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Abstract

In this paper, the earned value management (EVM) project control methodology is integrated with the exponential smoothing forecasting
approach. This results in an extension of the known EVM and earned schedule (ES) cost and time forecasting formulas. A clear correspondence
between the established approaches and the newly introduced method – called the XSM – is identified, which could facilitate future
implementation. More specifically, only one smoothing parameter is needed to calculate the enhanced EVM performance factor. Moreover, this
parameter can be dynamically adjusted during project progress based on information of past performance and/or anticipated management actions.
Additionally, the reference class forecasting (RCF) technique can be incorporated into the XSM. Results from 23 real-life projects show that, for
both time and cost forecasting, the XSM exhibits a considerable overall performance improvement with respect to the most accurate project
forecasting methods identified by previous research, especially when incorporating the RCF concept.
© 2016 Elsevier Ltd, APM and IPMA. All rights reserved.
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1. Introduction

Forecasting an ongoing project's actual duration and cost is
an essential aspect of project management. One of the most
widely used and best performing approaches for obtaining such
forecasts is that based on the earned value management (EVM)
methodology. To ensure the standalone comprehensibility of
this paper, a concise summary of EVM's key definitions and
formulas is included in Table 1.

The metrics below the middle line in Table 1 can be used to
indicate a project's schedule and cost performance at a certain
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point during project execution (i.e. at a certain tracking period).
More specifically, a schedule variance SV or SV(t) b0 (N0) and
a schedule performance index SPI or SPI(t) b1 (N1) express
that the project is behind (ahead of) schedule. Similarly,
regarding project cost, a cost variance CV b0 (N0) and a cost
performance index CPI b1 (N1) reflect a project that is over
(under) budget. When the schedule or cost variances are equal
to zero, the project is right on schedule or on budget,
respectively. This corresponds with schedule or cost perfor-
mance indices that are equal to unity.

The utility and reliability of EVM as a method for evaluating
a project's current cost performance and forecasting its actual
cost has been endorsed ever since the introduction of the
technique in the 1960s. The performance of EVM for the time
dimension, however, only got the necessary boost from the
introduction of the extending concept of earned schedule (ES)
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Table 1
EVM key metrics and formulas.

Metric Definition/formula

PD Planned duration, the planned total duration of the project
BAC Budget at completion, the budgeted total cost of the project
AT Actual time
PV Planned value, the value a that was planned to be earned at AT
EV Earned value, the value that has actually been earned at AT
AC Actual cost, the costs that have actually been incurred at AT
ES Earned schedule, the time at which the EV should have been earned

according to plan, ES ¼ t þ EV−PV t
PV tþ1−PVt

with t the (integer) point in time
(i.e. tracking period) for which EV≥PVt and EVbPVt+1

EAC(t) Estimated duration at completion, the prediction of RD made at AT
EAC($) Estimated cost at completion b, the prediction of RC made at AT
RD Real duration, the actual total duration of the project
RC Real cost, the actual total cost of the project
SV Schedule variance, SV=EV−PV
SPI Schedule performance index, SPI ¼ EV

PV
SV(t) Schedule variance (time), SV(t)=ES−AT
SPI(t) Schedule performance index (time), SPIðtÞ ¼ ES

AT
CV Cost variance, CV=EV−AC
CPI Cost performance index, CPI ¼ EV

AC
SCI Schedule cost index, SCI=SPI*CPI
SCI(t) Schedule cost index (time), SCI(t)=SPI(t)*CPI

a In these definitions, value always alludes to the cumulative value over all
activities up to a certain point in time.
b In some papers, the estimated cost at completion is simply abbreviated by

EAC, without the addition of the dollar sign. However, in other papers just as in
this one, it is preferred to add the dollar sign anyhow in order to make a clearer
distinction between the cost context and the time context (the latter is always
indicated by a suffix t).
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by Lipke (2003). A recent study (Batselier and Vanhoucke,
2015b) explicitly showed that, when implementing ES, EVM
time forecasting is at virtually the same accuracy level as EVM
cost forecasting. Therefore, the EVM technique can indeed be
deemed a viable and valuable basis for the forecasting of both
project duration and cost.

Furthermore, multiple extensions of the traditional EVM
forecasting approaches have been proposed in literature the past
several years (Kim and Reinschmidt, 2010; Lipke, 2011;
Elshaer, 2013; Khamooshi and Golafshani, 2014; Mortaji et al.,
2014; Baqerin et al., 2015; Chen et al., 2016). This list is
obviously not exhaustive, as to provide a complete overview
and description of the existing EVM extensions is beyond the
scope of this study, and so is the quantitative comparison of all
those techniques (including the one developed in this paper).
The latter defines an evident subject for future research, similar
to the study performed by Batselier and Vanhoucke (2015c), in
which three EVM forecasting extensions (Lipke, 2011; Elshaer,
2013; Khamooshi and Golafshani, 2014) are compared and
combined.

Another widely used and well-performing technique for
making forecasts based on time series data is exponential
smoothing. This technique arose in the late 1950s and early
1960s (Brown, 1956, 1959, 1963; Holt, 1957; Holt et al., 1960;
Muth, 1960; Winters, 1960)1 and has formed the basis for some
1 The 1957 report by Holt (1957) has been republished as Holt (2004) in order
to provide greater accessibility to the paper.
of the most successful forecasting methods ever since. The main
feature of an exponential smoothing method is that the produced
forecasts are based on weighted averages of past observations,
moreover, with the weights decaying exponentially as the
observations age. Furthermore, the technique enables forecasting
for time series data that display a trend and/or seasonality. For
more background information regarding the origins, formula-
tions, variations, applications, and state-of-the-art of exponential
smoothing, the reader is referred to Gardner (2006). Nevertheless,
the formulations relevant to the study in this paper will also be
presented in later sections.

Although the technique of exponential smoothing is mainly
used in financial and economic settings, it can in fact be applied
to any discrete set of repeated measurements (i.e. to any time
series). Since the tracking data gathered during project progress
constitute a time series, exponential smoothing can also be
applied to forecast project duration and project cost. Intuitively,
this shows potential. Indeed, traditional EVM forecasting
assigns equal importance (or weight) to all past observations,
whereas the exponential smoothing approach makes it possible
to gradually decrease the weights of older observations. The
latter could be a very useful feature in a project management
context, as it allows to account for the effect of both natural
performance improvement and corrective management actions
that might occur during the course of a project (see Section 2.1
for a more elaborate discussion).

Therefore, a novel forecasting approach for both project
duration and project cost based on the integration of
well-known EVM metrics in the exponential smoothing
forecasting technique is developed in this paper. From now
on, this novel approach will be referred to as the XSM, which is
an acronym for eXponential Smoothing-based Method. More-
over, note that the general notation of XSM refers to both the
time and cost forecasting dimension of the novel technique. As
an overview, all notations for the different components of the
XSM that will be introduced and discussed later in this paper
are presented in Appendix A.

The outline of this paper can be summarized along the
following lines. The derivation of the XSM formulations and
explanation of their application (static/dynamic) will be the
subject of Section 2, preceded by a qualitative discussion on the
motivation for adapting the current EVM forecasting methods
and why the exponential smoothing technique is appropriate for
this. Furthermore, in the same section, we will make the link
between the XSM and the established EVM forecasting
methods. Section 3 then proposes an evaluation approach for
the XSM, based on accuracy comparison with the known EVM
top forecasting techniques. Furthermore, the proposition to
incorporate the reference class forecasting (RCF) technique –
in which a relevant reference class of similar historical projects
is used as a basis for making forecasts for the considered project
– into the XSM methodology is made in Section 3.2. In Section
4, the results of the evaluation are presented and discussed, for
time forecasting as well as for cost forecasting. Moreover, both
a static and a dynamic approach to the XSM will be assessed.
Finally, Section 5 draws more general conclusions and suggests
several future research actions.
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2. Development of the XSM

2.1. Limitations of the established EVM forecasting methods

First, consider EVM time forecasting. In Batselier and
Vanhoucke (2015b), it was shown that the earned schedule
method (ESM) introduced by Lipke (2003) and further
developed by Henderson (2004) provides the most accurate
project duration forecasts, and this compared to the two other
commonly used EVM time forecasting approaches, being the
planned value method (PVM) by Anbari (2003) and the earned
duration method (EDM)2 by Jacob and Kane (2004). In this
paper, we will therefore only focus on the ESM, of which the
generic forecasting formula proposed by Vandevoorde and
Vanhoucke (2006) is presented here (metrics defined in Table
1):

EAC tð Þ ¼ AT þ PD−ES
PF

ð1Þ

In this formula, the performance factor PF can either be 1,
SPI(t) or SCI(t), respectively reflecting that future schedule
performance is expected to follow the baseline schedule, the
current time performance, or both the current time and cost
performance. In this paper, the less common performance factor
of SCI(t) will not be considered. Regarding the performance
factor, empirical studies (Guerrero et al., 2014; Batselier and
Vanhoucke, 2015b) showed that, in general, the unweighted
ESM (PF=1), referred to as ESM − 1 from now on, clearly
provides the most accurate time forecasts. However, one could
argue that this method is intuitively not realistic as it does not
take into account the current schedule performance. On the
other hand, the SPI(t)-weighted method ESM − SPI(t) does
take into account past achievements. This method comes out on
top in the simulation study of Vanhoucke (2010). Then again,
the SPI(t) reflects the cumulative schedule performance, which
assumes that the performance of every past tracking period has
an equal influence on the future expectations. This implies that
the SPI(t) cannot accurately account for the following two
possible influences, which are generally not incorporated in
simulation studies:

• The occurrence of natural performance improvement during
the course of the project due to increasing experience levels
of the resources (e.g. workers).

