition level and the number of
coefficients of detailed signal at each decomposition level respec-
tively and WDi; WAl are the energy of the detailed coefficients
(DC) at decomposition level i and the energy of the approximate
n.

ED6 ED7 ED8 ED9 ED10

958 11.5004 253.3528 532.1044 11.5621 1.2721
698 10.5253 208.6922 443.7847 11.8109 1.294
28 31.7583 259.6248 557.1459 11.5976 1.2755
175 15.5420 138.4195 252.2143 17.3980 1.4025
175 15.5420 138.4195 252.2143 17.3980 1.4025
653 35.9010 212.5357 465.1683 11.8496 1.2922
558 28.5072 317.5508 665.2944 11.8048 1.2517
652 12.1738 287.3819 569.9398 13.2695 1.2829
959 11.4724 253.2102 531.7553 11.6361 1.2666
662 11.4396 252.4298 530.0656 11.9945 1.2414
847 11.6694 274.3894 480.8108 11.4855 1.7875
789 20.2248 290.8095 275.432 64.1235 1.2254
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Table 4
Average energy entropy difference of squared detailed coefficients.

Type of signal Symbol Sum of
squared DC

Average of DC at
10 levels

% Average
EE of DC

Pure sine wave S1 810.275 81.0275 0.0
Voltage sag S2 676.7625 67.67625 �16.78
Voltage swell S3 972.5046 97.25046 20.0215
Harmonics S4 865.3052 86.53052 6.7925
Voltage inter. S5 429.9375 42.9938 �46.9392
Sag + harmonics S6 731.0989 73.1099 �10.0769
Swell + harmonics S7 1028.225 102.8225 26.898
Voltage Flicker S8 884.6502 88.46502 9.179
HFT S9 816.5173 81.65173 0.7790
LFT S10 814.3464 81.43464 0.5111
Capacitor switch. S11 782.3759 78.23759 �3.4915
Load switching S12 660.7299 66.07299 �18.4474
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coefficients at MSD level l respectively. The energy contents in an
approximate signal is neglected for feature extraction. Hence for a
l level of MSD, lþ 1 dimensional feature vector can be extracted
for feature analysis. The extracted feature helps in distinguishing
the disturbance signal from each other. For distorted signal, it can
be represented by the feature vectors given below:

FeaturevectorðWDDSÞ ¼ ½WD1;WD2; . . . ;WDl;WAl� ð12Þ

and feature vector for pure sinusoidal signal can be expressed using
the following expression:

FeaturevectorðWDPSÞ ¼ ½WD1;WD2; . . . ;WDl;WAl� ð13Þ

The resultant feature vector can be obtained using the following
expression:

DW ¼ ðWDDSÞ � ðWDPSÞ ð14Þ

The classification of PQ disturbances using MRA curves is shown in
Fig. 8. Based on the energy distribution pattern it is very difficult to
classify correctly all PQ disturbances. Hence other feature extrac-
tion methods like percentage average energy entropy difference of
squared DC, percentage difference of average absolute sum of
squared DC and only the sum of squared DC are extracted for clas-
sification of PQ disturbances. The squared wavelet coefficients were
shown to be useful features for identifying and classifying power
quality events. The energy entropy of approximate squared DC is
neglected for further analysis. The percentage average energy
entropy of squared DC can be extracted using the following
expression,

%WAVG�EE ¼
DW

WDPS
� 100 ð15Þ

where, %WAVG�EE is the entropy difference of average energy distri-
bution during PQ events and during pure sine waves, WDDS is the
average energy distribution during PQ disturbance and WDPS is
the average energy distribution in pure sine wave at all levels.
The PQ disturbances are always non-stationary, imbalance with
various frequency components and energy distribution. The energy
entropy is used to extract significant features from different PQ dis-
turbances. This extracted feature is used to distinguish various PQ
disturbances [17,19]. The variations in average energy entropy for
12 types of disturbance signals are analyzed using db4 mother
wavelet filters for ten level of decomposition is shown in Table 4.
The classification bar chart based on this percentage energy entropy
is shown in Fig. 9 for easier identification. Other feature extraction
methods are given in next subsection.

Magnitude of an average absolute sum of detailed coefficients

The feature of percentage difference of average values of
absolute sum of detailed signal coefficients are extracted from
MSD. This can be calculated using following expression

%WAbsavg ¼
WDSabs �WPSabs

WPSabs
� 100 ð16Þ

where, %WAbsavg is the percentage average difference of detailed
coefficients during PQ events and during pure sine waves, WDSabs

is the average of absolute sum of DC during PQ disturbances and
WPSabs is the average of absolute sum of energy distribution in pure
sine wave at all levels. The sum of DC is also calculated and it is
shown in Table 5.

