
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=teis20

Enterprise Information Systems

ISSN: 1751-7575 (Print) 1751-7583 (Online) Journal homepage: http://www.tandfonline.com/loi/teis20

Aspect-oriented challenges in system integration
with microservices, SOA and IoT

Tomas Cerny

To cite this article: Tomas Cerny (2018): Aspect-oriented challenges in system
integration with microservices, SOA and IoT, Enterprise Information Systems, DOI:
10.1080/17517575.2018.1462406

To link to this article: https://doi.org/10.1080/17517575.2018.1462406

Published online: 10 Apr 2018.

Submit your article to this journal

View related articles

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=teis20
http://www.tandfonline.com/loi/teis20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/17517575.2018.1462406
https://doi.org/10.1080/17517575.2018.1462406
http://www.tandfonline.com/action/authorSubmission?journalCode=teis20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=teis20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/17517575.2018.1462406
http://www.tandfonline.com/doi/mlt/10.1080/17517575.2018.1462406
http://crossmark.crossref.org/dialog/?doi=10.1080/17517575.2018.1462406&domain=pdf&date_stamp=2018-04-10
http://crossmark.crossref.org/dialog/?doi=10.1080/17517575.2018.1462406&domain=pdf&date_stamp=2018-04-10

ARTICLE

Aspect-oriented challenges in system integration with
microservices, SOA and IoT
Tomas Cerny

Department of Computer Science, Baylor University, Waco, TX, USA

ABSTRACT
The era of system integration through service-oriented architecture is
rapidly becoming a legacy. New systems increasingly rely on the succes-
sor microservice architecture. However, distributed applications can also
play a significant role in the internet-of-things. In this paper, we gather
evidence demonstrating cross-cutting issues in these areas and highlight
how aspect-oriented programming addresses them. Specifically, the pur-
pose of this paper is to provide a roadmap for using aspect-oriented
programming to deal effectively with crosscuts in application design,
systems interaction, and integration.

ARTICLE HISTORY
Received 1 December 2017
Accepted 9 March 2018

KEYWORDS
AOP; SOA; IoT; microservice;
cross-cutting concerns

1. Introduction

Aspect-Oriented Programming (AOP) was first introduced in 1997 by Kiczales et al. (1997). In 2001,
an AOP extension for Java is released known as AspectJ. Within a short period, MIT predicted that it
would be the paradigm for the next decade, according to Prasad et al. (2017). However, the boom
never really happen despite undoubtable benefits in its the separation of cross-cutting concerns
leading to significant code reductions (Kiczales et al. 1997) and the simplicity of runtime decisions
enabling context-awareness and adaptability (Cerny et al. 2013).

While AOP seems to be a good fit for code-centric and monolithic applications, its advantages can
also be found also for distributed systems, as demonstrated in Cerny and Donahoo (2015). Individual
modules can benefit from reduced restatements internally, or AOP can be used for separation of
concerns in module interaction, correlation, integration, reduction of transmission volume, etc.

This paper draws a roadmap of existing AOP challenges and research in the areas of System
Integration (SI), Service-Oriented Architecture (SOA) and its successor Microservices (MSA); it also
shows AOP’s potential for employment in the Internet of Things (IoT). The main focus of this paper is
the use of AOP for development, design, andmaintenance of the above areas and particular software
systems. The evidence is received not only by manual survey but also by a systematic search through
multiple research indexing sites and portals, as suggested by Petersen, Vakkalanka, and Kuzniarz
(2015). The outcome is analyzed to provide a survey, roadmap and a categorization of existing work.

Section 2 discusses the methodology used to review the literature on AOP utilization. Section 3
outlines the research questions that are addressed by this paper. Section 4 provides the categor-
ization and roadmap to the research, introducing particular categories in details. Section 5 con-
siders particular cross-cutting concerns addressed in the evidence. Section 6 introduces existing
aspect weavers. Section 7 provides discussion about validity threats of this work. Conclusions are
drawn in Section 8.

CONTACT Tomas Cerny tomas_cerny@baylor.edu Department of Computer Science, Baylor University, One Bear Place
#97356, Waco, TX 76798, USA

ENTERPRISE INFORMATION SYSTEMS, 2018
https://doi.org/10.1080/17517575.2018.1462406

© 2018 Informa UK Limited, trading as Taylor & Francis Group

http://orcid.org/
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/17517575.2018.1462406&domain=pdf

2. The current literature on AOP utilization

To review the literature on the current state of AOP utilization, we accessed the primary relevant
indexing sites and portals (indexers) including IEEE Xplore, SciVerse Scopus, ACM Digital Library (DL),
SpringerLink and ScienceDirect. Our target was to search for papers containing AOP and related terms,
including AOSD (Aspect-Oriented SoftwareDesign). To help refine the results, we added targeted terms
such as Internet of Things, IoT, System Integration, Service Integration, Microservice, Service-Oriented
Architecture, SOA and Service Oriented Architecture. The initial searches considering the query in
Listing 1 resulted in 483 papers. These searches provided results that fitted our control result set.

(‘System integration’ OR ‘Service integration’ OR ‘SOA’
OR ‘Service oriented Architecture’ OR ‘Microservice’
OR ‘Service-oriented Architecture’ OR ‘IoT’
OR ‘Internet of Things’)

AND (‘Aspect Oriented’ OR ‘Aspect-Oriented’ OR ‘AOP’
OR ‘AOSD’ OR ‘Separation of concerns’)

Listing 1: Search query applied to indexers (each indexer had a custom syntax)

The filtering process is captured in Figure 1. Limiting the search to ‘full-text only’ resulted in 277
papers to examine. In the next stage, we read the titles and abstracts of the papers to decide
whether each paper matched the targeting area; moreover, we excluded papers with fewer than 4
pages. This resulted in 112 papers to read. In the last stage, we read the papers to categorize them,
further eliminating papers that had no specific output, involved obsolete technology, outdated
problems, papers that concluded with a suggestion or an opinion (Wieringa et al. 2006) but with no
method proposal (Petersen, Vakkalanka, and Kuzniarz 2015), etc. The final number of considered
papers was 48. Table 1 shows the summary divided per indexer.

3. Research questions

We examine the following research questions in this paper:

• RQ1: What is the taxonomy of AOP used in SOA, MSA, IoT or SI? What are the topics/subjects
that have been addressed in existing research and what is their distribution?

• RQ2: What are the specifics in particular research categories? What are the applications of AOP
within these categories?

Figure 1. Number of included papers in the selection and filtering process.

Table 1. Processed resources with filtering by indexer.

Indexer Results Download Abstract & Length Full text

IEEE Xplore 47 47 36 14
SciVerse Scopus 203 8 8 7
ACM DL 42 31 23 11
SpringerLink 182 182 37 12
ScienceDirect 9 9 8 4
Sum 483 277 112 48

2 T. CERNY

• RQ3: What are the cross-cutting concerns in the in these areas? What are the existing
strategies, aspects, and concerns that are addressed by AOP?

• RQ4: What are the existing tools aspect weavers that are used in the evidence?

We answer RQ1 and RQ2 in Section 4 below. RQ3 is answered in Section 5. RQ4 is addressed in
Section 6. Notice that, since we placed all relevant papers into the different categories (service
modularization, a composition of services, etc.), a few papers show up multiple categories. To verify
our manual categorization and avoid human errors, we also extracted papers’ keywords automa-
tically using RAKE algorithm (Rose et al. 2010), which we later compared with the result of full-text
reading and manual keyword extraction.

4. Taxonomy of the research

After identifying papers with relevant topics, we then categorized them. To determine categories,
we performed full-text reading considering the content. While various works differ with their
purpose and approaches, Wieringa et al. (2006) suggest determining research type based on an
evaluation framework. Following this suggestion helped us to derive the addressed problem,
contribution, and results; however, the evaluation framework did not suggest the research topics
categorization. Consequently, we determined the best methods for categorization.

Existing mapping studies, such as Kratzke and Quint (2017), derive research topics by keywords. For
instance, Kratzke and Quint (2017) analyzes papers using either provided keywords or derives them
from the content. Each paper is accompanied by a set of keywords. These keywords are unified to use
the same terms and clustered to research topics. These are eventually aggregated to the main research
topics. Finally, the papers are grouped to the main topics. Moreover, one paper can fit multiple topics.

Waltman and Van Eck (2012) mentions another approach where categorization can be deter-
mined by the journal or conference area and then using citations to determine clusters of research
areas. The final step, labeling, involves extracting labels from titles and abstracts, normalizing them
and identifying each area by a set of terms.

Alshuqayran, Ali, and Evans (2016) used an automated keyword extraction tool that provides
authors with a set of possible categories. They visualized the topics to see the distribution of the
underlying population, which provided them with possible candidates. Next, they grouped key-
words to particular categories and performed a text search over the evaluated papers to categorize
them.

This work generally followed the procedure suggested by Kratzke andQuint (2017). However, we did
not use the author-provided keywords; instead, we extracted them, considering the particular research
type of the given work through full-text reading. These were clustered to derive particular categories.
Each derived category presented a large area with multiple sub-areas. Table 2 shows extracted
categories, and Table 3 provides the references. In our classification, papers are not exclusive only to
a single category. The following text introduces each category with details in a separate subsection.

4.1. Verification through automated keyword extraction

We compared our categorization with the automated keyword extraction approach suggested by
Alshuqayran, Ali, and Evans (2016). Since it is an automated approach, we expected it to be less
precise than the manual approach. To perform the automated keyword extraction, we used the
RAKE algorithm (Rose et al. 2010) . In order to do such extraction, we transformed the PDF
documents into text, using the XPDF tool1 pdftotext, and then made manual adjustments as
necessary to the text, e.g. stripping references. Next, we applied the RAKE algorithm for keyword
extraction. The setting for the algorithm was as follows: a keyword phrase contains at most three
words, with each word at least three letters in length and occurring at least three times in the text.
We set the RAKE accuracy index higher than four, which is suggested by Rose et al. (2010).

ENTERPRISE INFORMATION SYSTEMS 3

The result of the RAKE extraction provided an interesting set of suggested keywords for the
considered papers. We ignored the general terms and normalized the keywords (e.g. plural vs
singular, equivalent terms). For instance, 16 papers suggested the web services keyword, 12 papers
suggested the keyword service composition, 7 suggested security, etc. While these keywords do not
necessarily indicate our categorization, according to Alshuqayran, Ali, and Evans (2016), these
keywords can be clustered under categories. Table 4 shows our clustering.

As can be noted in Table 5, our manual categorization and the automated approach classified
the papers similarly. The automated approach could not match the categorization accuracy since
various works may not provide appropriate keywords and the automated keyword extraction has
its limits producing a wide-range of distinct keywords. Finally, the clustering and selection of
keywords considerably impact the achieved precision. However, the results indicate the suitability
of our categorization for a given set of papers.

Table 2. Categorization of existing work.

Category
. Subcategory Paper Volume Percentage

Service modularization 14 21%
Composition of Services 21 31%
. Composition of Services 8 12%
. Monitoring and reconfiguration 11 16%
. Quality of services 6 9%
Modeling 25 37%
. Business process, 15 22%
. Visualizations, prototyping, modeling 11 16%
Security 7 10%
Testing 1 1%

Table 3. Categorization with references.