• The effect of corrective management actions that were taken
recently with the aim of improving future performance.

Indeed, the SPI(t) will always drag along the performance of
the earliest project phases as well. To overcome these drawbacks,
it seems appropriate to assign more weight to the performance of
the latest tracking periods as these best represent the effect of
experience-driven performance improvement and/or the impact
2 This EDM should not be confused with the earned duration management
methodology – also abbreviated as EDM – proposed by Khamooshi and
Golafshani (2014) and examined by Batselier and Vanhoucke (2015c) and
Vanhoucke et al. (2015).
of current management efforts. In contrast to ESM − SPI(t),
ESM − 1 does more or less incorporate the effect of increasing
experience levels and upcoming corrective actions by assuming
that future performance will be exactly according to plan (i.e.
following the baseline schedule). Obviously, an intuitive problem
with this assumption arises from the use of the term exactly. First
of all, there is no guarantee that an experience-driven perfor-
mance improvement would appear (so that future productivity
would increase of itself) or that any corrective action for
improving future performance will actually be taken. Moreover,
if such occasions were to occur, it is highly unlikely that they
would result in an exact future compliance with the original plan.

Above discussion identifies the need for a novel time
forecasting method that is situated somewhere in between
ESM − 1 and ESM − SPI(t). Moreover, this method should be
able to assign more weight to the more recent tracking periods,
accounting for the potential effect of increasing experience
levels of resources and/or corrective actions by management.
Furthermore, we add the additional requirement that the novel
method should be able to express anticipated changes in
management attention (note the difference with management
actions that have already effectively taken place) through an
adjustable parameter. Taking all these prerequisites into
account, the technique of exponential smoothing soon arises
as the ideal base for the development of the desired new time
forecasting method. More (mathematical) details on the
exponential smoothing technique and its applications in project
forecasting will be provided in Section 2.2.

Note that the discussion in previous paragraphs only
concerned time forecasting. Now consider EVM cost forecast-
ing. The generic cost forecasting formula is very similar to Eq.
(1) for time forecasting (metrics defined in Table 1):

EAC $ð Þ ¼ AC þ BAC−EV
PF

ð2Þ

The performance factors PF that are considered here are 1
and CPI. These are two of the most commonly used
performance factors for cost forecasting and, moreover,
according to Batselier and Vanhoucke (2015b) the ones also
leading to the highest forecasting accuracy. From now on, we
will designate both methods by EAC − 1 and EAC − CPI,
respectively.

First of all, note the obvious resemblance between SPI(t) for
time (expressing the project's schedule performance) and CPI
for cost (expressing the project's cost performance). Therefore,
the drawbacks identified for ESM − 1 and ESM − SPI(t) also
apply for EAC − 1 and EAC − CPI, respectively. In other
words, the discussion on ESM − 1 also holds for EAC − 1, and
similarly, the comments made on ESM − SPI(t) are also true
for EAC − CPI. Of course, the discussion has to be placed in a
cost context instead of a time context (i.e. SPI(t) becomes CPI),
but nonetheless, the fundamental ideas remain the same.
However, the drawback of SPI(t) of it not being able to account
for the presence of experience-driven performance improve-
ment might be sensed as less relevant for CPI, as cost
evolutions in a project are not intuitively linked to experience.
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Nevertheless, when resources begin to work more efficiently
due to increased experience levels, the resource costs (and other
variable costs) reduce as the tasks being performed take less
time to complete. Moreover, CPI does certainly exhibit the
same disadvantage as SPI(t) that it cannot effectively take into
account the impact of recently implemented management
actions on future performance. Therefore, parallel to time
forecasting, we can state that there is a need for a novel cost
forecasting method that is situated somewhere in between
EAC − 1 and EAC − CPI. Correspondingly, the exponential
smoothing technique can serve as a basis here as well, ensuring
that the novel cost forecasting method will meet the same
requirements as were imposed on the novel time forecasting
method (i.e. the ability to assign more weight to more recent
tracking periods, and the ability to express anticipated changes
in management attention through an adjustable parameter). In
order to make a clear distinction between the exponential
smoothing-based forecasting method for project duration and
that for project cost, these methods are from now on denoted by
XSM(t) and XSM($), respectively. Recall that an overview of
the utilized notations for the different components of the XSM
can be found in Appendix A.

2.2. Derivation of the XSM formulations

As mentioned repeatedly in previous sections, the technique
of exponential smoothing will provide the basis for both the
novel time and cost forecasting methods developed here. It was
already indicated that the XSM would be built by incorporating
the known EVM metrics into the exponential smoothing
formulas. Since all EVM key metrics (see Table 1), both
those related to time (AT and ES) and to cost (AC and EV),
show an obvious and intrinsic upward trend – but no
seasonality – we can apply Holt's double exponential
smoothing method (Holt, 1957, 2004). The basic formula is:

Ftþk ¼ Lt þ kTt ð3Þ
with t the current time period, k the number of periods over
which we want to forecast, Ft+k the forecasted value for time
period t+k, Lt the long-term level or base value, and Tt the trend
per period. Lt and Tt can be calculated as follows:

Lt ¼ αyt þ 1−αð Þ Lt−1 þ Tt−1ð Þ ð4Þ

Tt ¼ β Lt−Lt−1ð Þ þ 1−βð ÞTt−1 ð5Þ
where α and β are the smoothing constants and yt is the actual
value at time period t.

In this case, the actual values yt are represented by ATt and
ESt for time forecasting, and ACt and EVt for cost forecasting.

3

3 In fact, the notations ATt, ESt, ACt and EVt have exactly the same meaning
as the respective standard notations AT, ES, AC and EV without the subscript t,
as presented in Table 1. However, the subscript t, indicating that it concerns the
values for the current tracking period (notice that tracking period is a project
management concretization of the general term time period), is included here, as
it will be needed in upcoming formulations. For example, ESt−1 will indicate
the ES value for the previous tracking period.
It can be deemed logical here to use the unadapted actual values
as a base for both time and cost forecasts. Indeed, one can never
go back in time and incurred costs can never be undone, so the
actual values (i.e. AT, ES, AC and EV) will never decrease.
Therefore, α is fixed to 1 for both time and cost forecasting,
meaning that the actual values are not smoothed. Hence, Eq. (4)
is simplified to Lt= yt. The trend Tt, however, remains available
for smoothing via the parameter β.

In the next two subsections, the above general formulas will
be concretized for time forecasting (i.e. XSM(t)) and cost
forecasting (i.e. XSM($)), respectively, through the introduc-
tion of the corresponding EVM metrics. Then, in a last
subsection, a possible approach for the dynamic use of the
XSM during project progress is proposed.

2.2.1. Time forecasting: XSM(t)
Eqs. (3)–(5) can now be concretized for time forecasting.

Note that Eq. (4) is no longer explicitly mentioned but rather
directly substituted into Eq. (3), as this becomes quite
straightforward through the simplification of Lt=yt. Further-
more, we can identify two situations: the real situation
according to the actual project progress represented by Eqs.
(6) and (7), and the planned situation according to the baseline
schedule represented by Eqs. (8) and (9).

EAC tð Þ ¼ ATt þ kT t;AT ð6Þ

Tt;AT ¼ β ATt−ATt−1ð Þ þ 1−βð ÞTt−1;AT ð7Þ

PD ¼ ESt þ kT t;ES ð8Þ

Tt;ES ¼ β ESt−ESt−1ð Þ þ 1−βð ÞTt−1;ES ð9Þ
Note that we define T0,AT=T0,ES=PD/N with N the expected

number of tracking periods according to the baseline schedule.
Eq. (6) is the formula needed for obtaining a forecasted

project duration. However, at a certain tracking period t during
the project, one cannot know in advance how many tracking
periods k there are still to come. To obtain a time-based
estimate of the expected number of upcoming tracking periods,
Eq. (8) is reshaped into:

k ¼ PD−ESt
T t;ES

ð10Þ

This k can then be substituted into Eq. (6), so that we obtain:

EAC tð Þ ¼ ATt þ PD−ESt
T t;ES

T t;AT ð11Þ

or

EAC tð Þ ¼ ATt þ PD−ESt
T t;ES=Tt;AT

ð12Þ

Notice that Eq. (12) seems to perfectly correspond to the
generic ESM time forecasting formula of Eq. (1). Indeed, fully
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equal expressions are obtained when the performance factor of
Eq. (13) is introduced into Eq. (1).

