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a b s t r a c t

Internet of things (IoT) applications comprising thousands or millions of intelligent devices or things
is fast becoming a norm in our inter-connected world, and the significant amount of data generated
from IoT applications is often stored in the cloud. However, searching encrypted data (i.e. Searchable
Encryption—SE) in the cloud remains an ongoing challenge. Existing SE protocols include searchable
symmetric encryption (SSE) and public-key encryption with keyword search (PEKS). Limitations of SSE
include complex and expensive keymanagement anddistribution,while PEKS suffer from inefficiency and
are vulnerable to insider keyword guessing attacks (KGA). Besides, most protocols are insecure against
file-injection attacks carried out by a malicious server. Thus, in this paper, we propose an efficient and
secure searchable encryption protocol using the trapdoor permutation function (TPF). The protocol is
designed for cloud-based IoT (also referred to as Cloud of Things – CoT) deployment, such as Cloud of
Battlefield Things and Cloud of Military Things. Compared with other existing SE protocols, our proposed
SE protocol incurs lower computation cost at the expense of a slightly higher storage cost (which is less
of an issue, considering the decreasing costs of storage). We also prove that our protocol achieves inside
KGA resilience, forward privacy, and file-injection attack resilience.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In an Internet of Things (IoT) architecture, there are many real-
world objects (also referred to as devices or things) connected to
the Internet. These interconnected objects (e.g. sensors, mobile
devices such as Android and iOS devices, wearable devices, and
drones or unmanned aerial vehicles) are responsible for sensing,
collecting, disseminating and exchanging data in a broad range
of context, such as public/homeland security (e.g. smart cities),
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utility (e.g. smart grids), logistics (e.g. smart supply chains), and
intelligent building (e.g. smart homes). The trend of IoT in our
modern society is explained in a recent report fromGartner, which
estimated that 63million IoT deviceswill be attempting to connect
to the network each second by 2020 [33].

Cloud computing can also play a supporting role in IoT architec-
ture, as explained by Roopaei, Rad and Choo [28]. The authors used
the Cloud of Things-based automated irrigation as a use case to
illustrate how integrating cloud and IoT canmake energy usemore
efficient and less costly. This is not surprising, considering that
cloud computing can provide affordable and real-time computing
and storage capabilities [30].
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Fig. 1. A typical Cloud of Things (CoT) system.

A typical cloud-based IoT system is shown in Fig. 1. In a CoT
environment, data collected by various smart devices is uploaded
to the cloud server. Then, the user obtain information of interest
from the cloud server via a client device. Since it is not realistic
to expect that a cloud server is completely trustworthy (e.g. the
server may be compromised and there may exists a corrupted
or malicious insider) [14,18], data outsourced to or stored in the
cloud should be protected (e.g. using a secure encryption scheme).
However, searching on encrypted data is challenging given today’s
technology. Thus, Searchable Encryption (SE) has emerged as a
salient research inquiry. A SE protocol is designed to allow one
to search on encrypted data containing specified keywords and to
obtain the response from the server based on the keyword trapdoor
without the need to decrypt the data. The server is also prevented
from learning the content of the user’s query.

A number of SE protocols/schemes have been proposed in
the literature since the work of Song et al. [29], and these
SE protocols can be broadly categorized into searchable sym-
metric encryption (SSE) protocols (see [6,9,15,19,23,29,31]) and
public-key encryption with keyword search (PEKS) protocols (see
[1–3,5,12,16,17,24,34–36]). It is known that the SSE protocols gen-
erally are more efficient, but suffer from complex and expensive
key management distribution [10] limitations (due to the fact that
data owner needs to share a key with each user by the secure
channel [4]). We refer the interested reader to a recent review of
SSE schemes by Poh et al. [26].