Classification of PQ disturbances based on feature extraction without
noise

Table 6 shows the classification performance of each method. It
has been observed that the percentage average energy entropy of
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Fig. 9. Bar chart for percentage energy entropy of squared detailed coefficients.

Table 5
Average difference of absolute value of detailed coefficients.

Type of
signal

Symbol Sum of
DC

Absolute
sum of DC

Mean of
DC

% Average
EE of DC

Pure sine wave S1 �26.7501 150.6545 15.0654 0
Voltage sag S2 �23.3790 140.3335 14.0334 �6.8507
Voltage swell S3 �30.1213 164.2116 16.4212 8.9988
Harmonics S4 �22.3274 170.7359 17.0736 13.3295
Voltage inter. S5 -9.8944 112.0392 11.2039 �25.6315
Sag + harmonics S6 �18.9563 162.6429 16.2643 7.957
Swell + harmonics S7 �25.6986 179.9686 17.9969 19.458
Voltage Flicker S8 �28.7684 157.3978 15.7398 4.4760
HFT S9 �26.7108 195.9694 19.5969 30.0788
LFT S10 �26.9061 172.1208 17.2121 14.2487
Capacitor switch. S11 �26.3268 153.7396 15.3740 2.0484
Load switching S12 �23.6410 157.5196 15.7520 4.5571

Table 6
Classification of PQ disturbances.

Symbol % Energy entropy
of squared DC

Average absolute
sum of DC

Sum of DC

S1 Classified Classified Classified
S2 Classified Classified Not classified
S3 Classified Not classified Not classified
S4 Classified Not classified Not classified
S5 Classified Classified Not classified
S6 Classified Not classified Not classified
S7 Classified Not classified Not classified
S8 Classified Not classified Not classified
S9 Not classified Classified Not classified
S10 Not classified Classified Not classified
S11 Classified Not classified Not classified
S12 Classified Not classified Not classified
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squared DC feature extraction method is found to be an effective
for PQ disturbance classification.
Performance of DWT based MRA under noisy environment

The signals in the real electrical power systems have always
some noise contents due to non-linear loads and load switching.
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The classification sensitivity analysis of the proposed feature
extraction method is done under noisy environments. An additive
white Gaussian noise (AWGN) is considered in many research
papers [17,19]. In this case, we have considered signal to noise
ratio (SNR) of 20 dB peak amplitude noise and is mixed during
the disturbance duration. The value of signal to noise ratio can
be calculated using the following expression,
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Table 7
Classification of PQ disturbances using % energy entropy (EE).

Type of
signal

Symbol Sum of
squared
DC

Average
of DC

Average EE
differences

% Average EE
differences

Sag + noise S13 683.4225 68.3422 �12.6853 �15.1060
Swell + noise S14 981.3277 98.1328 17.1053 21.16
Harmonics + noise S15 874.3555 87.4356 6.4081 7.90
Flicker + noise S16 893.1403 89.31403 8.28653 10.22

Table 8
Classification of PQ disturbances using absolute sum of detailed coefficients (DC).

Type of
signal

Symbol Sum of
detailed
coefficients

Sum of
absolute
value of DC

Mean of
absolute
of DC

% Difference
of mean of DC

Sag + noise S13 �22.9122 165.7050 16.5705 9.9901
Swell + noise S14 �29.6545 189.4867 18.9487 25.7757
Harmonics + noise S15 �21.8606 194.0254 19.4025 28.788
Flicker + noise S16 �28.7684 182.9619 18.2962 21.4451

Table 9
Classification of PQ disturbances under noisy environment.

Symbol % Energy entropy
of squared DC

Average absolute
sum of DC

Sum of DC

S13 Classified Not classified Not classified
S14 Classified Not classified Not classified
S15 Classified Not classified Not classified
S16 Classified Not classified Not classified
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SNR ¼ 10log10
Psp

Pnp

� �
ð17Þ

where, Psp is the power of the signal and Pnp is the noise power. The
sensitivity of MSD based DWT method according to detailed energy
distribution pattern (DEDP) has been analyzed under noisy environ-
ment conditions for pure sinusoidal signal and voltage sag, swell,
harmonics as well as voltage flicker developed in pure sinusoidal
signal.