PF ¼ Tt;ES

T t;AT
¼ β ESt−ESt−1ð Þ þ 1−βð ÞTt−1;ES

β ATt−ATt−1ð Þ þ 1−βð ÞTt−1;AT
ð13Þ

As such, it can be stated that the exponential smoothing
technique has in fact been integrated in the established EVM
time forecasting approach. Let us now elaborate on the derived
performance factor of Eq. (13), more specifically, on how it is
influenced by the smoothing parameter β. Two extreme cases
can be identified.

First, if β=1 (maximum responsiveness to the current schedule
performance) then PF=SPI(t)inst.

4 In this case, the effect of a
corrective management action performed during the current
tracking interval would be integrally extrapolated to the remaining
portion of the project. For example, consider a situation where
management has assigned extra resources to a particular project
during the last tracking interval. Assume this has lead to a
considerable increase in schedule performance for this last interval,
compared to the performance earlier in the project. In this case, a
choice of β=1 (PF=SPI(t)inst) would imply the assumption that
the recently achieved augmented schedule performance will be
maintained for the rest of the project's life (i.e. this would reflect a
situation where the extra resources remain in service until the very
end of the project and maintain the current performance level).

On the other hand, if β=0 (no responsiveness to the current
schedule performance) then PF=Tt−1 ,ES/Tt−1 ,AT=T0 ,ES/
T0 ,AT=1, producing the well-known ESM − 1 method, which
assumes that future progress will be exactly according to plan
(i.e. according to the baseline schedule). The XSM(t) thus also
covers the method that, according to earlier studies, produces
the most accurate project duration forecasts.

Obviously, one is not limited to only using one of these two
extreme βs. There is an entire spectrum of β values, ranging from
0 to 1, possible for selection. The general rule is that the closer β is
chosen to 1, the more weight is assigned to the more recent
tracking periods. The extremum is of course β=1, for which only
the very latest tracking interval is taken into account. The
parameter β of the proposed method thus provides the required
possibility of adjusting the level of forecast responsiveness to the
more recent schedule performance of the project.

2.2.2. Cost forecasting: XSM($)
The derivation of the cost forecasting formulations is very

similar to that performed for time forecasting in previous
subsection. Therefore, some repetition may be observed.
However, explicit derivation of the novel cost forecasting
formulas is needed to ensure the comprehensibility of themethod.

Parallel to time forecasting, Eqs. (3)–(5) are now concret-
ized for cost forecasting, with Eq. (4) no longer explicitly
4 SPI(t)inst is the instantaneous SPI(t), reflecting the schedule performance
over the last tracking interval. More specifically, SPI(t)inst is calculated by
dividing the increase in ES during the last tracking interval by the corresponding
increment of AT, or (ESt−ESt−1)/(ATt−ATt−1). Notice the difference between
SPI(t)instand the standard cumulative SPI(t), which represents the schedule
performance over the entire project up to the current tracking period.
mentioned but rather directly substituted into Eq. (3). Again,
we can identify two situations: the real situation according to
the actual project expenditures represented by Eqs. (14) and
(15), and the planned situation according to the baseline costs
represented by Eqs. (16) and (17).

EAC $ð Þ ¼ ACt þ kT t;AC ð14Þ

Tt;AC ¼ β ACt−ACt−1ð Þ þ 1−βð ÞTt−1;AC ð15Þ

BAC ¼ EV t þ kTt;EV ð16Þ

Tt;EV ¼ β EV t−EV t−1ð Þ þ 1−βð ÞTt−1;EV ð17Þ
Here, we define T0,AC=T0 ,EV=BAC/N with N the expected

number of tracking periods according to the baseline schedule.
Eq. (14) will provide the forecasted project cost. However, a

cost-based estimate of the expected number of upcoming tracking
periods k is first required. Therefore, Eq. (16) is reshaped into:

k ¼ BAC−EV t

T t;EV
ð18Þ

This k can be substituted into Eq. (14), yielding:

EAC $ð Þ ¼ ACt þ BAC−EV t

T t;EV
T t;AC ð19Þ

or

EAC $ð Þ ¼ ACt þ BAC−EV t

T t;EV=Tt;AC
ð20Þ

Notice that introducing the performance factor of Eq. (21)
into the generic EVM cost forecasting formula of Eq. (2)
produces the exact same expression as Eq. (20).

PF ¼ Tt;EV

T t;AC
¼ β EV t−EV t−1ð Þ þ 1−βð ÞTt−1;EV

β ACt−ACt−1ð Þ þ 1−βð ÞTt−1;AC
ð21Þ

Therefore, it can be stated that – just as for time forecasting
– the exponential smoothing technique has hereby been
integrated in the established EVM cost forecasting approach.
The following discussion on the influence of the smoothing
parameter β on the derived performance factor of Eq. (21) is
similar to that conducted in Section 2.2.1, but now situated in a
cost context. Again, two extreme cases can be identified, and β
can be chosen anywhere between these two extremes.

First, if β=1 (maximum responsiveness to the current cost
performance) then PF=CPIinst.

5 The effect of a corrective
management action performed during the current tracking
5 CPIinst is the instantaneous CPI, reflecting the cost performance over the last
tracking interval. More specifically, CPIinst is calculated by dividing the
increase in EV during the last tracking interval by the corresponding increase in
AC. Notice the difference between CPIinst and the standard cumulative CPI,
which represents the cost performance over the entire project up to the current
tracking period.
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interval would then integrally be extrapolated to the remaining
portion of the project. For illustration purposes, now consider
the same example as introduced for time forecasting in Section
2.2.1. As a reminder, it concerns a situation where management
has assigned extra resources to a particular project during the
last tracking interval. This intervention has lead to a
considerable increase in schedule performance for this last
interval, but since hiring extra resources incurs extra expenses,
cost performance has deteriorated significantly. In this case,
having set the cost-related β to 1 (PF=CPIinst) would imply the
assumption that the recent deterioration in cost performance
will continue for the rest of the project's life (i.e. this would
reflect a situation where the extra resources remain in service –
and thus incur extra costs – until the very end of the project).

On the other hand, if β=0 (no responsiveness to the current
cost performance) then PF=Tt−1 ,EV/Tt−1,AC=T0 ,EV/T0 ,AC=1,
producing the well-known EAC − 1 method, which assumes
that future spending will be exactly according to plan (i.e. in
accordance with the baseline costs). Parallel to time forecasting,
the XSM($) thus also covers the method that delivers the most
accurate project cost forecasts according to earlier studies.
7 A completely similar reasoning can be followed for the cost dimension.
2.2.3. Dynamic application of the XSM
The previous sections may have left the impression that the

value for the smoothing parameter should be chosen before the
project starts and then remains constant throughout the entire
project. This is indeed a possible approach, which we will call
the static approach. However, β values do not necessarily have
to be the same for every tracking period. For example, we can
set β=1/t, with t the respective tracking period number. In this
way, we obtain the exact same forecasts as ESM − SPI(t) for
time, and as EAC − CPI for cost. Notice, however, that it is not
our intention to use either SPI(t) or CPI as a performance factor,
as our goal was to create forecasting methods that assign more
weight to the performance of the latest tracking periods, to
which end the standard cumulative SPI(t) and CPI are not fit.
Anyhow, the novel XSM methodology can be said to provide a
universal definition for both the main schedule (SPI(t), SPI(t)inst
and 1) and cost (CPI, CPIinst and 1) performance factors as a
function of just one parameter β.

Note, however, that setting β to 1/t for every tracking period
can still be seen as a static approach; although the β values will
be different for every tracking period, they are still fixed prior
to the project start and are not adapted during project progress.
However, as SPI(t) and CPI are undesirable performance
factors in the context of this paper, the term static approach will
from now on only be used to refer to the case where β indeed
retains a constant value for every tracking period. On the other
hand, an approach where the smoothing parameter can be
adjusted every tracking period is called a dynamic approach and
the corresponding variable parameter is denoted by βdyn.