PEKS protocols are known for their stronger security and flex-
ibility, but a key limitation with such protocols is the inability to
resist inside keyword guessing attacks [7] (e.g. from a malicious
server or cloud employee). Specifically, the cloud server can use the
user’s public key to encrypt some keywords and use the keyword’s
ciphertext to test the content of a trapdoor. Recently in 2016, Chen
et al. [13] proposed a PEKS protocol to resist such an attack, but
their protocol is insecure against an external adversary.

We also observe that most SE protocols are vulnerable to file-
injection attacks and have weak forward privacy. For example,
Zhang et al. [37] demonstrated that in a file-injection attack, an
adversary can recovery all of the user’s trapdoors using very few
injected files. Such an attack is clearly a threat to SE protocols,
undermining the privacy of user data. In summary, if one want to
deploy existing SE protocols in a CoT environment, the following
limitations need to be addressed:

1. Security requirements: As evidenced by the findings re-
ported in [13,37], there is a need to design protocols that are secure

against inside keyword guessing attacks and file-injection attacks
in addition to achieving other standard security properties.

2. Computational overheads: The amount of data generated by
CoT devices in some applications may be significant (i.e. big data
issues). Thus, there is a need to design efficient protocols with low
computational overheads that are suitable for CoT deployment.

Therefore, in this paper, we construct an efficient and secure
SE protocol using the trapdoor permutation function. The protocol
uses neither bilinear pairing operation nor map-to-point hash op-
eration. The search time of protocol is only related to the database
update times. We then demonstrate the security and evaluate the
performance of the proposed protocol.

We will briefly review related literature in the next section,
before presenting the relevant background materials in Section 3.
We present the proposed protocol in Section 4. In Sections 5 and
6, we analyze the security and evaluate the performance of our
protocol, respectively. Finally, we conclude the paper in the last
section.

2. Related literature

In this section, we present the related existing SE protocols and
roughly categorize them according to their design goals, namely:
efficiency, application and security.

Efficiency: The search time is one of the key factors in de-
termining the efficiency of SE protocol. Song’s [29] search time
is linear to the database size, thus the protocol is inefficient in
a big data environment. To mitigate such a limitation, Curtmola
et al. [15] presented an index-based SSE construction to achieve
sublinear search time. The complexity of the index-based protocol
is related to the keyword space. In 2013, Cash et al. [9] presented a
highly-scalable SSE, designed to support very large database. From
existing literature, a practical SE protocol should minimize the
search time, which is not a surprising observation.

However, in most PEKS protocol, complex operations (e.g. bi-
linear pairing, map-to-point hash) affect efficiency. To reduce
the computational complexity, Di [16] proposed a PEKS protocol
without bilinear pairing operation. However, the protocol is not
practical. Recently, using homomorphic smooth projective hash
functions, Chen [13] designed a protocol that does not require the
bilinear pairing operation. Thus, their protocol is more efficient.
In other words, the design of a SE protocol should avoid having
complex operations.



154 L. Wu et al. / J. Parallel Distrib. Comput. 111 (2018) 152–161

Fig. 2. Multi-Round TPF.

Application: SE protocol should adapt to a variety of applica-
tion scenarios. Boneh [5] first designed a PEKS protocol for the
email system based on public key cryptosystem. To facilitate data
sharing, multi-owner SE protocols [32,36] were proposed. Such
protocols generally allow multiple data owners to contribute data
to multiple receivers. In practice, a typical scenario is for each data
receiver to belong to a different access authority (e.g. different
service providers). Thus, SE protocols should have flexible access
control strategies [11]. Zheng [27] defined an attribute-based key-
word searchable encryption protocol, which allows an authorized
user to search over the outsourced data. Liang [24] also designed
a protocol that offers searchable attribute-based functionality and
flexible keyword update service. Thus, the design of SE protocol
should consider the application environment.