Service modularization
(Anderson and Ahmed 2006; Hmida, Tomaz, and Monfort 2005; Zhang, Meng, and Liu 2008; Zhang, Meng, and Liu 2009; Yumei
et al. 2009; Deepiga, Senthil, and Babu 2014; Baligand and Monfort 2004; Wada, Suzuki, and Oba 2008; Walraven et al. 2010;
Charfi and Mezini 2004; Corradi et al. 2009; Cemus, Cerny, and Donahoo 2015; Harrison 2011; Wang and Wang 2013)

Composition of Services (three below)
. Composition of Services
(Seiler et al. 2011; Cibrán et al. 2007; Han, Jung, and Yeom 2011; Marzouk and Jmaiel 2013; Ermagan, Krüger, and Menarini
2008; Cerny and Donahoo 2016; Cerny and Donahoo 2015; Spieldenner et al. 2017)

. Monitoring and reconfiguration
(Cugola, Ghezzi, and Pinto 2012; Huang, Wu, and Wei 2009; Castor, Leite, and Rubira 2012; Balakrishnan and Sangaiah 2017;
Balakrishnan and Sangaiah 2015; Giunta et al. 2015; Antunes and Vieira 2017; Baresi, Guinea, and Pasquale 2007;
Dell’Amico et al. 2012; Kim and Hong 2011)

. Quality of services
(Balakrishnan and Sangaiah 2017; Balakrishnan and Sangaiah 2015; Giunta et al. 2015; Baresi, Guinea, and Pasquale 2007;
Hassan, Ali, and Bahsoon 2017; Kim and Hong 2011)

Modeling (two below)
. Business process
(Wada, Suzuki, and Oba 2008; Charfi and Mezini 2004; Corradi et al. 2009; Cemus, Cerny, and Donahoo 2015; Wang and
Wang 2013; Seiler et al. 2011; Marzouk and Jmaiel 2013; Cugola, Ghezzi, and Pinto 2012; Huang, Wu, and Wei 2009; Baresi,
Guinea, and Pasquale 2007; Kim and Hong 2011; Souza et al. 2011; Braem et al. 2007; Baouab et al. 2009; Wang, Bandara,
and Pahl 2010)

. Visualizations, prototyping, modeling
(Ermagan, Krüger, and Menarini 2008; Hassan, Ali, and Bahsoon 2017; Souza et al. 2011; Braem et al. 2007; Peinado, Ortiz,
and Dodero 2015; Krüger, Mathew, and Meisinger 2006; Mosser et al. 2011; Alhaj and Petriu 2010; Alhaj 2011; Wang et al.
2014a; Wang et al. 2016)

Security
(Cerny and Donahoo 2015; Antunes and Vieira 2017; Baouab et al. 2009; Cerny, Trnka, and Donahoo 2016; Sonchaiwanich
et al. 2010; Dell’Amico et al. 2012; Sendor et al. 2014)

Testing
(Antunes and Vieira 2017)

4 T. CERNY

4.2. Service modularization

Multiple resources deal with adaptability and dynamic reconfiguration of service concerns.
Anderson and Ahmed (2006) suggest weaving the functionality aspects together for a particular
service based on the runtime context. This can help to integrate new technologies into the
services. AOP can help with dynamic system evolution. In particular, Anderson and Ahmed
(2006) provide a study applying the AOP to services in telegrids.

The topic of service concerns composition through aspects is elaborated in more detail by
Hmida, Tomaz, and Monfort (2005) who suggest two directions: either to encapsulate novel
functionality to aspects or to consider individual advices to be web services. Encapsulation of
novel functionality to aspects that weave into the services, involves the separation of concerns
applied to non-functional requirements. The assembly is managed by a policy engine the aspect
weaver. The second option considers individual advices implemented as web services. These are
possible extensions of other services. This way the approach separates out the platform depen-
dency and removes language dependency in the weaving process. The weaving involves the
interaction of the original service with multiple other ‘advice’ services. Aspects are defined through
XML files that are interpreted by a custom XQuery engine generating XQuery scripts for the actual
service interaction. In other words, this is the mechanism to weave in an aspect to the original
service. While the approach brings an interesting solution, no performance impact is provided, but
since significant communication overhead can be noted.

A somewhat similar approach suggested by Zhang, Meng, and Liu (2008) and later formalized
and narrowed in Zhang, Meng, and Liu (2009) is to separate out cross-cutting concerns from
services. Concerns, such as logging, authorization and transaction, are stripped out of the service to
prevent code-tangling and enable adaptability, and instead, they are realized individually as aspect
services. The web service is delegated to a weaver that is responsible for coordinating the original

Table 4. Rake keyword clustering.

Category Keywords

Service modularization structure design, development efforts, maintenance efforts, modularization, modularity,
service adaptation

Composition of services (three below)
. Composition of services service composition, composite web service, orchestration, service integration
. Monitoring and
reconfiguration

monitoring, fault tolerance, service replacement, reconfiguration, dynamic service
integration, runtime service integration

. Quality of service quality of service, response time
Modeling (two below)
. Business processes business rules, service business rules, business process, business logic, BPEL, process

execution
. Visualizations, prototyping,
modeling

chart, UML, modeling constructs, service-oriented modeling, system modeling, aspect-
oriented modeling, formal modeling, transformation, visualization, prototype tool

Security security
Testing testing

Table 5. Manual and automated categorization comparison.

Category Automated categorization (unique papers) Manual categorization

Service modularization 15 14
Composition of services 22 21
. Composition of services 11 8
. Monitoring and reconfiguration 10 11
. Quality of service 6 6
Modeling 23 25
. Business processes 14 15
. Visualizations, prototyping, modeling 11 11
Security 7 7
Testing 1 1

ENTERPRISE INFORMATION SYSTEMS 5

web service with aspect services. The solution is demonstrated in a case study; however, no
overhead information is provided to see the impact of the separation. The same approach is
researched further by 5,348,541 further using Petri Nets to model the primary service logic to find
out the right states for the triggering of the new service feature, realized through aspects.

Separation of services with base functionality and cross-cutting functionalities is also explored
by Deepiga, Senthil, and Babu (2014) . This work further applies separation to various service with
evolution versions. The authors consider a case study with an SOA application with five distinct
versions of evolution depicting changes in the processes and application of aspects. On a step by
step evolution, they demonstrate cross-cuts, and they utilize AOP to support all system versions.
However, the considered concerns are well known from textbooks, e.g. logging, exceptions hand-
ling, observer, persistence, security, etc. The research applies various software quality metrics on
the source code demonstrating AOP benefits.

Similarly, Baligand and Monfort (2004) notes that functional and non-functional code, as well as
the logic, can be separated by AOP mechanisms, in particular by aspects. The authors note a
missing mechanism, in standard solutions, to dynamically bind policies to web services, which
usually leads to the inability of effective dealing with service extensions and evolution. In their
proposal, the policy document determines aspects that are weaved into the core services. The
authors demonstrate the approach using Servlets in Java involving the Javassist library and
bytecode modification.

Separation of functional and non-functional application properties in SOA is also explored by
Wada, Suzuki, and Oba (2008). In their work, aspect specifies non-functional properties that cross-
cut among multiple services in a business process. In order to apply the approach, they developed
a new special language involving BPMN extended with aspects.The extended BPMN model is
processed by an aspect weaver transforming the model into UML and subsequently to code.
This strongly impacts the practice far from a conventional development process.

A different perspective is given by Walraven et al. (2010). Ther aim is to compose distributed
features in a distributed environment based on web services. High-level abstraction of feature
definition enables integration into composite services. However, when we compare this approach
to the previous research, the core functionality is again separated from the additional features. The
given examples depict the additional features as non-functional properties. Each aspect-compo-
nent designing a feature carries out a specification detailing the component mapping to core
services. Final composition then links the core services with the aspect-component based on the
specification identifiers.

A detailed description of crosscuts in processes within web services is provided by Charfi and
Mezini (2004). The authors notice that the business logic contains both the business policies and
constraints that are coded as a monolithic block, which makes the business rules hard to change
without affecting the core composition logic. Instead, they suggest breaking down the logic into a
core part (the process) and several well-modularized business rules that exist and evolve indepen-
dently. The authors provide good formalism classifying business rules into a constraint, action
enabler, computation or inference. Their approach integrates cross-cutting modularity into
Business Process Execution Language (BPEL) and their solution is introduced as AO4BPEL consider-
ing all classified rules. The business rule is captured as a system aspect that leads to an action,
switch, response, etc. Similar goals to improve readability are also attempted by Corradi et al.
(2009), however, on less detailed classification and formal description.

Cemus, Cerny, and Donahoo (2015) suggests encapsulating rules as aspects and binding them
to data objects rather than to processes. The data object then indicates by annotations, which rules
to trigger. Moreover, Drools are used for the enforcement and definition, which further allows rule
transformation to e.g. JavaScript representation.

Harrison (2011) surveys SOA and distributed system on modularization. The authors discuss
various approaches and advantages from the system evolution perspective with an emphasis on all
available approaches. While the authors consider AOP marginally and using it for comparison, they

6 T. CERNY

note the AOP advantages when it comes to system quality, such as maintenance, integrability or
extendability.

Similarly, Wang and Wang (2013) surveys SOA systems and cross-organizational applications
with a need for service change management. The work divides change categories into interface
(data schema and operations), behavioral (interaction and BPEL processes) and non-functional (QoS
properties). Next, it looks into service adaptation noticing, process flexibility, service evolution,
change analysis and management in service compositions. In the adaptation, they see opportu-
nities for AOP usage; for instance, the business logic is treated as the main concern, and the
adaptation logic is specified as crosscutting concerns. To advance process flexibility, they highlight
the advantages brought by AO4BPEL, especially for logging, persistence, and security. This brings
the AOP perspective to treat a particular business logic as the main concern, where crosscutting
concerns aspect are data validation and security. In addition, the work suggests options to use AOP
for multiple process variants that correspond to contextual changes based on original processes. In
service protocols, they notice a problem of evolution in modifying the protocol definitions or
managing running protocol instances when the corresponding protocol definitions change espe-
cially for long conversations; both issues are addressable through AOP.

4.3. Composition of services

Extension of web services that must handle large multimedia transfers and often deal with
redundant calls is examined by Seiler et al. (2011). AOP extends the services to efficiently handle
large transmissions and preserving service simplicity. In the work, the aspects are weaved into the
service processing chain. Every time a service invocation goes through, workflow engine aspects
are considered. A demonstrated case study shows improvements in data transfer between services.

Another work by Cibrán et al. (2007) considers selection policies that encapsulate changing
business requirements in SOA, influencing service integration and composition. They introduce a
mediation layer responsible for the integration. This layer then defines various aspects that
intercept and influence the service interaction. For instance, billing, caching, service selection/
management, redirection, and monitoring concerns are cleanly encapsulated in aspects of the
mediation layer easily manageable throughout the system.