6 There
are two versions of the dynamic approach.
6 It is important to realize that the general smoothing parameter notation “β"”
(without subscript) reflects a constant value and therefore expresses the application of
the static approach, whereas “βdyn"” indicates that it concerns a variable value and
thus the dynamic approach. This is also made clear in Appendix A.
A first one is based on quantitative analysis. More concretely,
the βdyn value for a certain tracking period is defined as the β – so
a constant value equal for all preceding tracking periods – that
would have produced the most accurateforecasts over all of these
preceding tracking periods. The performance data of these passed
tracking periods are of course known, so a nonlinear optimization
problem can be modeled of which the solution defines the
optimal β (i.e. the β that would have yielded the highest
forecasting accuracy) over all past tracking periods. This
calculated optimal β is then adopted as the βdyn value for the
current tracking period, following the principle that the historic
optimal β is the best estimate for the future optimum. When we
perform this procedure for every tracking period during the
project, a sequential series of potentially different values of βdyn is
obtained. We then say to apply the quantitative dynamic
approach to the proposed XSM forecasting methodology.

Notice that previous approach does not require any human
insights. However, in some situations it might be appropriate
not to eliminate the possibility of allowing personal assump-
tions to influence the choice of βdyn at a certain point in time.
For example, consider a project that is about halfway but
showed very poor schedule7 performance during this first half.
However, management was aware of the problem and has now
taken some corrective actions, which after a first evaluation
seem to greatly improve the schedule performance. Since the
improved schedule performance is, however, only a very recent
phenomenon, quantitative dynamic calculations will not yet
take it into account. At this point, management can decide that
the higher schedule performance in fact best reflects the
expected future performance (i.e. this means stating that the
higher performance will be maintained in the future). To
produce time forecasts that reflect this vision, management can
increase the βdyn (set it closer to 1) so that the forecasts become
strongly based on the more recent tracking periods, and thus on
the improved schedule performance. Of course, this approach
cannot rely on the support of quantitative calculations. Instead,
management has to select the most appropriate βdyn value at a
certain time based on their own experience and insight.
Therefore, this approach can be seen as a qualitative dynamic
implementation of the XSM.

3. Evaluation approach

The main objective of the remainder of this paper is to
compare the accuracies8 of the XSM with those of the most
common and best performing established EVM forecasting
methods, and this for both time and cost. Therefore, we make
use of a selection of projects from the real-life project database
of Batselier and Vanhoucke (2015a), which are presented in
Section 3.1. Regarding the evaluation of the XSM, both the
static approach (Section 3.2) – including the incorporation of
8 Accuracy is generally accepted as the most important criterium for
evaluating the performance of forecasting methods (Carbone and Armstrong,
1982). The other quality-determining aspects of forecasts, namely stability and
timeliness (Covach et al., 1981), are not considered in this paper. The evaluation
of these aspect is left to future research.



Table 2
Properties of the considered projects.

Project
code Project name Sector

PD
[days] a BAC [€]

C2011–05 Telecom System
Agnes

IT (medical
applications)

43 180,485

C2011–07 Patient Transport
System

IT (medical
applications)

389 180,759

C2011–12 Claeys-Verhelst
Premises

Construction
(commercial building)

442 3,027,133

C2011–13 Wind Farm Construction
(industrial)

525 21,369,836

C2012–13 Pumping Station
Jabbeke

Construction (civil) 125 336,410

C2013–01 Wiedauwkaai
Fenders

Construction (civil) 152 1,069,533

C2013–02 Sewage Plant
Hove

Construction (civil) 403 1,236,604

C2013–03 Brussels Finance
Tower

Construction
(institutional building)

425 15,440,865

C2013–04 Kitchen Tower
Anderlecht

Construction
(institutional building)

333 2,113,684

C2013–06 Government
Office Building

Construction
(institutional building)

352 19,429,808

C2013–07 Family Residence Construction
(residential building)

170 180,476

C2013–08 Timber House Construction
(residential building)

216 501,030

C2013–09 Urban
Development
Project

Construction
(commercial building)

291 1,537,398

C2013–10 Town Square Construction (civil) 786 11,421,890
C2013–11 Recreation

Complex
Construction (civil) 359 5,480,520

C2013–12 Young Cattle Barn Construction
(institutional building)

115 818,440

C2013–13 Office Finishing
Works (1)

Construction
(commercial building)

236 1,118,497

C2013–15 Office Finishing
Works (3)

Construction
(commercial building)

171 341,468

C2014–04 Compressor
Station Zelzate

Construction
(industrial)

522 62,385,600

C2014–05 Apartment
Building (1)

Construction
(residential building)

228 532,410

C2014–06 Apartment
Building (2)

Construction
(residential building)

547 3,486,376

C2014–07 Apartment
Building (3)

Construction
(residential building)

353 1,102,537

C2014–08 Apartment
Building (4)

Construction
(residential building)

233 1,992,222

a Standard eight-hour working days.
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the RCF concept – and the dynamic approach (Section 3.3) will
be considered. Note that the discussions in these sections
always apply to both time and cost forecasting. Furthermore,
the applied approach for evaluating forecasting accuracy is
explained in Section 3.4.

3.1. Project data

23 real-life projects from the database of Batselier and
Vanhoucke (2015a) were considered fit for the upcoming
study. All of these projects contain fully authentic baseline
schedule and tracking data that were received directly from the
actual project owners.9 21 of the projects can be situated within
the broad construction sector,10 the other two are IT projects.
Furthermore, project durations range from only two months to
more than three years, and project budgets from less than €
200,000 to over € 60,000,000. More detailed information for
the individual projects is presented in Table 2. Moreover, a
more extended presentation of the considered projects together
with all corresponding project data are publicly available at
www.or-as.be/research/database, both in ProTrack (www.
protrack.be) and MS Excel format thanks to the novel software
tool PMConverter. The concerning projects can be retrieved
through the project codes indicated in the first column of Table
2.

3.2. Static approach

For every project, it is assessed which constant β value
produces the most accurate forecasts (i.e. βopt). Moreover, the
optimal β over all projects (i.e. βopt ,oa) is determined and the
resulting overall accuracies are compared to those for the most
common and best performing established EVM forecasting
methods.

However, it is very important to realize that utilizing βopt ,oa
does not entail any intelligent methodology for assigning the
most appropriate β to a certain project prior to the project start,
as βopt ,oa is simply determined as the β that yields the best
forecasting accuracy over all 23 projects in the database. These
projects are – as indicated in Table 2 – quite diverse with
regard to sector, budget, duration, etc. As no significant
similarities exist between the entirety of projects (beside the
fact that the vast majority is situated within the broad
construction sector), there is no reason why the βopt of a certain
project should be considered for the determination of the most
appropriate β for another – unrelated – project. Nevertheless,
this is exactly what is done when βopt ,oa is applied.
9 For more information about the concepts of project authenticity and
tracking authenticity and their integration within the database construction and
evaluation framework of project cards, the reader is referred to Batselier and
Vanhoucke (2015a).
10 Note that the construction industry is very wide and comprises various
subdivisions that exhibit mutually different characteristics. As such, we can
break down the construction sector into civil, industrial and building
construction. Furthermore, building construction can, in its turn, further be
split into commercial, institutional and residential building. The subsector to
which a certain construction project belongs is specified in Table 2.
Therefore, a more customized pre-project β allocation is
proposed, in which the β is determined based on the optimal βs
of historical projects with the same characteristics as the
considered project, producing a far better tuned βopt ,rc. The rc
in this notation expresses the link with the reference class
forecasting (RCF) methodology, which was presented by
Kahneman and Tversky (1979a) and later by Lovallo and
Kahneman (2003). The basis of RCF lies in the identification of
a relevant reference class of similar historical projects in order
to produce more accurate forecasts for the considered project,
which is also the idea behind the βopt ,rc approach. The RCF
concept was originally proposed by Kahneman and Tversky

http://www.or-as.be/research/database
http://www.protrack.be
http://www.protrack.be


11 Recall that N was defined as the expected number of tracking periods
according to the baseline schedule, which is a number that can be calculated
prior to the project start, whereas n is only known after the project has finished.
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(1979a, 1979b) to overcome human bias – which can take the
form of optimism bias (i.e. the general overoptimistic nature of
human judgment with respect to upcoming events) and strategic
misinterpretation (i.e. deliberately making optimistic estima-
tions of future events to give the impression of surpassing the
competition) – by taking an outside view on planned actions
rather than an inside view. Indeed, RCF does not zoom in on
the specifics of a certain project (e.g. activity information) in
order to predict uncertain events (e.g. activity delay) that would
influence the course of the project, which of course, is exactly
what traditional EVM does. Flyvbjerg (2006) and Batselier and
Vanhoucke (in press-a) performed a first practical application
of the RCF technique, and furthermore, the latter paper
successfully compared RCF with the established EVM
forecasting technique. For a more elaborate discussion on the
foundations and the performance of RCF as a methodology in
itself, we refer to the works mentioned above in this paragraph.