Security: Security is the most important property in the design
of any cryptographic protocols. For example, Goh [19] provided
the security definition for SE protocols, and reiterated the im-
portance of security in SE protocols. To prevent privacy leakage,
Abdalla et al. [1] suggested that user search pattern and access
pattern should be protected. Islam et al. [21] and Cash et al. [8]
demonstrated that information leakage can be abused by a passive
attacker to reveal the user’s sensitive information. Recently, Zhang
et al. [37] demonstrated that an adaptive attack can reveal the
content of a past query by inserting as few as 10 new files in the
dynamic database. Thus, SE protocol should be designed to prevent
or reduce information leakage.

Meanwhile, most PEKS protocols are vulnerable to inside
KGA [7,22], which is usually launched by a malicious cloud server.
In 2013, Peng [35] presented the public-key encryption with Fuzzy
keyword Search (PEFKS), designed to withstand inside KGA using
two trapdoors. A number of such protocols have been designed for
the cloud. However, the dynamic nature of the cloud environment
may in itself be a risk. For example, due to the dynamic nature
of database on the cloud, the updating operations of the database
may result in (accidental) information leakage. This is an area of
active research. For example, to protect the security of dynamic
databases, a number of SE protocols with forward privacy have
been presented in the literature [6,34].

3. Background

A summary of the notations used in this paper is presented in
Table 1.

3.1. Preliminaries

Computational Diffie–Hellman (CDH): Given three elements
P, aP, bP ∈ G1, where a, b ∈ Z∗

q are selected randomly. AdvCDH (λ)
is defined as the advantage of an adversary A in computing abP ,
without knowing either a or b. We say that AdvCDH (λ) ≤ nelg(λ) if
the CDH assumption holds.

Trapdoor Permutation Function (TPF): A TPF f is a special
one-way function f : X → Y . There also exists a key generation
algorithm Gen(1λ)→ (pk, sk), where

fpk(x) = y ∈ Y and fsk(y) = x ∈ X .

Table 1
Summary of notations.

Notation Description

λ A security parameter
G1 An additive group of prime order q
P A generator of G1
negl(λ) A negligible probability
Ω The system parameters
(PKs(r), SKs(r)) The public/private keys of DS(DR).
W The keyword set
TPF A trapdoor permutation function
Iw A set of indexes of files containing the keyword w

indi The index of ith file
c A counter that records the encryption times
CIw The ciphertext of index set Iw
UTw The storage location of CIw
δw The authorization token of keyword w

Tw The trapdoor of keyword w

ED The database of ciphertext
EIw The pair of (UTw, CIw)
SL The state list of database
|S| The size of set S
∥ Concatenation operator
⊕ The bit-wise XOR operation
X = {a1a2...}2 The binary form of X

If a TPF f is security, then it should satisfy the following proper-
ties:

1. Computability: Given pk, ∀x ∈ X , and fpk(x) ∈ Y can be
easily computed.

2. One-Way: Given y = fpk(x) ∈ Y , fsk(y) = x is computation-
ally infeasible if the trapdoor sk is unknown.

For any attacker A, if f is secure, we say the advantage of the
adversary in breaking the one-way property is negligible:

AdvOW
f ,A (λ) ≤ negl(λ).

Besides, if a TPF f is executed multiple times, then the process
can be described as Fig. 2.

Inside Keyword Guessing Attack (Inside KGA) [20] can be de-
scribed as follows. In such an attack, a malicious cloud server [25]
guesses each keyword, obtains the ciphertext of the guessed key-
word, and tests the ciphertext with the given trapdoor. If the test
succeeds, then the cloud server knows the keyword corresponds to
the trapdoor.

File-Injection Attack (FIA) [37] can be described as follows.We
assume for simplicity that the keyword setW is represented by set
{0, 1, . . . , |W |− 1} and the elements in the set {0, 1, . . . , |W |− 1}
are binary, i.e., the keyword w0 can be represented by log|W | bits
{00..0}2. The attacker generates a set F of injected files, of size
log|W |. Every injected file contains exactly half the keywords of
W , and the ith injected file contains those keywords, whose ith
most-significant bit is equal to 1. Finally, according to the search
results of trapdoor Tw , the attacker can deduce the keywordw that
corresponds to Tw . Let R = {a1a2...}2 denote the search results on
the injected files. The attacker sets ri = 1, if and only if, the ith
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Fig. 3. FIA example where |W | = 8.

injected file is returned. Then, the attacker determines the keyword
R = {a1a2...alog|W |}2 corresponds to the trapdoor Tw .