Detection and classification under noisy environment

When the voltage sag, swells, flicker and harmonics are gener-
ated in the sinusoidal signal, it not only detecting disturbances
but also shows the presence of noise in the distorted signal by indi-
cating small distortions during disturbance duration. For these dis-
turbances, the detection is possible for first two finer levels of
detailed signal coefficients (DWTC-1 and DWTC-2). It is observed
that due to the presence of spectral noise, disturbance detection
capability degrades slightly but still it finds effective. For a pure
sinusoidal waveform with noise, it just indicates presence of noise
by reflecting small distortions during all sample points. Fig. 10
shows the DEDP of disturbances in the MRA curves for each
decomposition level when a 20 dB noise is superimposed on dis-
turbances to find the disturbances classification capability of the
proposed method. It is observed that as compared to the pure sinu-
soidal signal, the disturbances such as sag, swell, harmonics and
flicker with noisy environment have affected DEDP of MRA curves.

The PQ disturbances such as sag, swell, harmonics and flicker
with 20 dB noise contamination, DEDP is greatly affected and its
energy magnitude has been increased in high frequency region as
compared to low frequency region of MRA curves. It is also
observed that all above disturbances have maximum energy distri-
bution at 8th MSD level. The highest energy distribution during 8th
MSD level for sinusoidal signal, voltage sag, swells and flicker have
been increased and for harmonics, it has decreased slightly. Hence
based on the analysis of DEDP of MRA curves, it can be seen that
the proposed energy entropy of squared detailed coefficients (EES-
DC) method based on DWT is not that much sensitive to the noise
but has performed detection and classification accurately under
noisy environment also.

The classification of PQ disturbances based on percentage
energy entropy of squared DC, percentage average absolute sum
of DC and sum of DC are shown in Tables 7 and 8 respectively.
The classification capability of each method is shown in Table 9.
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Fig. 11. Bar chart for percentage energy
The bar chart for EESDC method is shown in Fig. 11 for easier
identification.

Rule based system for an automatic classification of PQ
disturbances

For more accurate detection and classification of PQ distur-
bances with and without noisy environments, feature extraction
method based on DWT–FFT is proposed. A rule based system using
the features of DWT and FFT is developed for the automatic classi-
fication and detection of various PQ disturbances. The minimum
Harmonics+Noise Flicker+Noisell+Noise
isturbances

entropy of squared DC with noise.



Table 10
Minimum and maximum average detailed coefficients energy distribution for
different PQ signals.

PQ disturbances Average detailed
coefficients energy
distribution
(maximum)

Average detailed
coefficients energy
distribution
(minimum)

Pure sine 81.0275 81.0275
Voltage sag (10–90%) 43.5659 73.9928
Sag + harmonics 48.7582 79.4609
Sag + noise (20 dB) 43.8542 74.7128
Interruption 42.9938 43.4763
Voltage swell 163.1548 88.7802
Swell + harmonics 168.9331 94.3172
Swell + noise (20 dB) 177.9115 89.6081
Harmonics (<25%) 86.5301 81.0275
Harmonics + noise (20 dB) 87.4356 81.8014
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and maximum of average detailed coefficient energy distribution
up to 10th level of MSD is determined for unit amplitude of pure
sinusoidal signal and sinusoidal signal with PQ disturbances which
are given in Table 10. Fig. 12 shows the proposed integrated
DWT–FFT flow chart of rule based system.
Fig. 12. Integrated DWT–FFT ru
The algorithm steps based on DWT–FFT rule based system for
an automatic classification and detection of PQ disturbances are
given below.

1. The MSD of the signal is carried out using DWT.
2. The energy distribution of detailed coefficients at 10 levels is

calculated.
3. Percentage average of squared detail coefficients at 10 levels is

calculated.
4. By considering energy ranges of all PQ disturbances (minimum

and maximum condition) given in Table 10, four non-overlap-
ping regions are formed as,
� For sag related disturbances (Pure sag, sag + harmonics and

sag + noise) the region is E1 2 ½E1L; E1H�.
� For interruption the region is E2 2 ½E2L; E2H�.
� For swell related disturbances (Pure swell, swell + harmon-

ics and swell + noise) the region is E3 2 ½E3L; E3H�.
� For harmonic related disturbances (Harmonics and harmon-

ics + noise) the region is E4 2 ½E4L; E4H�.
5. With constraints, the PQ disturbance is classified into four main

categories given in step 4.
6. For further classification in each subgroup, FFT features are used

considering the facts that,
le based system flow chart.



Table 11
The PQ events classification results of DWT–FFT rule based system.

PQ disturbances No. of test carried
out

% Classification accuracy
achieved

Pure sine 150 100
Voltage sag 150 99.97
Sag + harmonics 150 100
Sag + noise 150 98.19
Interruption 150 100
Voltage swell 150 100
Swell + harmonics 150 98.57
Swell + noise 150 95.56
Harmonics 150 100
Harmonics + noise 150 98.14
Overall – 99.043

Table 13
Performance comparison for correct classification results.