Han, Jung, and Yeom (2011) explores AOP application to a distributed environment and cluster
computing. However, the authors point out the weak research interest in this highly-potential area.
AOP enables separation of different types of communication in Message Passing Interface (MPI)
processes, thus making the solution more readable and easier to maintain, for instance when it
comes to initiation of MPI processes. Moreover, AOP instruments help in this discipline with
consistent checkpointing, decoupling indication of critical sections, rollbacks recovery or connec-
tion among groups. In an example of critical sections, the authors set the begin and exit points of
each critical section as join points that are applied to the advice about consistent checkpointing. In
the evaluation, they show AOP significantly improving source code readability and the modularity.
Moreover, they show minimal performance and scalability impact when compared to conventional
approaches.

Previously mentioned areas (Han, Jung, and Yeom 2011; Charfi and Mezini 2004) are further
elaborated in Marzouk and Jmaiel (2013), specifically, targeting self-adaptation and mobility in web
service orchestration and the distributed environment involving AO4BPEL. In case of failure or to
guarantee the Quality of Service (QoS), a service can relocate. They designed a prototype solution
built on an engine executing BPEL processes incorporating checkpointing and rollbacks. Multiple
aspects are introduced to support checkpointing, saving service results, service instance mobility or
execution resumption after relocation, extending BPEL processes driven by controllers. However,
more detailed reasoning on cross-cuts is not provided in the work.

Service communication through an enterprise service bus (ESB) is tackled on the analytical level
by Ermagan, Krüger, and Menarini (2008). The authors propose extending message sequence charts

ENTERPRISE INFORMATION SYSTEMS 7

(diagrams) of interacting services with aspects to modify the behavior of services. An aspect has a
specific syntax in the charts followed by the regular expression to match service roles, an inter-
ceptor. Furthermore, a novel ‘join’ message is sent for aspect composition of services. Join is a
parallel composition operator that synchronizes services on common messages and integrates the
first indicated sequence chart together to a second one. Another operator, a ‘match’ message, is
similar to join but removes the instantiating message from the resulting (weaved) chart. The
authors believe (however, with no detailed proof or a study), that such extension will lead to
‘advanced routing mechanisms in ESB that foster the creation of applications where the separation
of crosscutting concerns is maintained at all levels from modeling to implementation’ (Ermagan,
Krüger, and Menarini 2008).

Dealing with ever-changing data representations in distributed systems is a challenge noticed
by Cerny and Donahoo (2016). This article suggests that the knowledge of data representation
should be encapsulated in the component responsible for persistence. Moreover, this component
should provide another component with meta-information about the data structure. This approach
accommodates existing enterprise development standards (Cerny and Donahoo 2015) that pro-
mote capturing validation or even security concerns bound to data representation through
annotations. Streaming other concerns together with data structure meta-information enables
integrating components to integrate structure, security, and validation on the fly and thus auto-
matically adapt to changes. However, the integrating components only weakly reference such data
components as proxies since a stronger reference would lead to coupling and dependency. An
example usage of a weak reference where it is applied in practice is user interface (Cerny and
Donahoo 2015). The considerable advantage of the approach (Cerny and Donahoo 2015) is that
user interface can be presented on different platforms using native components, while only
providing a single backend. The aspect weaver is thus distributed between backend and frontend,
leading into automated adjustments in all the heterogeneous user interfaces upon a backend
change. For instance, when a novel data field is introduced on a backend component, e.g. with
novel validation rules and constraints, no redesign of the user interface is needed as it automati-
cally appears in the update structural stream.

Spieldenner et al. (2017) introduced AOP employment in virtual worlds and games. It is also
suitable for many and possibly smart environments, such as IoT, Smart Cities, and Smart Factories.
Such environments produce a lot of data in real-time, which require considerable development and
maintenance efforts. It is a challenge to keep such systems up-to-date with changing requirements
set by the connected sensors and services. The proposed aspect-oriented architecture enables
programmers to create highly-maintainable, large-scale virtual environments while avoiding cross-
cutting concerns, such as code scattering among modules. It consists of a data model, a plugin
mechanism, and a synchronization layer that is independent of the other modules. On top of the
AOP architecture, which supports re-usability and adaption to new requirements at run-time, a
wide range of virtual environment applications can be created. The architecture is built on top of
an Entity-Component-Attribute (ECA) data model approach that is based on non-relational data-
bases. In ECA an entity with a set of specified attributes is grouped together with similar
components based on their purpose and associated functionality. This encapsulates application-
domain specific concepts in a separate data container that specifies certain concepts of objects.
The application’s logic is encapsulated in plugins. The core server component maintains the ECA
data model and schedules plugins. Plugins define component blueprints to the core and imple-
ment application logic. These plugins extend both the expressiveness of the data (e.g. adding new
components) and the features of the application. The authors also describe their implementation of
the weaver, based on Reflection API, component registry and a mapping function, that maps
interfaces with components. Plugins then represent new components that match aspects. One
specific plugin is responsible for the synchronization and contains the communication layer. The
highlighted features are better maintainability, extendability, and adaptability to new requirements
(changing data and services).

8 T. CERNY

4.4. Monitoring and reconfiguration

Self-adapting orchestration through a concern-separating approach is addressed by Cugola,
Ghezzi, and Pinto (2012). Their focus is on replacing imperative approaches with a declarative
approach when it comes to orchestration. Their approach is to define a new declarative service
orchestration language that separates orchestration aspects, such as goals, initial state, abstract
actions (primitive operations) and concrete actions for abstractions. While the approach is not
formalized through AOP terminology, it targets the same goals and introduces an interpreter
similar to the weaver. The presented approach is directly comparable to AO4BPEL mentioned in
Charfi and Mezini (2004) or Marzouk and Jmaiel (2013); however, it provides a less formal way for
aspect integration and focuses on the particular area and simplified development.

Service monitoring and recovery support for composite Web services by using an AOP frame-
work on top of BPEL is the aim of Huang, Wu, and Wei (2009). The works build on stateful aspects
that track process history. To monitor the process event, the traces of the processes are trans-
formed into abstract syntax trees (AST). The AST is auditable by a visitor pattern. If a violation is
found at the process execution, an aspect manager weaves in determined recovery logic advice
available in the aspect registry. The recovery then attempts based on the logic to retry, call an
alternate or skip.

In Castor, Leite, and Rubira (2012) the authors target fault-tolerance that deals with coordinated
exception handling. They define handlers with recovery rules dictating the particular exception
propagation across applications. Moreover, in a similar manner, recovery rules are defined indicat-
ing the exceptional behavior. In this research, AOP is used to intercept and extend methods that
can potentially produce an exception.

For IoT, Balakrishnan and Sangaiah (2017) notice challenges related to the unknown topology
and data estimation problems in case of sensor unavailability. The services selection is typically
based on QoS attributes, and in order to perform appropriate service selection, there is a need for
service discovery. The weaving mechanisms bring service monitoring with decision making and
software reconfiguration to meet the QoS attributes. The aspects use an abstract language to
define a dynamic reconfiguration logic and functional substitution in case sensors are not available,
and to cope with missing data for which they use functional substitution to generate approximated
data instead. However, besides a note on Spring AOP weaving, no more details are given. IoT and
service discovery is also addressed by the authors’ previous work Balakrishnan and Sangaiah (2015),
which provides a general overview of service discovery.

In Giunta et al. (2015), which we examine in more detail in the next subsection, the authors look
at the subject of capturing incoming requests and handle them. This situation brings an opportu-
nity for runtime monitoring of various system metrics, such as CPU workload and network usage.
Moreover, the measured state influences locality of service processing.

Service monitoring is considered by Baresi, Guinea, and Pasquale (2007). Self-healing BPEL
compositions (through weaving of supervision rules) are introduced, using a custom DSL for
defining monitoring and recovery activities. An AOP-extended version of the ActiveBPEL orchestra-
tion engine is proposed on top of the JBoss Rule Engine to ensure self-healing capabilities. Such
monitoring helps to identify issues with QoS and address adaptation to new inputs. Self-healing
capabilities are materialized by weaving supervision rules into the BPEL process. Each rule com-
prises a location in the process, monitoring parameters that tailor the degree of supervision and
monitoring expressions that define the constraints that must hold at the runtime and the recovery
strategy (advice) that defines what the system should do to try to keep things on track. The case
study demonstrates the approach’s practical use as well as addressing the concern separation. The
supervision rules are translated into Drools rules and hooked into the system.

The previously mentioned work by Cibrán et al. (2007) introduced a mediation layer responsible
for service integration. The layer also deals with service management, redirection, and monitoring.
The particular concerns are encapsulated through aspects of the mediation layer.

ENTERPRISE INFORMATION SYSTEMS 9

A later subsection elaborates Kim and Hong (2011) that detects faults through aspect processes
monitoring the service invocation on top of WS-BPEL processes and suggests their replacements.

4.5. Quality of service

The QoS perspective is the main focus of Kim and Hong (2011). It introduces a QoS-related layer on
top of the web server. Requests are assessed and partitioned into those that can be handled using
local resources and those that need further cloud-based resources. AOP enables the new QoS-
related code to be separated from web server modules, while runtime behavior is modified with
the measures needed to handle QoS concerns. The extension layer is evaluated from the perfor-
mance perspective showing a positive impact on the overall throughput, in some cases reducing
the processing time to approximately 66% under large load. As mentioned earlier, the introduced
aspects capture incoming requests and handle them, which brings an option to monitor various
system metrics. As the result, the server can be augmented by weaving it with an appropriate
subset of aspects.

Modeling of the microservice granularity is introduced by Hassan, Ali, and Bahsoon (2017). This
modeling approach brings the option of determining various QoS trade-offs. Each microservice is
modeled and an optimum ‘ambient’ is determined. Each ambient is composed of at least fours
aspects: a granularity adaptation (relevant to QoS and scaling), a mobility (interaction in the
hierarchy with parent), a coordination (external/internal call and redirect management) and a
distribution (hierarchical position for the mobility). Aspects communicate through weaving in
their proposal. For instance, they are weaved together for a particular accomplishment, such as
establishing a connection with other services while preserving QoS conditions.

In previously mentioned work on IoT, by Balakrishnan and Sangaiah (2017) and Balakrishnan
and Sangaiah (2015), services selection is based on QoS attributes. The weaving mechanism
involves service monitoring to obtain needed attributes to determine the status and compare it
with the QoS requirement, resulting in optimum software reconfiguration.

Similarly, Baresi, Guinea, and Pasquale (2007) address self-healing compositions that involve
monitoring harvest system attributes to determine the QoS. The current status of the attributes
determines the adaptation.

As will be discussed below, Kim and Hong (2011) also fits this section. QoS is enforced by
monitoring considered attributes through service invocation resulting in conditional service
replacements.

4.6. Business process

In order to improve SOA service composition reliability, Kim and Hong (2011) uses AOP to detect
service faults. They again consider BPEL for service composition and extend it with dynamic service
replacement. The key contribution is that there is no need to explicitly represent all possible
recovery mechanisms in a BPEL process. Next, unexpected service failures are handled by dynamic
replacement of a failed service. Aspects weave in dynamically, through a BPEL engine extension,
during the process execution and trigger when conditions are met. The BPEL metamodel is
extended to integrate aspects, with thorough details in the paper. Aspect processes are introduced
and proposed to detect service faults and to replace a service. A case study shows reasonable
overhead for the approach.