Fig. 3 depicts an example of FIA, where |W | = 8, and the
keyword set W can be expressed as W = ({000}2, {001}2, {010}2,
{011}2, {100}2, {101}2, {110}2, {111}2). Meanwhile, the attacker
needs to inject log 8 = 3 files, and each injected file contains
four keywords. If two files {F1, F2} are returned in response to the
token Tw , thenwe know that the keywordw is the keyword {110}2
(i.e. w6).

Database’s State List: The database’s State List (SL) consists
of three tuple ⟨wi, ci, stciwi⟩, where wi ∈ W is an index of SL,
ci denotes a counter, and stciwi denotes a string corresponding to
current counter ci. When the data containing wi is inserted into
the database during the updating phase, SL will be automatically
updated (i.e. adding ci with 1 and replacing stciwi with st(ci+1)wi ).
Furthermore, the updated process can be executed a number of
times.

As shown in Fig. 4, if the files containing keywordsw1, w3, w|W |

are inserted into the database, then SL’s initial status will be the
updated status.

3.2. System model

The system model of our protocol is described in Fig. 5, which
comprises three entities, namely: data sender (DS), data receiver

Fig. 5. System model.

(DR) and cloud server (CS). DS outsources local data to CS, and any
authorized DR can query the encrypted data by sending a trapdoor.
Each entity has different responsibilities, as described below:

• DS is responsible for initializing the system, creating
keyword–indexes of files, and encrypting and uploading
data.

• DR searches data by sending the authorization trapdoor.
• CS is responsible for storing the data from DS and respond-

ing to query from DR.

In the systemmodel, DO can continuously update the database.
Thus, our protocol is more suitable for the CoT environment. DR
can search the related keywords which are authorized by DO. The
request/authorization method provides a flexible access control
policy. Thus, our system model is efficient.

3.3. Formal definition

Our protocol consists of the following algorithms:

• Setup(λ): Takes as input security parameter λ, and outputs
system global parameter Ω .

Fig. 4. Database’s state list.
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• KeyGen(Ω): Takes as input system parameter Ω , and out-
puts public/private key pairs (PKs, SKs), (PKr , SKr ) for DS and
DR, respectively.

• Enc(PKr , SKs, Iwi , wi): Takes as input DR’s public key PKr ,
DS’s private key SKs and an index set Iwi of wi, and outputs
ciphertext EIwi of the index set Iwi .

• AuthToken(PKr , wi): Takes as input DR’s public key PKr and
the authorized keyword wi, and outputs an authorization
token δwi of wi.

• Trapdoor(PKs, SKr , δwi , wi): Takes as input DS’s public key
PKs, DR’s private key SKr and authorization token δwi of
keyword wi, and outputs the trapdoor Twi .

• Search(ED, Twi ): Takes as input encrypted database ED and a
trapdoor Twi , and outputs ciphertext EIwi of index set Iwi .

Security Requirements For a typical deployment (e.g. in CoT
or IoT), a SE protocol should satisfy the following security require-
ments:

• Inside KGAResilience: Amalicious cloud server is not able to
deduce keyword corresponding to the user’s trapdoor using
inside KGA.

• Forward privacy: An attacker is not able to search any newly
updated data using previous trapdoors.

• FIA Resilience: An attacker is not able to recover keyword
corresponding to the user’s trapdoor using FIA.