With respect to the newly introduced technique of this paper,
it is expected that the βopt ,rc would yield more accurate
forecasts than the βopt ,oa, as it could better exploit the full
potential of the XSM by selecting a β that should be closer to
the eventual βopt of the considered project, and therefore, would
presumably show greater advantage with respect to the best
established EVM forecasting method. However, obtaining a
pool of projects sufficiently similar to a certain project is not an
easy task, certainly not as Batselier and Vanhoucke (in press-a)
found that the highest degree of similarity is required to yield
the highest forecasting accuracies. More concretely, the
reference class should consist of similar projects from within
the same company. In our study, this advice is followed and a
selection of four projects from the same company (i.e. projects
C2014–05 to C2014–08) – all concerning the construction of
an apartment building – is considered for the calculation of
βopt ,rc.

3.3. Dynamic approach

For the dynamic approach, only the version based on
quantitative analysis will be considered. The approach is
applied as described in Section 2.2.3. More concretely, the
nonlinear programming problems (i.e. finding the instantaneous
optimal βdyn based on past performance) that emerge for every
tracking period are solved by making use of the MS Excel
Solver. As the application of the quantitative dynamic approach
for a certain project does not require data from other projects
(i.e. it only uses the progress of the considered project itself as
input), an incorporation of the RCF technique is not relevant
here and is therefore omitted.

Also remark that implementation of the qualitative dynamic
approach would have required the live and permanent
monitoring of a project, including the ascertaining of the
visions and prognoses of management at certain times during
the project. These efforts have not been made in the context of
this paper and are left to future research. However, this paper
does point out the possibility of in-project βdyn adapting based
on personal assumptions or prognoses in situations where this
is appropriate.
3.4. Forecasting accuracy evaluation

The forecasting accuracy of the different methods will be
expressed in terms of mean absolute percentage error (MAPE),
for which the general formulation is as follows:

MAPE ¼ 1
n

Xn

t¼1

A−Pt

A

����

���� ð22Þ

Here, A represents the actual value at the end of the project
and Pt the forecasted (predicted) value at tracking period t.
Furthermore, n corresponds to the number of tracking periods
that were actually performed during the considered project.11

When particularizing Eq. (22) for time forecasting (referring to
Table 1 for the abbreviations), A and Pt are substituted by RD
and EAC(t), respectively. For cost forecasting, this becomes RC
and EAC, respectively. Obviously, the lower the MAPE of a
particular forecasting method, the higher the accuracy of that
method. The MAPE has also been used in many other EVM
accuracy evaluation studies (Batselier and Vanhoucke, 2015b;
Batselier and Vanhoucke, 2015c; Batselier and Vanhoucke, in
press-a, in press-b; Elshaer, 2013; Guerrero et al., 2014;
Rujirayanyong, 2009; Vanhoucke, 2010; Vanhoucke and
Vandevoorde, 2007; Zwikael et al., 2000).

4. Results and discussion

In this section, the results for the newly developed exponential
smoothing-based time and cost forecastingmethods are presented
and discussed. The established EVM time and cost forecasting
methods that are considered for comparison with the XSMwill be
presented in the respective subsections 4.1 and 4.2. In both
subsections, the static approach – including the version with
incorporation of the RCF concept – as well as the dynamic
approach to the XSM will be evaluated. We reiterate that the
concrete notations for the different approaches within the general
technique of XSM are summarized in Appendix A and will be
used throughout this section.

4.1. Time forecasting: XSM(t)

The accuracies of the XSM(t) – both the static (Section 4.1.1)
and the dynamic (Section 4.1.2) approach – are now compared
with the performances of ESM-1 and ESM-SPI(t), two of the most
commonly used and also most accurate established EVM time
forecasting methods. All results are summarized in Table 3.

4.1.1. Static approach: XSM(t)−βopt, XSM(t)−βopt ,oa,
XSM(t)−βopt , rc

First, consider the results for the static approach. The
optimal β value for a certain project is indicated by βopt, and the
corresponding exponential smoothing-based method by
XSM(t)−βopt. Recall that for the static approach, β – thus also



12 The relative accuracy gain with respect to ESM − SPI(t) is still more than
20%. Hence, ESM − SPI(t) is not deemed a viable alternative for time
forecasting and will therefore not be considered in the upcoming discussions of
this section.

Table 3
Time forecasting results (accuracies in MAPE %).

EVM methods Static approach Dynamic approach

Project code ESM-1 ESM- SPI(t) βopt βopt accuracy βopt ,oa accuracy βopt ,rc accuracy accuracy timeliness

C2011–05 12.22 11.18 0.650 9.50 12.05 / 12.22 100%
C2011–07 7.95 7.16 0.118 7.01 7.35 / 7.95 90%
C2011–12 3.39 8.14 0.000 3.39 4.09 / 3.39 /
C2011–13 7.83 6.80 0.065 6.80 6.84 / 8.24 85%
C2012–13 7.76 10.38 0.000 7.76 8.44 / 7.76 /
C2013–01 1.73 3.81 0.023 1.72 1.73 / 1.73 100%
C2013–02 5.36 16.35 0.000 5.36 7.34 / 5.36 /
C2013–03 4.25 8.08 0.000 4.25 5.64 / 4.33 /
C2013–04 5.71 7.74 0.129 3.26 4.68 / 5.33 60%
C2013–06 2.46 4.12 0.062 2.14 2.15 / 2.48 85%
C2013–07 3.09 4.97 0.000 3.09 3.52 / 3.09 /
C2013–08 8.91 8.67 0.691 7.80 8.84 / 8.91 100%
C2013–09 11.86 10.94 0.853 10.76 11.77 / 11.75 85%
C2013–10 3.26 6.52 0.000 3.26 3.73 / 3.27 /
C2013–11 6.59 6.90 0.085 6.29 6.38 / 6.59 100%
C2013–12 6.93 8.82 0.130 6.03 6.51 / 6.83 75%
C2013–13 5.61 9.51 0.000 5.61 6.54 / 5.61 /
C2013–15 12.89 10.56 0.159 10.43 12.09 / 12.89 100%
C2014–04 26.99 17.61 0.188 20.80 24.17 / 26.85 75%
C2014–05 4.84 10.82 0.106 3.02 3.50 3.05 5.77 75%
C2014–06 2.35 6.55 0.028 1.70 1.98 2.74 2.27 65%
C2014–07 4.46 13.64 0.093 3.39 3.53 3.39 4.46 85%
C2014–08 8.80 7.05 0.666 7.41 8.63 8.42 8.74 90%
Overall 7.18 8.97 0.050 6.12 7.02 / 7.21 85%
Ref. class 5.11 9.52 0.100 3.88 / 4.40 / /
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βopt – remains constant throughout the entire project. If this βopt
is different from 0, it means that XSM(t)−βopt can provide more
accurate forecasts than ESM-1. On the other hand, if βopt is
equal to 0, the performance factor of Eq. (13) is reduced to 1
and ESM-1 thus remains the most accurate time forecasting
method. Table 3 indicates that βopt is different from 0 for 16 of
the 23 considered projects (i.e. in about 70% of the cases),
providing a first indication that XSM(t)−βopt indeed shows
potential for improving the accuracy of project duration
forecasts with respect to the established EVM methods. We
now further examine this statement.

When βopt is introduced for every project, the average
forecasting accuracy over all projects (second last row of Table
3) is reflected by a MAPE of 6.12%. Meanwhile, ESM-1,
indisputably the best EVM time forecasting method according to
previous empirical research (Batselier and Vanhoucke, 2015b;
Guerrero et al., 2014), displays an overall MAPE of 7.18%. This
implies that, if for each project the optimal β was used, XSM(t)−
βopt could produce time forecasts that are 14.8% more accurate
than those obtained from ESM-1.With respect to ESM-SPI(t), the
relative improvement even rises up to 31.8%. These are indeed
considerable potential improvements. Note, however, that in
practice it would be very difficult to exploit the full potential as
the βopt that induces the maximally improved time forecasts is
only known after the project has ended. And since we are
considering the static approach here, where β has to be fixed prior
to the project start, an assumption for the β value has to be made.
A logical approach would be to base the choice of β on the
historical performance data from earlier projects. Therefore, we
calculate the β that, on average, produces the most accurate
forecasts over all projects and call this value βopt ,oa. The method
applying this βopt ,oa is referred to as XSM(t)−βopt ,oa. Fig. 1
displays the overall MAPEs for different values of β (with
increments of 0.05) and allows the identification of βopt ,oa.