Business-Process Modeling (BPM) extended with AOP principles can be applied for service
identification in early stages of system analyzing (Souza et al. 2011). An analytical approach is
proposed, bringing the ability to identify services with cross-cutting interests. This is achieved by
extending function allocation diagrams. These capture service activity and first focus on the
primary service goals and next consider the extending aspects that become available for various
services.

10 T. CERNY

The AOP-based distributed service composition approach introduced by Wang, Bandara, and
Pahl (2010) enables multiple process clients hot-plugging their business compliance models as
crosscuts (business rules, fault handling policy, and execution monitor) to utilize BPEL business
processes. The BPEL instrumentation mechanism is used to transform the original process to an
aspectual business process. In the process multiple join points are defined, such as an invoca-
tion of service, processing a message or handling faults. Both before and after advice are
provided. The instrumentation transforms the original process to an AOP-enabled BPEL process
before deploying it in any execution engine. The instrumented process is able to communicate
with the weaving component (weaver) on the client side, which enables dynamic aspect
integration. The implementation involves annotations and introspection (Java Reflection). XML
files define aspects. The solution centralizes the above concerns, enforcing them across the
enterprise.

In the remainder of this section, we mention the previously-discussed work relevant to this area.
Wada, Suzuki, and Oba (2008) suggests using BPMN for the separation of functional and non-
functional properties. BPMN is supplemented with aspects and processed by an aspect weaver.
Using BPEL extensions to address cross-cuts is described by Charfi and Mezini (2004) and Corradi
et al. (2009). They divide the process by business rules. Charfi and Mezini (2004) introduces an
extension to AO4BPEL; it is applied similarly by others. AO4BPEL is also used by Wang and Wang
(2013) for process flexibility. For instance, it is used for logging, persistence, and security. AO4BEPL
is used also to address service relocation and self-adaptation by byMarzouk and Jmaiel (2013). As
an alternative to the previous approach, Cugola, Ghezzi, and Pinto (2012) proposes a proprietary
language DSOL (declarative service orchestration language). ActiveBPEL is also used by Seiler et al.
(2011) for orchestrating aspect web services with core services. Monitoring and recovery support
for composite web services based on BPEL is addressed by by Huang, Wu, and Wei (2009), who
proposes a ONCE-BPEL platform. Similarly, Baresi, Guinea, and Pasquale (2007) addresses self-
healing using BPEL. Baouab et al. (2009) addresses security through Braem et al. (2007) designed
an analytical visualization tool for integrating aspects that generate BPEL as the product (we
describe this work later). Finally, Cemus, Cerny, and Donahoo (2015) utilized business rules
captured in Drools to weave through the system indicated in domain objects, which would enable
rule transformation to distinct formats. We should emphasize that among the most mature tools
for BPEL with AOP is AO4BEPL.

4.7. Visualizations, prototyping, modeling

On a high-level of abstraction, Peinado, Ortiz, and Dodero (2015) addresses context-awareness, and
adaptability of web services. The main issue with supporting context-awareness is the volume of
source code. The authors note the insufficiency of model-based approaches and promote AOP-based
extensions. The aspect modules encapsulate the context-aware code. Plain functionality code then
indicates injection of aspects; however, join points and pointcuts are not specified, which deterio-
rates the potential. Therefore the approach enables solely static weaving for the transformation.
However, there is additional formalized work on context-awareness support at runtime, enabling
consideration of a variety of join points for advice extension, by Cerny et al. (2013).

SOA prototyping addressed with AOP is elaborated by Krüger, Mathew, and Meisinger (2006).
The authors use AOP to transform interaction diagrams into different architectures. A large number
of aspect types is introduced (system role, interaction, local operation or service, as well as
component configuration) all captured in specially-defined language. The language description is
woven together with message sequence charts and translated to a particular architecture in
AspectJ language. In particular, a build file with configuration per architecture is defined, linking
together service repository, classes, and aspects. Similarly, in Ermagan, Krüger, and Menarini (2008),
message sequence charts are used to analyze routing mechanisms and communication
through ESB.

ENTERPRISE INFORMATION SYSTEMS 11

Another analytic approach is suggested by Mosser et al. (2011) in connecting requirements and
design models. The authors research pulling scenario-based requirements into business process
design models leading to SOA-based implementations. Moreover, they introduce Aspect-oriented
use case maps with a specialized syntax to capture pointcuts, etc. Concerns introduced in one
model promote to another through an automated mapping. The product is an ADORE process
skeleton with no inconsistencies.

An interesting perspective on information modeling in socio-technical systems is presented by
Wang et al. (2014a). . Their approach integrates object-orientation, systems-dynamics, and AOP.
The socio-technical enterprise system is complex due to information-exchange constraints
between the social and technical system. In order to manage such systems, an information
model must be developed. For instance, issues arise with the integration of policies and regulations
in the social system domain that impacts the development and operation management in the
technical system domain. Their approach proposes five modeling constructs involving a domain, an
aspect, a context-of, an agent or an agent group, and a stage. It builds on top of the object-
oriented modeling while introducing modeling blocks for socio-technical systems. In the Object-
Aspect-Relationship-Domain model (OARD), each relationship is an object and has a lifetime that
can be associated with an aspect. This can change the dependencies and associations between
objects. Next, it enables model structural changes. The behavior of such a system is determined by
the behaviors of its subsystems (e.g. objects, aspects, agents in the OARD model) and the structure
of the system. System domain modeling is an important instrument to accomplish the integration
of heterogeneous systems. For this specific reason, Wang et al. (2016) introduced a domain
modeling framework for service systems (Wang et al. 2014b). The core concepts include function,
context, behavior, principle, state and structure, and system decomposition. The service system’s
unified definition is proposed in Wang et al. (2014b), discussing various alternative definitions
found in the literature.

Alhaj and Petriu (2010) proposes a model-driven approach for the evaluation of the run-time
performance characteristics of SOA, although the work is in an early development stage. From UML
diagrams, in particular from message sequence charts, they suggest deriving Layered Queuing
Performance (LQP) models. The SOA platform-independent model acts as the primary model and
includes activity diagrams, component diagrams, and message sequences charts. This model is
extended with the aspect model, specifying message sequences charts weaving to the primary
model either in requests or responses upon services invocation. There are consequent model
transitions into a core scenario model and to an LQP-extended queuing network model, which is
able to represent nested services and perform the run-time performance analysis. The approach is
demonstrated in a case study showing the performance impact of different service combinations.
Subsequently, Alhaj (2011) proposes UML profile introducing stereotypes for join-points.

Braem et al. (2007) examines a high-level visualization creation environment used for the
analysis stage. In particular, they look into web services and service composition. The modulariza-
tion supports crosscutting concerns. The visualization allows connecting aspects to components.
Service can be encapsulated in both aspects and components. The code generation tool produces
a BPEL process which includes weaved-in concerns. The work also introduces a concern-specific
language capable of concern definition, visualizable through the introduced tool.

Earlier-mentioned work by Hassan, Ali, and Bahsoon (2017) models microservice granularity as
an ‘ambient’ to see the QoS trade-offs. The proposal considers a hierarchical structure of ambients
of at least fours aspects: a granularity adaptation, mobility, coordination and a distribution.

Finally, in the previously-mentioned work by Souza et al. (2011), the authors propose analysis
with the aim of identification of services. They suggest using an event-driven process chain
detailed in the activity models called function allocation diagrams and extending them via
aspect-oriented business process modeling to capture crosscutting concerns encapsulated in
modules. With their approach, we can analyze reuse of crosscuts and track their usage across
services.

12 T. CERNY

4.8. Security

Security in SOA and generally in distributed systems is a challenging topic, and the AOP advan-
tages in this area have been noted by various authors.

Baouab et al. (2009) addresses security of heterogeneous services in SOA. They aim to separate
security from business services and propose a new model of three components including business
services, security meta-services, and an orchestration service. They manage this through the concept
of reusable meta-services, a helper to build business services or security services. Six categories of
meta-security services are introduced. When a request is made a security gateway intercepts the call
and directs it to various meta-services through BPEL to produce the response, enforcing security.
Moreover, services are grouped under a particular policy. The approach separates the security
concern to easily reuse it; however, no performance impact is studied or provided.

A similar outcome through a different use of the AOP mechanism was achieved by Cerny, Trnka,
and Donahoo (2016). Service security rules and constraints are usually elements of the internal
knowledge. However, we can separate out the service security concerns involving a domain-specific
language (DSL) description, such as Drools or MPS. DSLs usually have well-described meta-models,
allowing us to parse the captured rules and enforce them within the service. Moreover, the parsed
rules can be transformed into amachine-readable format (JSON, XML) and shared with other services.
Such sharing allows us to build a high-level picture of security, run a verification check on security
correlation for verification, build a security-aware composite service or even reuse the knowledge in a
user interface, applying client-side validation transforming the machine-readable format into
JavaScript. In addition, parsing the rules as described above has the great advantage of self-
propagation across services, becoming adaptive, enforceable and easy to read or maintain.

Sonchaiwanich et al. (2010) separates out security concerns from business processes. The
authors highlight the option to divide development process between security experts and business
process experts where only a limited correlation must exist between the groups, each having a
specific responsibility. The security framework is packaged separately from the service application,
bringing the ability for the security framework to be reused across different applications.

Similarly, Dell’Amico et al. (2012) considers hierarchical policy language capturing security
concerns to govern SOA. Policy enforcement involves a distributed hierarchy of reference monitors
that control the information flow between services. Security is a cross-cutting requirement that
often ends up scattered over several pieces of code and locations. The authors suggest that AOP
structuring and modularization improve both readability and enforcement. Introduced language
provides rules to express various security policies, and, moreover, it specifies how the domain
divides into a hierarchy (corporations, individuals, etc.). Policies regulate the exchange of informa-
tion between different domains. They are enforced and monitored at the borders of policy
domains. Information is expected to carry annotations with security metadata to indicate a join
point. The language-specified security rules are handled exclusively by reference monitors running
within each policy domain and controlling the flow of information crossing their borders.

Finally, Sendor et al. (2014) promise to use AOP for SOA, to handle the main OAuth protocol
flow. However, their approach focuses solely on the use of chaining and interceptors. They achieve
separating out the code implementing the OAuth protocol from the application business logic.
When Java EE EJB 3.0 Specification2 was published, it introduced a standard Interceptor API, but it
was a long time before anyone brought this basic AOP feature and functionality to practice.

In work described below, Antunes and Vieira (2017) performs a security check on method calls
to differentiate an attack from a conventional application usage.