4. Proposed protocol

In this section,wepresent our proposed SE protocol, comprising
the following algorithms:

Setup(λ) takes as input the security parameter λ, and performs
the following:

1. DS chooses an additive groupG1 with a large prime order q,
and a generator P .

2. DS selects a TPF f : X → Y , where X and Y are two sets of
strings with length l. Then, DS executes Gen(1λ) to generate
f ’s public/private key pair (pk, sk).

3. DS selects three resistant-collision hash functions: h1 :

{0, 1}l → Zq, h2 : Z∗
q×{0, 1}l → {0, 1}∗ and h3 : G1×G1 →

{0, 1}(l+logq).
4. DS constructs a SL List. Then, DS initializes List[wi].c = 0

and List[wi].stc = st0wi , where st0wi is a random string of
length l and wi = w1, . . . , w|W |.

5. DS sets the system parameter Ω = {pp, sp}. Then, DS
publishes parameter pp = (q, P,G1, h1, h2, h3, f , pk) and
keeps sp = (sk, List) secretly.

KeyGen(Ω) takes as input the system parameter Ω , and per-
forms the following:

1. randomly chooses SKs = s, SKr = α as the respective private
keys of DS and DR.

2. computes PKs = s·P ∈ G1, PKr = α·P ∈ G1 as the respective
public keys of DS and DR.

Enc(PKr , SKs, Iwi , wi) takes as input the parameters PKr = α · P ,
SKs = s and an index set Iwi = {ind1, ind2, . . . , indn} of wi, and
performs the following:

1. DS computes K = s · PKr ∈ G1.
2. If n = 1, then DS selects a random index ind∗, and sets

I∗wi
= {ind1, ind2} and n = 2, where ind2 = ind∗. Otherwise,

sets I∗wi
= {ind1, ind2, . . . , indn}.

3. DS encrypts I∗wi
as follows:

– searches List to obtain List[wi] and sets j = List[wi].c
and stjwi = List[wi].stc .

– for each index indm, DS computes st(j+m)wi =

fsk(st(j+m−1)wi ),UT(j+m)wi = h1(st(j+m)wi ) and CI(j+m)wi =

h2(K , st(j+m)wi ) ⊕ indm, wherem = 1, 2, . . . , n.
– updates List to make List[wi].c = (j + n) and

List[wi].stc = st(j+n)wi

4. DS sends EIwi = (UT(j+m)wi , CI(j+m)wi ) to CS, where m =

1, 2, . . . , n.
5. CS stores EIwi like this ED[UT(j+m)w] = CI(j+m)wi , where m =

1, 2, . . . , n.

AuthToken(PKr , wi) takes as input the parameters (PKr , wi),
and performs the following:

1. DS selects a number k ∈ Z∗
q randomly, and computes

AU1wi = k · P and Awi = k · PKr .
2. DS computes AU2wi = h3(Awi , AU1wi ) ⊕ (List[wi].c ∥

List[wi].stc).
3. DS sends the authorization token δwi = (AU1wi , AU2wi ) toDR.

Trapdoor(PKs, SKr , δwi , wi) takes as input the parameters PKs =

sP , SKr = α and the authorization token δwi = (AU1wi , AU2wi ) of
keyword wi, and performs the following:

1. DR computes A∗
wi

= α · AU1wi .
2. DR computes (List∗[wi].c ∥ List∗[wi].stc) = h3(A∗

wi
, AU1wi )⊕

AU2wi , and uses List∗[wi] as the trapdoor of keyword wi.
3. DR keeps the trapdoor Twi = (c, stcwi ), where c =

List∗[wi].c, stcwi = List∗[wi].stc .

Search(ED, Twi ) takes as input the ciphertext database ED, and
the trapdoor Twi = (c, stcwi ) of keyword wi sent by DR through a
secure channel. CS performs the following:

1. for each j, CS computes st(j−1)wi = fpk(stjwi ), UTjwi = h1(stjwi )
and obtains encrypted index CIjwi = ED[UTjwi ], where j =

c, c − 1, c − 2, . . . , 1.
2. CS returns EIwi = {CI1wi , CI2wi , . . . , CIcwi} to DR.