From Fig. 1, we can conclude that βopt ,oa=0.05 here (vertical
line). Moreover, this β value yields a MAPE of 7.02%, as could
already be seen from Table 3. This MAPE suggests quite a
considerable reduction in accuracy (of almost one absolute percent)
with respect to the case where the project-specific optimal β (i.e.
βopt) is applied for every project. Nevertheless, XSM(t)−βopt ,oa is
still more accurate than ESM-1, but only by 2.3%.12

However, recall from Section 3.2 that utilizing βopt ,oa does
not entail any intelligent methodology for assigning the most
appropriate β to a certain project prior to the project start,
whereas the approach that applies betaopt ,rc and thus identifies
a reference class of similar projects was expected to improve
forecasting accuracy. Therefore, the XSM(t)−βopt ,rc was
performed for four strongly similar projects from the used
database (i.e. projects C2014–05 to −08) and the results were
summarized in the last row of Table 3. Remark that the values
in this last row only reflect the (average) outcomes for the four
projects in the selected reference class. For this reference class,
we see that the optimal β (i.e. βopt ,rc) is now 0.10, which is not
the same as the βopt ,oa of 0.05 over all 23 projects.
Consequently, the βopt ,rc accuracy is different from the βopt ,oa



Fig. 1. Determination of βopt ,oa for time forecasting.
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accuracy for the four reference class projects. A MAPE of
4.40% has been obtained by XSM(t)−βopt ,rc, which is 13.9%
lower than that of ESM-1 (MAPE of 5.11%). This is a
considerable accuracy improvement with respect to the
traditionally best performing EVM time forecasting method,
and furthermore, also with respect to XSM(t)−βopt ,oa. The latter
observation confirms the expectation that incorporation of the
RCF concept would better exploit the full potential of the XSM.
Indeed, when comparing with ESM-1, XSM(t)−βopt ,rc attains
13.9% improvement from the maximum of 24.1% (i.e. when
using βopt for every project), whereas for XSM(t)−βopt ,oa this
was only 2.3% from the maximum of 14.8%.

4.1.2. Dynamic approach: XSM(t)−βdyn
Now consider the results for the dynamic approach to the

novel time forecasting method, referred to as XSM(t)−βdyn.
More specifically, we are considering the dynamic approach
based on quantitative analysis, as was presented in Section 2.2.3.
Table 3 indicates that the time forecasting accuracy obtained by
applying XSM(t)−βdyn is reflected by a MAPE of 7.21%.
Although this is considerably more accurate than ESM-SPI(t)
(19.6% relative improvement), it is almost identical to ESM-1
(0.4% relative deterioration). XSM(t)−βopt ,oa thus exhibits a
better performance than XSM(t)−βdyn (2.7% relative improve-
ment), and furthermore, the more advanced XSM(t)−βopt ,rc even
shows a relative improvement of 17.8%. Therefore, it could be
concluded that the static approach to the XSM shows a greater
potential for time forecasting than its dynamic counterpart.

A reason for the weaker performance of the latter approach
could lie with the timeliness of the method. The observed
timeliness for a certain project is defined here as the point in time
(i.e. the tracking period) for which βdyn differs from0 for the first
time, and remains different from 0 for all subsequent tracking
periods, right up to the end of the project. For example, if a certain
project contains 20 tracking periods and the dynamic approach
yields a non-zero value for βdyn for the first time on tracking
period 14, than the timeliness of the dynamic approach for this
project is said to be 70% (= 14/20). Note that we thus express the
timeliness as a percentage of the total number of tracking periods,
rounded to the nearest 5% for clarity.

The timeliness results for XSM(t)−βdyn are presented in the
last column of Table 3. For the projects where βopt is 0, with
βopt always corresponding to the βdyn calculated for the final
tracking period, there are no timeliness results as the concept is
not relevant when βdyn remains 0 throughout the entire project.
Note that in such a situation, XSM(t)−βdyn becomes completely
identical to ESM-1. A timeliness percentage of 100%, on the
other hand, indicates that the dynamic approach yields a
non-zero βdyn – equal to βopt – only at the very last tracking
period. In such a case, XSM(t)−βdyn again produces the exact
same time forecasts as ESM-1, as βdyn only differs from 0 at the
final tracking period (where it can no longer be applied since
the project is already finished at this point) and was equal to 0
for the entire preceding portion of the project, just as for
ESM-1. Thus, when the timeliness percentage is 100%,
XSM(t)−βdyn has no advantage over ESM-1 for that specific
project. From this statement, one may deduce that the dynamic
approach becomes more beneficial for lower timeliness
percentages. Indeed, the lower the timeliness percentage, the
more tracking periods there are for which time forecasts can be
made that are based on an accuracy-improving non-zero βdyn.

From Table 3, however, we notice that quite a few projects
(5 out of the 16 with a non-zero βopt) exhibit a 100% timeliness
percentage for XSM(t)−βdyn. Moreover, the other relevant
projects also show fairly high timeliness percentages. With the
exception of two projects, all experience a first non-zero βdyn
outcome only in the last quarter of the project (i.e. on or after
the 75% timeliness percentage). This is reflected by an overall
timeliness percentage of 85%. From this figure, and from the
preceding discussion, it could indeed be expected that XSM(t)−
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βdyn would not produce time forecasts that are significantly
better than those of the established ESM-1.

Furthermore, XSM(t)−βdyn can sometimes even prove less
accurate than ESM-1 (compare the MAPE values in the second
and next to last column of Table 3). This is due to the
occurrence of misleading spikes in the course of βdyn calculated
for the different tracking periods. There are two possible
situations. In a first, the dynamic approach falsely indicates an
non-zero βdyn for one or more tracking periods during the
project, whereas the eventual βopt is in fact equal to 0 (i.e.
ESM-1 is the best method). This situation appears for projects
C2013–03 (Fig. 2a) and C2013–10 (Fig. 2b), both for which a
rather modest spike occurs for the penultimate tracking period.
(a)

(c)

(e)

Fig. 2. Course of βdyn according to the dynamic time foreca
A second possibility is that, although the eventual βopt is
different from 0 (i.e. ESM-1 is not the best method), the
dynamic approach yields non-zero βdyn values during the
project that are (way) too high and thus produce forecasts that
are less accurate than those using a simple ESM-1 (i.e. setting
β=0) for the corresponding tracking periods. This is the case
for projects C2011–13 (Fig. 2c) and C2014–05 (Fig. 2d). Note
that the occurrence of spikes does not necessarily has to be
disadvantageous in the situation where βopt is different from
zero (on the other hand, in the case where βopt=0, it always is
disadvantageous), as the non-zero etadyn values obtained during
the project (more specifically, for tracking periods for which
the tracking progress is less than the timeliness percentage)
(d)

(b)

sting approach for different projects from the database.
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could provide a reasonably accurate approximation of the
eventual βopt and thus also yield more accurate forecasts than
when setting βdyn=0 for the respective tracking periods. An
example of this situation is given by project C2013–09 (Fig.
2e). Here, the spike is smaller than the eventual βopt, and thus
closer to βopt than βdyn=0, therefore always producing a more
accurate time forecast than ESM-1 for the corresponding
tracking period.

4.2. Cost forecasting: XSM($)

Similar to what was done for time forecasting in Section 4.1,
the accuracies of the exponential smoothing-based cost
forecasting methods are now compared with the performances
of two of the most commonly used and also most accurate
established EVM cost forecasting methods, namely EAC-1 and
EAC-CPI. Again, both the static (Section 4.2.1) and the
dynamic (Section 4.2.2) approach are considered. Table 4
summarizes all relevant results.

Notice that no results are displayed for projects C2011–05
and C2013–10. The reason is that these projects do not contain
adequate cost data to allow a correct execution of the upcoming
analysis. Consequently, only 21 projects – instead of 23 – are
considered for the assessment of the XSM($). Other than that,
the performed evaluation for the cost dimension is completely
similar to that performed for time forecasting. Therefore, the
discussion in following subsections will be strongly parallel to
that of Sections 4.1.1 and 4.1.2. Moreover, definitions of
recurring parameters and concepts will not be repeated for the
purpose of conciseness, unless needed for clarity.
Table 4
Cost forecasting results (accuracies in MAPE %).