4.9. Testing

An approach for designing vulnerability testing tools for web services is introduced byAntunes and
Vieira (2017). Particular scenarios include penetration testing, attack signatures and interface

ENTERPRISE INFORMATION SYSTEMS 13

monitoring, and runtime anomaly detection. AOP is applied for service monitoring to intercept
web service execution. This allows for the employment of vulnerability detection mechanisms. AOP
intercepts all the calls that APIs use to execute SQL, XPath, etc., and delivers the trace to the
information collector in a proposed runtime anomaly detection tool. In addition, the collected
information can be applied in static vulnerability detection. Security checks are performed for each
data access command executed during the attack phase. All commands are intercepted (using
AOP), hashed and stored; next, they are compared to the values of valid commands.

5. Particular cross-cutting concerns in the current literature

In this section, we look into the particular cross-cuts described in current literature. In the existing
work, we can find that researchers separate out cross-cutting concerns in various situations. It is
well known that such as separation works well for decoupling logging, transaction management or
exception handling from the core system functionality (Laddad 2009). But the separation can go
beyond these. Researchers have applied it to separate our non-functional requirements (Hmida,
Tomaz, and Monfort 2005) or to reuse them across services. The core services can act as the main
component that is extended with contextual conditions (Wang and Wang 2013) or even extended
with novel service versions, bringing the flexibility to maintain evolution management (Deepiga,
Senthil, and Babu 2014).

Context awareness, versioning, and adaptability in conventional development usually lead to
multiple software versions, requiring new descriptions of the entire application state transition
options or even enumeration of every state of combination. This is simply because of the inability,
or insufficient mechanisms, of conventional development approaches to deal with cross-cuts
(Cerny et al. 2013). The literature usually depicts this through a sketch, such as the one in
Figure 2, where the designer thinks of each aspect (e.g. presentation, layout, security, etc.) as
individual Figure 2(a). However, when it comes to capturing the concern in the source code,
(Figure 2(b)), all aspect collapses and scatters across various locations, introducing restatements,
and worse in the distributed environment across distinct modules.

In AOP approaches, the prime ‘must have’ functionality defines the frame into which a particular
aspect weaves in, based on the conditions, usually at runtime. With enough expressive join points
and weavers, the designer may only pay attention only to a particular aspect, rather than on how
they may ‘possibly’ weave together. This significantly reduces the concern reasoning from states in
N dimensions to a single dimension. This can be seen again on Figure 2(a).

AOP mechanisms have to be adapted for distributed systems. It is no longer sufficient to see the
AOP mechanism originally introduced by Kiczales et al. (1997) in 1997 working on a single code
base. The shift calls for distributed weaving mechanisms and unified join points. For instance, as
suggested by Cerny and Donahoo (2015), the weaver can be divided into multiple parts, one part
that provides meta information to the other part responsible for the weaving. This goes hand in
hand with SOA and other distributed solutions when we deal with service integration, categorizing
services into aspectual and core ones.

Field presentation

Security

Input validation Data binding

Layout

Security

Field presentation

La
yo

ut

Input validation
 Dimensions 1-3 Dimensions 3-5

Data binding

Etc.

(a) concern space (b) implementation space

Figure 2. (a) Concern/(b) implementation space.

14 T. CERNY

AOP researchers have demonstrated examples of modules successfully divided into smaller
‘aspectual’ web services (Zhang, Meng, and Liu 2009; Yumei et al. 2009) or security services
(Baouab et al. 2009) and orchestrated by a weaver in composition services. This brings the
capability of applying a single change from one location to all services. This is applicable when
we deal with policy enforcement (Baligand and Monfort 2004), global governance or security
(Dell’Amico et al. 2012). These concerns are usually scattered throughout the system in a con-
ventionally designed system, including restatements and replications that deteriorate maintenance
and readability.

Another example of cross-cuts can be seen in business processes where Charfi and Mezini (2004)
or Wang and Wang (2013) strip out constraints and business rules from the process, which enables
their reuse. This usually brings another benefit. Rules, processes and the system itself are described
through different languages, either general purpose (GPL) or domain specific (DSL). Having a
limited, single-focus DSL allows utilization of a domain expert (Sonchaiwanich et al. 2010) in the
development process, which simplifies development, changes management and evaluation.

As noted by Wang and Wang (2013), AOP help when services must be modified or changes
must be enforced across the enterprise. In conventional approaches, change impact tracking can
be difficult since services are rarely adaptive. By nature of its design, AOP facilitates adaptation
(Cerny and Donahoo 2016). AOP makes services flexible enough to allow modification because it is
based on considering/modularizing particular concerns rather than enumerating all options at one
place.

The advantages of AOP go beyond modularization and apply to the communication aspect as
well. For instance, large blocks of data containing repetition can be replaced by concurrently-
delivered concerns assembled together at the destination (Cerny and Donahoo 2015). Moreover,
services can be weaved on a custom chain in order to address performance (Seiler et al. 2011).
However, such chaining can be easily analyzed because each aspect has already been considered
at the modeling level (Ermagan, Krüger, and Menarini 2008).

Changing business requirements together with communication may impact service composi-
tion, which could be addressed through a mediation layer (Cibrán et al. 2007). Such a layer may
intercept service invocation and weave in aspects for billing, caching, management, redirection or
monitoring, all separately defined. AOP’s advantages can also be applied to initiate communication
and influence initiation, decouple critical sections and help to define strategies for rollbacks,
checkpoints or consequent recovery (Han, Jung, and Yeom 2011) (Marzouk and Jmaiel 2013). The
same layer may be built on top of a particular server, enforcing QoS with rules and strategies
encapsulated in aspects. In Giunta et al. (2015), the authors show the efficiency of such a layer on
rerouting requests across local/remote services.

AOP mechanisms can also help when sensing quality attributes in distributed systems
(Balakrishnan and Sangaiah 2017), and based on current metrics’ values, determine rules to
improve the overall systems (Giunta et al. 2015). Such rules can include enforcing priories in
communication and triggering relocation or initiation of certain service modules to heal the system
(Baresi, Guinea, and Pasquale 2007), which may further enforce agreements on quality assurance
(Kim and Hong 2011). This approach can accommodate exceptions-handling across a distributed
environment and customizing system recovery mechanisms (Castor, Leite, and Rubira 2012).

Monitoring services impact system performance, since every call may be monitored. AOP brings
novel capabilities not only to adjust the current system metrics, but also to determine attacks
(Antunes and Vieira 2017), or to weave in security guarantee aspects (Dell’Amico et al. 2012;
Baouab et al. 2009).

AOP elements have been incorporated into BPMN and BPEL, where many researchers add an
option to weave in concerns such as non-functional properties (Wada, Suzuki, and Oba 2008),
monitoring and replacement strategies (Kim and Hong 2011), flexibility (Wang and Wang 2013),
logging etc. AOP applies to all the stages of the life-cycle from analyses (Souza et al. 2011), design
or runtime. It may help with business compliance crosscuts in heterogeneous environments (Wang,

ENTERPRISE INFORMATION SYSTEMS 15

Bandara, and Pahl 2010) or even stream business constraints and rules across services in machine-
readable format (Cemus, Cerny, and Donahoo 2015).

Identifying aspects and their repetition across services in the analytical phase helps the later
design phase to avoid restatements (Souza et al. 2011; Mosser et al. 2011). It also helps to define
service scope (Hassan, Ali, and Bahsoon 2017). Moreover, AOP facilitates the transformation for
system prototyping (Krüger, Mathew, and Meisinger 2006).

5.1. The role of AOP in IoT

Current works applying AOP in IoT are rather limited (Balakrishnan and Sangaiah 2017)
(Balakrishnan and Sangaiah 2015; Spieldenner et al. 2017). However, the described problems
addressed by AOP fit well to IoT solutions. Consider Guinard et al. (2010) that puts together SOA
with IoT, leading to an Internet of Services. In their work, the authors expect that dynamic network
discovery, queries, selection and on-demand provisioning of web services will be of crucial
importance to IoT. Similarly, Issarny et al. (2016) emphasizes the requirements for ultra-large
scale, extreme heterogeneity and the dynamics of the IoT. The authors believe that SOA as a
middleware can address the challenges posed by the IoT for the development of distributed
applications. While SOA has undoubtedly shaped the industry, newly developed systems should
move towards MSA (Cerny, Donahoo, and Trnka 2018). MSA enables large scaling for selected
services, continuous deploy, and isolation or resilience to failures, which provides a better fit and
necessary agility for future IoT middleware demands. Although device heterogeneity will still be a
challenge, considering the distinct protocols of interaction, various works we discussed consider an
additional layer that can easily extend the integrability (Balakrishnan and Sangaiah 2015; Cibrán
et al. 2007).

Balakrishnan and Sangaiah (2017) discussed challenges related to the unknown topology and
data estimation, to address temporary IoT sensor unavailability. Their weaving mechanisms con-
sider service monitoring, which is important to obtain context. The weaving mechanisms also use
the context for decision making and software reconfiguration to meet the QoS attributes. With real-
time systems, this can be a challenge (Xu et al. 2017). Thus aspects define a dynamic reconfigura-
tion logic as well as a functional substitution in case the sensors are temporarily not available.
Missing data can be replaced with approximated data instead. The IoT service discovery mentioned
by Guinard et al. (2010), can be addressed by AOP, especially when dealing with context-aware-
ness. The authors emphasize that IoT solutions require the conception and development of
dynamic adaptation and autonomic capabilities, including mechanisms for discovering available
resources and capabilities.

Balakrishnan and Sangaiah (2015) suggests placing middleware between the IoT hardware and
the application to process the data gathered from the device component. Such middleware is
responsible for interacting with IoT device and management of the information, as well as solving
heterogeneity challenges. The middleware layer may perform functional substitution when neces-
sary, but it primarily brings reconfigurability to support the heterogeneity of IoT sensors. The AOP
is employed to design such a layer, for instance, considering features as aspects that are dynami-
cally enabled for given context. It can also be used to create a set of agents for given challenges, as
proposed by Spieldenner et al. (2017). The new aspects can be introduced to adapt to an evolution,
e.g. new sensors. However, the crucial part of the middleware is to know the context, which
requires monitoring of the infrastructure. Existing work, e.g. Baresi, Guinea, and Pasquale (2007),
discusses AOP monitoring. These requirements seem very suitable for AOP design. Baresi, Guinea,
and Pasquale (2007) provides a large section of existing work on monitoring and reconfiguration.
This approach of agent design through AOP is quite common in works we considered in this
survey.

Similarly, Spieldenner et al. (2017) considered a dynamic IoT environment perspective. To deal
with the ever-changing requirements, the authors proposed an architecture that accepts plugins

16 T. CERNY

(separate modules) with a particular logic. These are meant to provide extensibility and adaptation
to new requirements, e.g. a new sensor protocol support. When compared to Balakrishnan and
Sangaiah (2015), plugins and agents that address the same challenges and serve the same purpose.

The same approach, to simplify service integration with an additional mediation layer, is
introduced by Cibrán et al. (2007) to simplify service integration. In the QoS perspective, Giunta
et al. (2015) introduced a QoS-related mediation layer on top of a web server.

The work of Kim and Hong (2011) can be addressed to face fault-tolerance in IoT. Similar to
previous approaches, they propose detecting faults through aspect processes monitoring the service
invocation on top of WS-BPEL processes and suggesting their replacements when necessary. Castor,
Leite, and Rubira (2012) then addresses the fault-tolerance through coordinated exception handling.