PQ disturbances This work Ref. [19] Ref. [22] Ref. [23] Ref. [25]

Overall 99.043% 95.71% 97.69% 98.19% 90%
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(a) Pure sag/swell problem has only fundamental frequency
component.

(b) The pure sag/swell plus harmonics has fundamental plus
multiples of fundamental frequency components.

(c) Noise is distributed over a frequency range and has less
magnitude at multiples of fundamental frequency as com-
pared to harmonic case.

Table 11 shows the test results of the proposed rule based sys-
tem. In this 150 cases of each class with different parameters were
generated for analysis. It has been observed that the 99.043% cor-
rect classification rate is obtained for this 10 types of PQ distur-
bance signal. From Table 11, it is clear that all the tests are
successful passed by proposed algorithm except voltage flicker.
Performance comparison of proposed method

In order to evaluate the performance of proposed method, com-
parison is made with method of Cho et al. [16]. This method uses
Gabor–Wigner transform (GWT) method for detection of various
PQ disturbances. It detects only the beginning of PQ disturbances
but not its end. The proposed method detects beginning as well
as ending of disturbance events with and without noisy environ-
ments and it also classifies various disturbances. It also removes
the problem of window width for time–frequency analysis. The
GWT based method is not used for the classification of PQ distur-
bances. The detail comparisons of results obtained using proposed
method is tabulated in Table 12. In the proposed method, total six-
teen PQ disturbances are generated and further processed using
DWT based EESDC feature extraction method. The PQ disturbance
classification accuracy is also improved by integrating features
Table 12
Performance comparison (DT: detection; CL: classification; Y/N: yes/no).

PQ disturbances DT [16] CL [16] Proposed DT Proposed CL

Pure sine Y N Y Y
Voltage sag Y N Y Y
Voltage swell Y N Y Y
Harmonics Y N Y Y
Interruption Y N Y Y
Sag + harmonics Y N Y Y
Swell + harmonics Y N Y Y
Voltage Flicker N N Y Y
HF transients N N Y Y
LF transients N N Y Y
Capacitor switching N N Y Y
Load switching N N Y Y
Sag + noise N N Y Y
Swell + noise N N Y Y
Harmonics + noise N N Y Y
Flicker + noise N N Y Y
obtained from the DWT–FFT approach whose performance is
totally noise independent. In order to assess the effectiveness of
DWT–FFT method, a comparison in terms of % of the classification
accuracy between the results of this work and results of classifica-
tion in references [19,22,23,25] are made and all are presented in
Table 13. With reference to Table 13, the classification perfor-
mance of the proposed rule based method is better than the perfor-
mance of the classification method proposed in references
[19,22,23,25]. In the work of Uyar et al. [19], the disturbance clas-
sification is performed with wavelet neural network with noise
level of both 20 dB, 30 dB, 40 dB and 50 dB. In the proposed
method 20 dB peak magnitude noise is used to evaluate the perfor-
mance of rule based system. The noise and noiseless distorted sig-
nal classification results in paper [22] are based on support vector
machines and WT. The dB4 wavelet is selected to obtain various
features and best one is selected based on classifying accuracy. In
the work of references [23,25] wavelet-based neural network and
DWT combined with expert system classifiers are proposed. The
proposed method classifies and achieves 99.043% accuracy.
Conclusions

This paper presents, DWT–FFT based integrated approach for
detection and classification of various PQ disturbances with and
without noisy environments. To check the classifier performance,
various Daubechie’s wavelet families are tested. The db4 wavelet
was found to be an effective in its performance and hence has been
chosen as a mother wavelet for further analysis. The analysis and
the results presented in this paper clearly indicate the potential
capability of the proposed EESDC method in detecting and classify-
ing the PQ disturbances. In this, energy at each MSD level and the
different frequency components contained in the PQ disturbances
are used as a features to obtain high correlation. The proposed inte-
grated approach is used to construct logistic rule for an automatic
detection and classification of ten types of PQ disturbances. The
classifier is tested for 150 test signals randomly generated for var-
ious durations with 20 dB peak noise level. It has been found that
the DWT based feature extraction can effectively remove the redun-
dancy available in time-domain data and hence effectively able to
reduce the size of the classifier. The developed classifier based on
DWT–FFT approach is able to achieve 99.043% accuracy with less
computational complexity. The proposed technique also has poten-
tial and capability to implement for on-line real applications.
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