EVM methods Static approach

Project code EAC-1 EAC- CPI βopt βopt accuracy

C2011–05 / / / /
C2011–07 3.46 1.32 0.455 1.74
C2011–12 1.04 1.38 0.187 0.86
C2011–13 12.84 16.11 0.012 10.63
C2012–13 2.44 2.64 0.108 2.17
C2013–01 10.54 9.11 0.232 8.67
C2013–02 2.56 1.69 0.140 1.35
C2013–03 4.61 4.47 0.359 4.14
C2013–04 6.73 3.96 1.000 1.98
C2013–06 6.33 5.27 0.817 4.67
C2013–07 0.44 1.49 0.000 0.44
C2013–08 8.88 8.34 1.000 7.99
C2013–09 4.90 3.65 0.920 2.87
C2013–10 / / / /
C2013–11 0.57 1.33 0.014 0.56
C2013–12 3.53 2.75 0.320 2.49
C2013–13 6.75 10.40 0.000 6.75
C2013–15 8.08 8.09 0.099 7.36
C2014–04 3.33 3.13 0.223 3.05
C2014–05 2.92 8.07 0.071 1.98
C2014–06 0.75 1.83 0.025 0.47
C2014–07 5.85 5.17 0.444 3.21
C2014–08 9.33 3.88 0.975 4.59
Overall 5.04 4.96 0.200 3.71
Ref. class 4.71 4.74 0.150 2.56
4.2.1. Static approach: XSM($)−βopt, XSM($)−βopt ,oa,
XSM($)−βopt , rc

First, consider the results for the static approach in Table 4.
Analogous to time forecasting, a βopt different from 0 expresses
that the corresponding exponential smoothing-based cost
forecasting method, denoted by XSM($)−betaopt, can provide
more accurate forecasts than EAC-1. On the other hand, if βopt
is equal to 0, the performance factor of Eq. (21) is reduced to 1
and EAC-1 thus remains the most accurate cost forecasting
method. From Table 4, it appears that βopt is different from 0 for
19 of the 21 considered projects (i.e. in about 90% of the cases).
This observation provides a first indication that the XSM might
have great potential for improving the accuracy of project cost
forecasts, and even more so than was the case for time
forecasts. We now further examine this statement.

When βopt is introduced for every project, the average
forecasting accuracy over all projects (second last row of Table
4) is reflected by a MAPE of 3.71%. Meanwhile, EAC-1
displays an overall MAPE of 5.04%. This implies that, if for
each project the optimal β was used, XSM($)−βopt could
produce cost forecasts that are 26.4% more accurate than those
obtained from EAC-1. This outcome indeed endorses the
greater potential of the XSM for cost forecasting compared to
time forecasting, where the maximum relative improvement
with respect to ESM-1 was limited to 14.8%. However, whereas
ESM-1 is the undisputed EVM top forecasting method for
project duration, EAC-1 does experience competition from
other established EVM cost forecasting methods, and then
mainly from EAC-CPI. For the 19 considered projects,
EAC-CPI even yields forecasts that are, on average, better
Dynamic approach

βopt ,oa accuracy βopt ,rc accuracy Accuracy Timeliness

/ / / /
2.30 / 3.26 65%
0.87 / 1.08 85%
17.51 / 12.74 85%
2.27 / 2.44 100%
8.78 / 10.54 100%
1.47 / 2.17 50%
4.33 / 4.61 100%
5.06 / 4.35 35%
5.44 / 6.14 75%
1.04 / 0.44 /
8.43 / 8.78 70%
4.07 / 4.78 75%
/ / / /
0.97 / 0.57 90%
2.83 / 3.53 100%
8.46 / 6.75 /
7.78 / 8.08 100%
3.05 / 3.48 95%
3.00 2.47 2.90 75%
1.06 0.92 0.70 60%
3.69 3.83 5.59 40%
7.03 7.44 8.66 65%
4.74 / 4.84 75%
/ 3.67 / /



Fig. 3. Determination of βopt ,oa for cost forecasting.

13 Comparison with EAC − 1 yields almost identical results.
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than those producedby EAC-1, which is in line with the
findings of (Zwikael et al., 2000). Indeed, EAC-CPI exhibits an
overall MAPE of 4.96%, which is lower than the 5.04%
observed for EAC-1. Nevertheless, XSM($)−βopt still shows a
substantial potential accuracy gain of 25.1% over EAC-CPI.

However, note that the above results are only obtained when
the optimal β (i.e. βopt) is applied for every project. Just as for
time forecasting, the βopt cannot be known before the start of
the project, which implies that it would be very difficult to fully
exploit the above-mentioned potential of the novel method in
practice, as the static approach requires the pre-project selection
of a fixed β. A more realistic approach would again be to base
the choice of the fixed β on the historical performance data
from earlier projects. Hence, βopt ,oa is the β value that, on
average, produces the most accurate forecasts over all projects
relevant for cost forecasting. The corresponding method is
indicated by XSM($)−βopt ,oa. Fig. 3 displays the overall
MAPEs for different values of β (with increments of 0.05)
and enables the identification of βopt ,oa.

From Fig. 3, we can conclude that βopt ,oa=0.20 here
(vertical line). Note that this βopt ,oa is remarkably higher than
the corresponding value of 0.05 for time forecasting, anew
indicating that the exponential smoothing-based approach
might be intrinsically more beneficial for cost forecasting than
for time forecasting. Indeed, in a cost context, the produced
optimized forecast is expected to deviate more from the
standard case of β=0 and thus to entail greater potential
improvement with respect to it. Table 4 indicates that the
application of βopt ,oa yields a MAPE of 4.74%. This MAPE
suggests quite a considerable reduction in accuracy (again, of
about one absolute percent) with respect to the case where βopt
is applied for every project. Nevertheless, XSM($)−βopt ,oa is
still more accurate than EAC-1 (relative improvement of 6.1%),
and more importantly, than EAC-CPI. The relative accuracy
gain compared to the latter is only 4.5%. However, this is still
more than 2% better than the performance of XSM(t)−βopt ,oa
with respect to ESM-1 in the time forecasting case.

Furthermore, when applying the more advanced βopt ,rc, the
observed forecasting accuracy improvements reach new heights
(see last row of Table 4). Indeed, XSM($)−βopt ,rc displays an
average MAPE of 3.67% over the four projects of the reference
class, which is a relative 22.2% and 22.6% lower compared to
EAC-1 and EAC-CPI, respectively. These forecasting accuracy
increases are considerable, and even more significant than those
observed for the time dimension, where the relative improvement
of XSM(t)−βopt ,rc with respect to ESM-1 did not surpass 14%.
Furthermore, note that βopt ,rc is now equal to 0.15, whereas βopt ,oa
was slightly higher with 0.20. This indicates that β should not
necessarily increase to obtain higher accuracies, as this depends
on the characteristics of the considered projects (i.e. the four
reference class projects in this case). Moreover, the results again
showthat application of βopt ,rc better exploits the full potential of
the XSM, as comparison with EAC-CPI13 shows that XSM($)−
βopt ,rc attains 22.6% improvement from the maximum of 45.9%
(i.e. when using βopt for every project), whereas for XSM($)−
βopt ,oa this was only 4.5% from the maximum of 25.1%.
Therefore, all statements made in Section 4.1.1 (time dimension)
concerning the benefits of incorporating RCF into the novel XSM
are thus confirmed – and even reinforced – for cost forecasting.

4.2.2. Dynamic approach: XSM($)−βdyn
Now consider the results for the (quantitative) dynamic

approach to the XSM($) in Table 4. It appears that this
approach, denoted by XSM($)−βdyn, yields an overall forecast-
ing accuracy of 4.84 MAPE %. Notice that this accuracy is
slightly lower than that of XSM($)−βopt ,oa (relative deteriora-
tion of 2.1%) and significantly lower than that of XSM($)−
βopt ,rc (relative deterioration of 16.9%), which corresponds to
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the observations made for time forecasting. Again, the static
approach to the XSM thus shows greater potential than its
dynamic counterpart.

However, in contrast with the time forecasting situation, the
dynamic approach does perform better than both established
EVM methods, as its forecasting accuracy is 4.1% and 2.4%
higher than that of EAC-1 and EAC-CPI, respectively. An
explanation for this could be found in the observed timeliness
of XSM($)−βdyn (see last column of Table 4). First of all, in
comparison with time forecasting, less projects exhibit a 100%
timeliness percentage (only 5out of the 19 with a non-zero βopt).
Moreover, the other relevant projects generally show lower
timeliness percentages and seven projects (instead of only two
for the time context) experience a first non-zero βdyn outcome
before the 75% timeliness percentage. Not surprisingly, the
overall timeliness percentage is lower for cost than that for time
forecasting, namely 75% instead of 85%. Recall that, the lower
the timeliness percentage, the more tracking periods there are
for which forecasts can be made that are based on an
accuracy-improving non-zero βdyn. From the above discussion,
one could indeed apprehend the better performance of the
dynamic approach to the XSM for cost forecasting.

Furthermore, only one project (C2014–04) contains a mislead-
ing spike in the course of the βdyn calculated for the different
tracking periods, which anew positively influences the forecasting
accuracy in comparison with the time forecasting situation (where
there were four such cases). It concerns a project for which the
eventual βopt is different from 0, but where the dynamic approach
produces non-zero βdyn values during the project that are way too
high and thus yield cost forecasts that are less accurate than those
using a simple EAC-1 (i.e. setting β=0) for the corresponding
tracking periods. Fig. 4 shows the course of βdyn for this project.