6. Aspect weavers

This section introduces the weavers used in the evidence. AspectJ and SpringAOP are among the
most well-known ones; however, proprietary weavers are often designed on top of language
metamodels. Unspecified weavers have also been developed. The below list shows the weavers
with a dedicated website.

AspectJ - AspectJ weaver is used in (Yumei et al. 2009; Deepiga, Senthil, and Babu 2014; Krüger,
Mathew, and Meisinger 2006; Sonchaiwanich et al. 2010), AspectJ with Aspicere (Han, Jung, and
Yeom 2011), AspectJ with ActiveBPEL (Seiler et al. 2011),

(https://eclipse.org/aspectj)
AO4BPEL - AO4BPEL is used in (Charfi and Mezini 2004; Wang and Wang 2013) and mentioned

in (Marzouk and Jmaiel 2013), (https://github.com/alook/ao4bpel2/wiki)
SpringAOP - SpringAOP weaver is used in (Corradi et al. 2009; Balakrishnan and Sangaiah 2017;

Balakrishnan and Sangaiah 2015), (http://spring.io)
AspectFaces - AspectFaces weaver is used in (Cerny and Donahoo 2016; Cerny and Donahoo

2015; Cerny, Trnka, and Donahoo 2016; Cerny et al. 2013) AspectFaces with RuleGuvnor is used in
(Cemus, Cerny, and Donahoo 2015), (http://www.aspectfaces.com)

AMBIENT-PRISMANET - AMBIENT-PRISMANET middleware AOP for componentbased applica-
tion (Hassan, Ali, and Bahsoon 2017), (http://prisma.dsic.upv.es)

JAsCo & JAsCo.Net - AspectJ alternative/complement with aim to combine AOP with compo-
nent-based software development introducing aspect beans and connectors (Cibrán et al. 2007),
(http://ssel.vub.ac.be/jasco/what.html)

The proprietary weavers with no website, unspecified and self-developed are found in
(Anderson and Ahmed 2006; Hmida, Tomaz, and Monfort 2005; Zhang, Meng, and Liu 2009;
Zhang, Meng, and Liu 2008; Baligand and Monfort 2004; Walraven et al. 2010;(Kim and Hong
2011; Baouab et al. 2009). Other research works provide more details on used weaver, however, we
did not find a website or repository for them. The below list provides details on the mentions.

proprietary Jess rule engine extension - Extension of Jess rule engine (Wang, Bandara, and
Pahl 2010)

proprietary - Aspect-oriented process modeling language (AOPML) with no details on the
weaver (Souza et al. 2011)

proprietary Apache CXF extension - Apache CXF framework (Sendor et al. 2014).
Ark.bpmn - BPMN weaver (Wada, Suzuki, and Oba 2008)
Continuum/J - (Harrison 2011)
M2Code extensions - Weaver for Aspect Message Sequence Charts (Ermagan, Krüger, and

Menarini 2008)
DEng - DSOL execution engine built on Apache CXF (Cugola, Ghezzi, and Pinto 2012)
ONCE-BPEL - introduced in (Huang, Wu, and Wei 2009)
EH-SCA -An Exception Handling System for Service Component Architecture (Castor, Leite, and

Rubira 2012)

ENTERPRISE INFORMATION SYSTEMS 17

https://eclipse.org/aspectj
https://github.com/alook/ao4bpel2/wiki
http://spring.io
http://www.aspectfaces.com
http://prisma.dsic.upv.es
http://ssel.vub.ac.be/jasco/what.html

Kaqusei - Keen Aspect-oriented and Quality-oriented Server-side Infrastructure (Giunta et al.
2015)

RAD-WS - Runtime anomaly detection tool (Antunes and Vieira 2017)
Dynamo Build on top of JBoss Rule Engine, with ActiveBPEL (Baresi, Guinea, and Pasquale 2007)
HiPoLDS RM - Hierarchical Policy Language for Distributed Systems (HiPoLDS) with no details

on Reference Monitors (RM) enforcing security policies that act as weavers (Dell’Amico et al. 2012)
Padus - Padus weaver in Service Creation Environment (SCE) which includes a BPEL engine

(Braem et al. 2007)
MoDAS - Model-Driven Adaptable Services that generate Java and AspectJ code (Peinado, Ortiz,

and Dodero 2015)
ADORE engine - Aspect-oriented Use Case Maps (AoUCM) mapping to ADORE aspectoriented

business process models, using unspecified ADORE engine (Mosser et al. 2011)
PUMA4SOA - Performance from Unified Model Analysis for SOA (PUMA4SOA) (Alhaj 2011) (Alhaj

and Petriu 2010)

7. Threats to validity

A primary threat to the validity of survey studies is inadequate coverage. We tried to address these
issues by the breadth of our coverage and the design of our research parameters. Our evidence
elimination mechanism is similar to guidelines for conducting systematic mapping studies as
introduced by Petersen, Vakkalanka, and Kuzniarz (2015). However, we did not consider certain
parameters such as countries of authors or institutions, or a particular count of resources per
conferences, authors or year.

Although we cannot guarantee 100 percent coverage of related papers, we believe we have
selected all relevant papers that are within the scope of this study. We addressed this threat by
selecting and examining several search strings that fit our paper control set. Moreover, multiple
considered papers reference each other.

Next, a potential threat is data extraction bias based on the human factor. We addressed this
threat by conducting three individual reviews for each paper, with respect to classification, cross-
cutting concerns, and weaver. We also addressed this threat by using a RAKE algorithm (Rose et al.
2010) to extract paper keywords, that we matched with the manually-extracted ones.

Another potential threat is the exclusion of relevant papers due to their scope. To address this,
we followed methods for establishing the selection criteria suggested in (Petersen, Vakkalanka, and
Kuzniarz 2015). We then spent considerable time reading the selected papers, as well as their
related work, to assure that the papers fit within the considered scope. We excluded papers outside
of the AOP or AOSD range and papers not relevant to SOA, Microservices, IoT, or close topics such
as web services, or grids. We also excluded papers with no specific output, or papers that
concluded with a suggestion or an opinion but no method proposal. Finally, we excluded papers
not published in the considered academic databases or papers which had very limited content.

8. System integration summary

While broad surveys on system integration can be found (He and Xu 2014; Liu et al. 2008), they
currently do not describe AOP use. However, many integration challenges can be addressed by
AOP. For instance, the survey by He and Xu (2014) considers the integration that must take place
on the communication layer, for data integration, for business logic integration or at the presenta-
tion layer integration across heterogeneous systems. A brief consideration of these four areas
shows the potential of AOP.

The communication layer, can be delegated to SOA, which acts as the mediator, but the more
up-to-date approach is MSA, where particular applications are connected individually (Cerny,
Donahoo, and Trnka 2018). AOP addresses QoS for the communication, together with monitoring

18 T. CERNY

and reconfiguration of services (further discussed in Sections 4.4 and 4.5). Moreover, when a
particular choreography or orchestration is needed, a lot of work addresses the process flow
together with monitoring and reconfiguration, such as (Charfi and Mezini 2004; Wang and Wang
2013; Marzouk and Jmaiel 2013), especially involving BPEL. More examples of the composition are
discussed in Section 4.3. Multiple works mention an additional mediation layer where AOP weaving
takes place (Balakrishnan and Sangaiah 2015; Cibrán et al. 2007).

There is rather limited work on data integration with AOP. Balakrishnan and Sangaiah
(2017) mention data approximation when sensors are temporarily unavailable; this simplifies
the data integration design. However, when it comes to different data schemes across various
services, the MSA with bounded context is the right direction to consider (Cerny, Donahoo,
and Trnka 2018). When a global or a centralized perspective of information is needed, MSA
does not provide any mechanism to do that an requires revisiting each service. One possible
solution, suggested by Cerny and Donahoo (2015), is to apply code-inspection and AOP
transformation which produces a data representation of a particular service in machine-read-
able formats that can be easily centralized or processed by consumer services, and this builds
a bigger picture.

When it comes to business logic integration, SOA services offload the processes to the ESB, and
thus all the process flow is governed from a centralized location (Charfi and Mezini 2004; Wang and
Wang 2013; Marzouk and Jmaiel 2013). This topic is discussed in Section 4.6. When we move to
MSA, the centralization is lost, as each MSA contains its own process flow. Cemus et al. (2017)
showed that when capturing business processes and rules in a domain-specific language, through
AOP they can be inspected and through AOP enforced throughout the service, and, moreover, they
can be extracted and transformed to machine-readable formats and thus shared across services to
build a large picture. One particular case is transforming business rules to JSON and providing
them to the application front-end for a client-side enforcement.

Finally, the presentation layer is currently addressed mostly be client-side frameworks (Cerny,
Donahoo, and Trnka 2018), while SOA preference used to be portals liu2008manufacturing. AOP
can help address development and maintenance efforts, adaptation and context-awareness. For
instance, Cerny et al. (2013) suggested utilizing AOP to derive data presentations in user
interfaces from data layers directly while enabling full customization, integrating validation,
overcoming constraints and enforcing security (all considered as distinct aspects). Cerny and
Donahoo (2015) also introduced platform-independent data presentations that can be streamed
to any platform to build a presentation on a native platform using its specific components and
widgets. Here AOP is utilized to determine the context and situation for which the presentation
should be provided. One beneficial consequence is that any data change in the service provider
is directly propagated to all consumer services avoiding correlation errors or incompatibility.
When multiple distinct or heterogeneous services provide the data presentations in the platform-
independent format, the presentation integration becomes similar to presentations within homo-
geneous application backends.

Liu et al. (2008) mentions process integration, which is usually base on a business-oriented layer
on top of applications. The processes and their integration in the scope of AOP are detailed in
Section 4.6. The same authors also discuss integration on the middleware level, where message
brokers, transactions, and queuing are considered ((e.g. Messaging Systems). Specifically, for
messaging, Han, Jung, and Yeom (2011) considers different types of communication in MPI
processes in a distributed environment and cluster computing improving readability and main-
tainability with AOP. They look into checkpointing, critical sections or rollbacks. More work on
messaging and particular message types are further discussed by Ermagan, Krüger, and Menarini
(2008) with AOP messages that influence service behavior. With the modeling and analytic
perspective Alhaj and Petriu (2010) and Krüger, Mathew, and Meisinger (2006) involve message
charts to evaluate the run-time performance or analyze routing mechanisms and communication

ENTERPRISE INFORMATION SYSTEMS 19

through ESB. Finally, the security perspective for system integration involving AOP is detailed in
Section 4.8.

9. Conclusion

This paper provides a roadmap of the AOP accomplishments and challenges in the areas of System
Integration, SOA, Microservices, and IoT. It categorizes the gathered evidence into service mod-
ularization, a composition of services, monitoring and reconfiguration, quality of service, visualiza-
tion, prototyping and modeling, business processes, security, and testing and provides detailed
discussion.

Next, it describes where specifically cross-cutting concerns can be found in such distributed
system design and interaction. Various AOP tools evidenced in the literature were described to
help the reader jump to integration rather than reinventing the wheel. This roadmap will help the
community understand and apply the existing knowledge to deal more efficiently with difficulties
in application design and interaction in related areas.

To our best knowledge, there is no similar survey for AOP and System Integration or distributed
systems.

Notes

1. http://www.foolabs.com/xpdf/.
2. https://www.jcp.org/en/jsr/detail?id=220.

Disclosure statement

No potential conflict of interest was reported by the author.

ORCID

Tomas Cerny http://orcid.org/0000-0002-5882-5502

References

Alhaj, M. 2011. “Automatic Generation of Performance Models for SOA Systems.” In Proceedings of the 16th
International Workshop on Component-Oriented Programming, WCOP ’11, 33–40. New York, NY: ACM. doi:10.1145/
2000292.2000299.

Alhaj, M., and D. C. Petriu. 2010. “Approach for Generating Performance Models from UML Models of SOA Systems.” In
Proceedings of the 2010 Conference of the Center for Advanced Studies on Collaborative Research, CASCON ’10, 268–
282. Riverton, NJ: IBM Corp. doi:10.1145/1923947.1923975.

Alshuqayran, N., N. Ali, and R. Evans. 2016. “A Systematic Mapping Study in Microservice Architecture.” In 2016 IEEE 9th
International Conference on Service-Oriented Computing and Applications (SOCA), 44–51. Macau: IEEE.

Anderson, M., and L. Ahmed. 2006. “An Aspect-Oriented Approach to Developing a Teleworking Grid.” In 2006 IEEE
International Conference on e-Business Engineering (ICEBE’06), 461–465. Shanghai: IEEE.

Antunes, N., and M. Vieira. 2017. “Designing Vulnerability Testing Tools for Web Services: Approach, Components, and
Tools.” International Journal Information Security 16 (4): 435–457. doi:10.1007/s10207-016-0334-0.

Balakrishnan, S. M., and A. K. Sangaiah. 2015. “Aspect Oriented Middleware for Internet of Things: A State-Of-The Art
Survey of Service Discovery Approaches.” International Journal of Intelligent Engineering and Systems 8: 16–28.
doi:10.22266/ijies.

Balakrishnan, S. M., and A. K. Sangaiah. 2017. “MIFIMMiddleware Solution for Service Centric Anomaly in Future
Internet Models.” Future Generation Computer Systems 74 (C): 349–365. doi:10.1016/j.future.2016.08.006.

Baligand, F., and V. Monfort. 2004. “A Concrete Solution for Web Services Adaptability Using Policies and Aspects.” In
Proceedings of the 2nd International Conference on Service Oriented Computing, ICSOC ’04, 134–142. New York, NY:
ACM. doi:10.1145/1035167.1035187.

20 T. CERNY

http://www.foolabs.com/xpdf/
https://www.jcp.org/en/jsr/detail?id=220
https://doi.org/10.1145/2000292.2000299
https://doi.org/10.1145/2000292.2000299
https://doi.org/10.1145/1923947.1923975
https://doi.org/10.1007/s10207-016-0334-0
https://doi.org/10.22266/ijies
https://doi.org/10.1016/j.future.2016.08.006
https://doi.org/10.1145/1035167.1035187

Baouab, A., O. Perrin, N. Biri, and C. Godart. 2009. “Security Meta-Services Orchestration Architecture.” In IEEE Asia-Pacific
Services Computing Conference APSCC 2009. Biopolis, Singapore: IEEE. December. https://hal.inria.fr/inria-00431678.

Baresi, L., S. Guinea, and L. Pasquale. 2007. “Self-Healing BPEL Processes with Dynamo and the JBoss Rule Engine.” In
International Workshop on Engineering of Software Services for Pervasive Environments: In Conjunction with the 6th
ESEC/FSE Joint Meeting, ESSPE ’07, 11–20. New York, NY: ACM. doi:10.1145/1294904.1294906.

Braem, M., N. Joncheere, W. Vanderperren, R. Van Der Straeten, and V. Jonckers. 2007. “Concern-Specific Languages in
a Visual Web Service Creation Environment.” Electronic Notes in Theoretical Computer Science 163 (2): 3–17.
Proceedings of the Second International Workshop on Aspect-Based and Model-Based Separation of Concerns in
Software Systems (ABMB 2006). doi:10.1016/j.entcs.2006.10.012.

Castor, F., D. S. Leite, and C. M. F. Rubira. 2012. “An Exception Handling System for Service Component Architectures.”
Journal of the Brazilian Computer Society 18 (1): 43–59. doi:10.1007/s13173-012-0059-5.

Cemus, K., T. Cerny, and M. J. Donahoo. 2015. “Automated Business Rules Transformation into a Persistence Layer.”
Procedia Computer Science Journal 62: 312–318. doi:10.1016/j.procs.2015.08.391.

Cemus, K., F. Klimes, O. Kratochvil, and T. Cerny. 2017. “Separation of Concerns for Distributed Cross-Platform Context-
Aware User Interfaces.” Cluster Computing 20 (3): 2355–2362. doi:10.1007/s10586-017-0794-7.

Cerny, T., K. Cemus, M. J. Donahoo, and E. Song. 2013. “Aspect-Driven, Datareflective and Context-Aware User
Interfaces Design.” ACM SIGAPP Applied Computing Review 13 (4): 53–66. doi:10.1145/2577554.

Cerny, T., and M. J. Donahoo. 2016. “Survey on Concern Separation in Service Integration.” In Proceedings of the 42nd
International Conference on SOFSEM 2016: Theory and Practice of Computer Science Volume 9587, 518–531. New
York, NY, USA: Springer-Verlag New York. doi:10.1007/978-3-662-49192-8_42.

Cerny, T., and M. J. Donahoo. 2015. “On Separation of Platform-Independent Particles in User Interfaces.” Cluster
Computing 18 (3): 1215–1228. doi:10.1007/s10586-015-0471-7.

Cerny, T., M. J. Donahoo, and M. Trnka. 2018. “Contextual Understanding of Microservice Architecture: Current and
Future Directions.” SIGAPP Applications Computation Reviews 17 (4): 29–45. doi:10.1145/3183628.3183631.

Cerny, T., M. Trnka, and M. J. Donahoo. 2016. “Towards Shared Security through Distributed Separation of Concerns.”
In Proceedings of the International Conference on Research in Adaptive and Convergent Systems, RACS ’16, 169–172.
New York, NY: ACM. doi:10.1145/2987386.2987394.

Charfi, A., and M. Mezini. 2004. “Hybrid Web Service Composition: Business Processes Meet Business Rules.” In
Proceedings of the 2nd International Conference on Service Oriented Computing, ICSOC ’04, 30–38. New York, NY:
ACM. doi:10.1145/1035167.1035173.

Cibrán, M. A., B. Verheecke, W. Vanderperren, D. Suvée, and V. Jonckers. 2007. “Aspect-Oriented Programming for
Dynamic Web Service Selection, Integration and Management.” World Wide Web 10 (3): 211–242. doi:10.1007/
s11280-006-0017-2.

Corradi, A., F. Di Marco, S. Monti, and S. Pasini. 2009. “Facing Crosscutting Concerns in a Middleware for Pervasive
Service Composition.” In 2009 IEEE Symposium on Computers and Communications, 73–79. Sousse: IEEE.

Cugola, G., C. Ghezzi, and L. S. Pinto. 2012. “DSOL: A Declarative Approach to Self-Adaptive Service Orchestrations.”
Computing 94 (7): 579–617. doi:10.1007/s00607-012-0194-z.

Deepiga, A. S., V. S. Senthil, and C. Babu. 2014. “Empirical Investigation of Introducing Aspect Oriented Programming
across Versions of an SOA Application.” In 2014 IEEE International Conference on Advanced Communications, Control
and Computing Technologies, 1732–1739. Ramanathapuram: IEEE.

Dell’Amico, M., G. Serme, M. S. Idrees, A. S. De Olivera, and Y. Roudier. 2012. HiPoLDS: A Security Policy Language for
Distributed Systems, 97–112. Berlin, Heidelberg:Springer Berlin Heidelberg. doi:10.1007/978-3-642-30955-7_10.

Ermagan, V., I. H. Krüger, and M. Menarini. 2008. “Aspect-Oriented Modeling Approach to Define Routing in Enterprise
Service Bus Architectures.” In Proceedings of the 2008 International Workshop on Models in Software Engineering,
MiSE ’08, 15–20. New York, NY: ACM. doi:10.1145/1370731.1370735.

Giunta, R., F. Messina, G. Pappalardo, and E. Tramontana. 2015. “Providing QoS Strategies and Cloud-Integration to
Web Servers by Means of Aspects.” Concurrency and Computation: Practice and Experience 27 (6): 1498–1512.
doi:10.1002/cpe.3031.

Guinard, D., V. Trifa, S. Karnouskos, P. Spiess, and D. Savio. 2010. “Interacting with the SOA-Based Internet of Things:
Discovery, Query, Selection, and On-Demand Provisioning of Web Services.” IEEE Transactions on Services
Computing 3 (3): 223–235. doi:10.1109/TSC.2010.3.

Han, H., H. Jung, and H. Y. Yeom. 2011. “Aspect-Oriented Development of Cluster Computing Software.” Cluster
Computing 14 (4): 357–375. doi:10.1007/s10586-011-0166-7.

Harrison, W. 2011. “Modularity for the ChangingMeaning of Changing.” In Proceedings of the Tenth International Conference
on Aspect-Oriented Software Development, AOSD ’11, 301–312. New York, NY: ACM. doi:10.1145/1960275.1960313.

Hassan, S., N. Ali, and R. Bahsoon. 2017. “Microservice Ambients: An Architectural Meta-Modelling Approach for
Microservice Granularity.” In 2017 IEEE International Conference on Software Architecture (ICSA), 1–10. Gothenburg:
IEEE.

He, W., and L. D. Xu. 2014. “Integration of Distributed Enterprise Applications: A Survey.” IEEE Transactions on Industrial
Informatics 10 (1): 35–42. doi:10.1109/TII.2012.2189221.

ENTERPRISE INFORMATION SYSTEMS 21

https://hal.inria.fr/inria-00431678
https://doi.org/10.1145/1294904.1294906
https://doi.org/10.1016/j.entcs.2006.10.012
https://doi.org/10.1007/s13173-012-0059-5
https://doi.org/10.1016/j.procs.2015.08.391
https://doi.org/10.1007/s10586-017-0794-7
https://doi.org/10.1145/2577554
https://doi.org/10.1007/978-3-662-49192-8_42
https://doi.org/10.1007/s10586-015-0471-7
https://doi.org/10.1145/3183628.3183631
https://doi.org/10.1145/2987386.2987394
https://doi.org/10.1145/1035167.1035173
https://doi.org/10.1007/s11280-006-0017-2
https://doi.org/10.1007/s11280-006-0017-2
https://doi.org/10.1007/s00607-012-0194-z
https://doi.org/10.1007/978-3-642-30955-7_10
https://doi.org/10.1145/1370731.1370735
https://doi.org/10.1002/cpe.3031
https://doi.org/10.1109/TSC.2010.3
https://doi.org/10.1007/s10586-011-0166-7
https://doi.org/10.1145/1960275.1960313
https://doi.org/10.1109/TII.2012.2189221

Hmida, M. M. B., R. F. Tomaz, and V. Monfort. 2005. “Applying AOP Concepts to Increase Web Services Flexibility.” In
International Conference on Next Generation Web Services Practices (NWeSP’05), 6. August.