5. Conclusions

In this paper, a novel forecasting approach for project duration
and cost based on the incorporation of the EVM metrics into the
exponential smoothing technique is developed. This novel
approach is referred to as the XSM (an acronym for eXponential
Smoothing-based Method) and exhibits a strong similarity to the
traditional EVM forecasting methodology. Indeed, the rather
cumbersome exponential smoothing technique can very straight-
forwardly be implemented for project management forecasting
Fig. 4. Course of βdyn according to the dynamic co
simply by introducing a new performance factor based on only
one smoothing parameter β into the established EVM forecasting
approach. Thus, the exponential smoothing technique can be
fully integrated in the existing EVM framework – for both time
and cost forecasting – which endorses the practical applicability
of the newly developed methodology.

Concerning the technicalities of the XSM, the applied
smoothing parameter β always lies between 0 and 1, with the
extreme values respectively reflecting no and maximum
responsiveness to the current time/cost performance of the
project. This means that the closer β is chosen to 1, the higher
the responsiveness to the performance of the latest tracking
periods. The ability to base forecasts on the more recent project
performance was one of the main drivers for developing the
XSM. Indeed, the XSM makes it possible to tune time and cost
forecasts by accounting for experience-driven performance
improvement and/orrecently taken corrective management
actions. Traditional EVM forecasting methods, on the other
hand, cannot adequately account for such influences. More-
over, the most important EVM forecasting methods (i.e. ESM-1
and ESM-SPI(t) for time and EAC-1 and EAC-CPI for cost) can
be expressed in terms of XSM formulations. Therefore, it can
be stated that the XSM incorporates these established methods
and thus expands and generalizes traditional EVM forecasting.

Furthermore, the XSM can be applied in both a static and a
dynamic way. For the static approach, the value for β is chosen
before the project starts and then remains constant throughout the
entire project. Moreover, three versions of the static approach can
be identified: a first one is based on the constant β value that
produces the most accurate forecasts for the considered project
(i.e. βopt); a second version relies on the optimal β over all
projects in the database (i.e. βopt ,oa); and a third version only
considers related projects with similar characteristics to define
the optimal β (i.e. βopt ,rc). The latter approach in fact incorporates
the RCF concept into the XSM. Furthermore, it should be noted
that the βopt for a certain project cannot be known prior to the start
of that project, whereas βopt ,oa and βopt ,rc can be calculated from
historical projects in the database. Therefore, the XSM based on
βopt can be said to reflect the maximum potential of the novel
methodology, whereas the approaches based on the other βs
reflect realistically attainable performances.

For the dynamic approach, the smoothing parameter can be
adapted during the project and can thus take a different value for
st forecasting approach for project C2014–04.



14 As an exception, β can for example also be set equal to 1/t, with t the
respective tracking period number, as to produce the exact same forecasts as
ESM − SPI(t) and EAC − CPI for time and cost, respectively (see Section
2.2.3). In such a case, the β values are not the same for every tracking period,
although they are fixed and unadaptable as from the start of the project.
However, the definition of β retaining the same value for every tracking period
is much more common, and is also adopted in the discussions of this paper.
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every tracking period. In this case, the smoothing parameter is
indicated by βdyn. There are two possible versions of the dynamic
approach. The first one is based on a quantitative analysis. More
concretely, the βdyn value for a certain tracking period is calculated
as the β that would have produced the most accurate forecasts over
all of the preceding tracking periods. On the other hand, a
qualitative dynamic approach would allow management to select
the most appropriate βdyn value at a certain time, not based on
quantitative calculations, but rather on their own experiences and
insights (e.g. with respect to the effect of anticipated corrective
actions). The possible merits of this second option are not
evaluated in this paper, nevertheless, the reader should recognize
the possibility of incorporating human insights into the XSM.

The forecasting accuracies of the static and the dynamic
approach to the XSM were compared with the accuracies of the
most common and best performing established EVM forecast-
ing methods, and this for both time and cost. To this end, data
from 23 real-life projects from the database of (Batselier and
Vanhoucke, 2015a), and available at www.or-as.be/research/
database, were used. MAPE comparison indicates that the XSM
has the potential to produce forecasts that are on average 14.8%
more accurate with respect to the best EVM time forecasting
method (i.e. ESM-1) and even 25.1% more accurate compared
to the best EVMcost forecasting method (i.e. EAC-CPI).
However, in practice it would be difficult to exploit the full
potential of the XSM as this would require the knowledge of
βopt prior to the project start. Nevertheless, even for the most
rudimentary static application of the XSM (i.e. based on
βopt ,oa), there is still an average performance improvement with
respect to the top EVM time and cost forecasting methods of
2.3% and 4.5%, respectively. The quantitative dynamic
approach, on the other hand, yields accuracy results that are
slightly worse than those just presented and cannot be further
improved. In contrast, the performance of the static approach
can be enhanced through consideration of reference classes.
Indeed, when applying βopt ,rc for a reference class of similar
projects within the used database, the accuracy gains with
respect to the best EVM forecasting methods rise up to 13.9%
for time and 22.2% for cost. Remark that the XSM seems to
perform better for cost than for time forecasting, although the
improvements can be deemed considerable in both contexts.

The obtained results thus indicate that the XSM, which
integrates the EVMmethodology with the exponential smoothing
technique, exhibits great potential for improving the accuracy of
project forecasts, certainly when also incorporating the RCF
concept. The objective reflected by the title of this paper can
therefore be deemed achieved. However, it is important to note
that the current evaluation was performed on a data set of 23
projects. Therefore, it is not our intention to provide generalizable
conclusions, but rather a trustworthy indication of the potential of
a newly developed forecasting technique. The XSM – and
especially the most promising version based on βopt ,rc – should
thus further be tested on a larger pool of (real-life) projects. Other
topics for future research are the comparison of the XSM with
other state-of-the-art forecasting methods (based on EVM), the
assessment of the effect of tracking frequency and regularity on
the XSM performance, the investigation into the possibilities of
the qualitative dynamic approach to the XSM, and the evaluation
of the effect of project seriality and project regularity (Batselier
and Vanhoucke, in press-b) on the accuracy of XSM time and
cost forecasts.
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Appendix A. Notations for the different components of the
XSM

The notations for the different components of the exponen-
tial smoothing-based method developed in this paper are now
listed in the order in which they appear in the text:

XSM The exponential smoothing-based method in general,
comprising both time and cost forecasting.

XSM(t) The time forecasting component of the XSM.
XSM($) The cost forecasting component of the XSM.
β The general smoothing parameter used in the XSM;

we assume that this β is chosen prior to the project
start and remains constant over all tracking periods.14

βopt The optimal value for β for a certain project in the
database.

βopt ,oa The optimal value for β over all projects in the database.
βopt ,rc The optimal value for β over all projects within a same

reference class, i.e. with similar characteristics w.r.t.
sector, budget, duration, etc.

βdyn The variable smoothing parameter value that is
calculated for every tracking period (based on the
performance of the past tracking periods); this βdyn can
thus be different for every tracking period.
Note: It is important to realize that βopt, βopt ,oa and βopt ,rc
are in fact specifications of the general β. Therefore, βopt,
βopt ,oa and βopt ,rc are all fixed for the entire course of the
project and retain the same value for every tracking
period. On the other hand, βdyn can change during the
project and can thus take on different values for different
tracking periods, as it is dynamically adjusted over the
course of the project. Table A.5 further illustrates the
difference in possible courses of β (or βopt, βopt ,oa or
βopt ,rc) and βdyn on a notional example project with seven
tracking periods (TPs)

http://www.or-as.be/research/database
http://www.or-as.be/research/database


Table A.5. A possible course of β and βdyn

TP1 TP2 TP3 TP4 TP5 TP6 TP7

β 0.15 0.15 0.15 0.15 0.15 0.15 0.15
βdyn 0.00 0.00 0.07 0.00 0.08 0.16 0.21
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XSM(t)−βopt The static approach to the XSM(t) based on
βopt.

XSM(t)−βopt ,oa The static approach to the XSM(t) based on
βopt ,oa.

XSM(t)−βopt ,rc The static approach to the XSM(t) based on
βopt ,rc.

XSM(t)−βdyn The dynamic approach to the XSM(t), obvi-
ously based on βdyn.

XSM($)−βopt The static approach to the XSM($) based on βopt.
XSM($)−βopt ,oa The static approach to the XSM($) based on

βopt ,oa.
XSM($)−βopt ,rc The static approach to the XSM($) based on

βopt ,rc.
XSM($)−βdyn The dynamic approach to the XSM($),

obviously based on βdyn.
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