Huang, T., G.-Q. Wu, and J. Wei. 2009. “Runtime Monitoring CompositeWeb Services through Stateful Aspect
Extension.” Journal of Computer Science and Technology 24 (2): 294–308. doi:10.1007/s11390-009-9225-4.

Issarny, V., G. Bouloukakis, N. Georgantas, and B. Billet. 2016. “Revisiting Service-Oriented Architecture for the IoT: A
Middleware Perspective.” In Service-Oriented Computing, edited by Q. Z. Sheng, E. Stroulia, S. Tata, and S. Bhiri, 3–
17. Cham: Springer International Publishing.

Kiczales, G., J. Irwin, J. Lamping, J.-M. Loingtier, C. V. Lopes, C. Maeda, and A. Mendhekar. 1997. “Aspect-Oriented
Programming.” In IECOOP’97- Object-Oriented Programming, 11th European Conference. Vol. 1241. 220–242.
Jyväskylä: Springer. June.

Kim, J. P., and J. E. Hong. 2011. “Dynamic Service Replacement to Improve Composite Service Reliability.” In 2011 Fifth
International Conference on Secure Software Integration and Reliability Improvement, 182–188. Jeju Island: IEEE.

Kratzke, N., and P.-C. Quint. 2017. “Understanding Cloud-Native Applications after 10 Years of Cloud Computing A
Systematic Mapping Study.” Journal of Systems and Software 126: 1–16. doi:10.1016/j.jss.2017.01.001.

Krüger, I. H., R. Mathew, and M. Meisinger. 2006. “Efficient Exploration of Service-Oriented Architectures Using
Aspects.” In Proceedings of the 28th International Conference on Software Engineering, ICSE ’06, 62–71. New York,
NY: ACM. doi:10.1145/1134285.1134296.

Laddad, R. 2009. AspectJ in Action: Enterprise AOP with Spring Applications. 2nd ed. Greenwich, CT: Manning
Publications.

Liu, X., W. J. Zhang, R. Radhakrishnan, and Y. L. Tu. 2008. “Manufacturing Perspective of Enterprise Application
Integration: The State of the Art Review.” International Journal of Production Research 46 (16): 4567–4596.
doi:10.1080/00207540701263325.

Marzouk, S., and M. Jmaiel. 2013. “A Policy-Based Approach for Strong Mobility of Composed Web Services.” Service
Oriented Computing and Applications 7 (4): 293–315. doi:10.1007/s11761-013-0131-9.

Mosser, S., G. Mussbacher, M. Blay-Fornarino, and D. Amyot. 2011. “From Aspect-Oriented Requirements Models to
Aspect-Oriented Business Process Design Models: An Iterative and Concern-Driven Approach for Software
Engineering.” In Proceedings of the Tenth International Conference on Aspect-Oriented Software Development,
AOSD ’11, 31–42. New York, NY: ACM. doi:10.1145/1960275.1960281.

Peinado, S., G. Ortiz, and J. M. Dodero. 2015. “A Metamodel and Taxonomy to Facilitate Context-Aware Service
Adaptation.” Computers & Electrical Engineering 44: 262–279. doi:10.1016/j.compeleceng.2015.02.004.

Petersen, K., S. Vakkalanka, and L. Kuzniarz. 2015. “Guidelines for Conducting Systematic Mapping Studies in Software
Engineering: An Update.” Information and Software Technology 64 (Supplement C): 1–18. doi:10.1016/j.
infsof.2015.03.007.

Prasad, G. V. R. J. S., S. Chimalakonda, V. Choppella, and Y. Raghu Reddy. 2017. “An Aspect Oriented Approach for
Renarrating Web Content.” In Proceedings of the 10th Innovations in Software Engineering Conference, ISEC ’17, 56–
65. New York, NY: ACM. doi:10.1145/3021460.3021466.

Rose, S. J., D. W. Engel, N. O. Cramer, and W. E. Cowley. 2010. “Automatic Keyword Extraction from Individual
Documents.” Text Mining: Applications and Theory, 1–20. Wiley-Blackwell. doi:10.1002/9780470689646.ch1

Seiler, D., E. Juhnke, R. Ewerth, M. Grauer, and B. Freisleben. 2011. “Efficient Data Transmission between Multimedia
Web Services via Aspect-Oriented Programming.” In Proceedings of the Second Annual ACM Conference on
Multimedia Systems, MMSys ’11, 93–104. New York, NY: ACM. doi:10.1145/1943552.1943564.

Sendor, J., Y. Lehmann, G. Serme, and A. Santana De Oliveira. 2014. “Platform-Level Support for Authorization in Cloud
Services with OAuth 2.” In 2014 IEEE International Conference on Cloud Engineering, 458–465. Boston, MA: IEEE.

Sonchaiwanich, E., J. Zhao, C. Dowin, and M. McRoberts. 2010. “Using AOP to Separate SOA Security Concerns from
Application Implementation.” In 2010 MILCOM 2010 Military Communications Conference, 470–474. San Jose, CA:
IEEE.

Souza, A., C. Capelli, F. Santoro, L. G. Azevedo, J. C. S. D. P. Leite, and T. Batista. 2011. “Service Identification in Aspect-
Oriented Business Process Models.” In Proceedings of 2011 IEEE 6th International Symposium on Service Oriented
System (SOSE), 164–174. Irvine, CA: IEEE.

Spieldenner, T., S. Byelozyorov, M. Guldner, and P. Slusallek. 2017. “FiVES: An Aspect-Oriented Virtual Environment
Server.” In 2017 International Conference on Cyberworlds (CW), 103–110. Chester: IEEE.

Wada, H., J. Suzuki, and K. Oba. 2008. “Early Aspects for Non-Functional Properties in Service Oriented Business
Processes.” In 2008 IEEE Congress on Services Part I, 231–238. Honolulu, HI: IEEE.

Walraven, S., B. Lagaisse, E. Truyen, andW. Joosen. 2010.Dynamic Composition of Cross-Organizational Features in Distributed
Software Systems, 183–197. Berlin, Heidelberg:Springer Berlin Heidelberg. doi:10.1007/978-3-642-13645-0_14.

Waltman, L., and N. J. van Eck. 2012. “A New Methodology for Constructing A Publicationlevel Classification System of
Science.” Journal of the American Society for Information Science and Technology 63 (12): 2378–2392. doi:10.1002/
asi.22748.

Wang, J., D. Liu, W. H. Ip, W. Zhang, and R. Deters. 2014a. “Integration of System-Dynamics, AspectProgramming, and
Object-Orientation in System Information Modeling.” IEEE Transactions on Industrial Informatics 10 (2): 847–853.
doi:10.1109/TII.2014.2300703.

22 T. CERNY

https://doi.org/10.1007/s11390-009-9225-4
https://doi.org/10.1016/j.jss.2017.01.001
https://doi.org/10.1145/1134285.1134296
https://doi.org/10.1080/00207540701263325
https://doi.org/10.1007/s11761-013-0131-9
https://doi.org/10.1145/1960275.1960281
https://doi.org/10.1016/j.compeleceng.2015.02.004
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1145/3021460.3021466
https://doi.org/10.1002/9780470689646.ch1
https://doi.org/10.1145/1943552.1943564
https://doi.org/10.1007/978-3-642-13645-0_14
https://doi.org/10.1002/asi.22748
https://doi.org/10.1002/asi.22748
https://doi.org/10.1109/TII.2014.2300703

Wang, J. W., H. F. Wang, J. L. Ding, K. Furuta, T. Kanno, W. H. Ip, and W. J. Zhang. 2016. “On Domain Modelling of the
Service System with Its Application to Enterprise Information Systems.” Enterprise Information Systems 10 (1): 1–16.
Cited By 5. doi:10.1080/17517575.2013.810784.

Wang, J. W., H. F. Wang, W. J. Zhang, W. H. Ip, and K. Furuta. 2014b. “On a Unified Definition of the Service System:
What Is Its Identity?” IEEE Systems Journal 8 (3): 821–826. doi:10.1109/JSYST.2013.2260623.

Wang, M., K. Y. Bandara, and C. Pahl. 2010. “Distributed Aspect-Oriented Service Composition for Business Compliance
Governance with Public Service Processes.” In 2010 Fifth International Conference on Internet and Web Applications
and Services, 339–344. Barcelona: IEEE.

Wang, Y., and Y. Wang. 2013. “A Survey of Change Management in Service-Based Environments.” Service Oriented
Computing and Applications 7 (4): 259–273. doi:10.1007/s11761-013-0128-4.

Wieringa, R., N. Maiden, N. Mead, and C. Rolland. 2006. “Requirements Engineering Paper Classification and Evaluation
Criteria: A Proposal and A Discussion.” Requirements Engineering 11 (1): 102–107. doi:10.1007/s00766-005-0021-6.

Xu, G., J. Wang, G. Q. Huang, and C. H. Chen. 2017. “Data-Driven Resilient Fleet Management for Cloud Asset-Enabled
Urban Flood Control.” IEEE Transactions on Intelligent Transportation Systems PP 99: 1–12.

Yumei, W., C. Lu, R. Lina, and Z. Lin. 2009. “AN AOSD-based Method for Integrated Services Implementation in
Telecommunication Field.” In 2009 2nd IEEE International Conference on Broadband Network Multimedia Technology,
772–776. Beijing: IEEE.

Zhang, J., F. Meng, and G. Liu. 2008. “Research on SOA-Based Applications Based on AOP and Web Services.” In 2008
International Conference on Computer and Electrical Engineering, 753–757. Phuket: IEEE.

Zhang, J., F. Meng, and G. Liu. 2009. “Research on Multi-Tier Distributed Systems Based on AOP and Web Services.” In
2009 First International Workshop on Education Technology and Computer Science, Vol. 2, 203–207. Wuhan: IEEE.
March.

ENTERPRISE INFORMATION SYSTEMS 23

https://doi.org/10.1080/17517575.2013.810784
https://doi.org/10.1109/JSYST.2013.2260623
https://doi.org/10.1007/s11761-013-0128-4
https://doi.org/10.1007/s00766-005-0021-6

	Abstract
	1. Introduction
	2. The current literature on AOP utilization
	3. Research questions
	4. Taxonomy of the research
	4.1. Verification through automated keyword extraction
	4.2. Service modularization
	4.3. Composition of services
	4.4. Monitoring and reconfiguration
	4.5. Quality of service
	4.6. Business process
	4.7. Visualizations, prototyping, modeling
	4.8. Security
	4.9. Testing

	5. Particular cross-cutting concerns in the current literature
	5.1. The role of AOP in IoT

	6. Aspect weavers
	7. Threats to validity
	8. System integration summary
	9. Conclusion
	Notes
	Disclosure statement
	ORCID
	References