5. Security analysis

We now analyze the security of the proposed protocol pre-
sented in Section 4.

5.1. Soundness

Definition 1. (Soundness): For every sufficiently large security
parameter λ, for ∀w0 ̸= w1 ∈ W , there is a negligible function
negl(λ) such that Fig. 6 holds.

The soundness of the protocol is demonstrated when search
indexes containing the keyword w1 will result in the return of
an encrypted index EIw1 of w1, when it is authorized to search.
Otherwise, no information will be returned.

Theorem 1. The construction of proposed protocol presented in
Section 4 is sound, in the sense of Definition 1.

Proof . Assume ind0, ind1 are two indexes of files which contain
w0, w1, respectively. Assume pk, sk are TPF f ’s public and private
keys. Let List[w0].c = 0, List[w0].stc = st0w0 , List[w1].c =

0, List[w1].stc = st0w1 . In addition, we assume that (SKs = s, SKr =

α) (PKs = s · P, PKr = α · P) are the public and private keys
of DS and DR, respectively. Then, we have K = sPKr , st1w0 =

fsk(st0w0 ), st1w1 = fsk(st0w1 ), EIw0 = (UT1w0 , CI1w0 ) and EIw1 =

(UT1w1 , CI1w1 ), where UT1w0 = h1(st1w0 ), CI1w0 = h2(K , st1w0 ) ⊕
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Fig. 6. Definition of soundness.

ind0 and UT1w1 = h1(st1w1 ), CI1w1 = h2(K , st1w1 ) ⊕ ind1, re-
spectively. We update List[w0] and List[w1], where List[w0].c =

1, List[w0].stc = st1w0 , List[w1].c = 1 and List[w1].stc = st1w1 .
An user authorized to search w1 will be given the authorization

token δw1 = (AU1w1 , AU2w1 ), and the latter is generated as follows:

– selects a random number k ∈ Z∗
q , and computes AU1w1 =

k · P .
– computes AU2w1 = h3(Aw1 , AU1w1 ) ⊕ (List[w1].c ∥

List[w1].stc), where Aw1 = k · PKr .

The user generates the trapdoor Tw1 of w1 using the authoriza-
tion token δw1 . The process is as follows:

– computes Aw1 = α · AU1w1 .
– computes (List[w1].c ∥ List[w1].stc) = h3(Aw1 , AU1w1 ) ⊕

AU2w1 .

Then, the user obtains the trapdoor Tw1 = (c1, stc1w1 ) of w1,
where c1 = List[w1].c and stc1w1 = List[w1].stc . Since the user has
not been authorized to search w0, the trapdoor Tw0 of w0 cannot
be computed. We randomly select (c0, stc0w0 ) as the trapdoor Tw0
of w0.

As stc1w1 = List[w1].stc = st1w1 , the equalities UT1w1 =

h1(stc1w1 ) and CI1w1 = h2(K , stc1w1 ) ⊕ ind1 hold with probability
1. However, since stc0w0 ̸= st1w0 and h1 is a collision-resistant hash
function, we have UT1w0 ̸= h1(stc0w0 ) and CI1w0 ̸= h2(K , stc0w0 ) ⊕

ind0 with probability 1-negl(λ).
As shown in Fig. 6, if a user is authorized to search w1 but

is not authorized to search w0, then Search(ED, Tw1 ) = EIw1 =

(UT1w1 , CI1w1 ) and Search(ED, Tw0 ) = NULL will hold with proba-
bility 1-negl(λ).

5.2. Data privacy

To ensure data privacy, we define the data privacy security
of the protocol using a challenge–response game. The attacker A
attempts to distinguish between the ciphertexts of two different
indexes. The protocol should ensure that Enc(PKr , SKs, Iwi , wi) does
not reveal any information of Iwi unless Twi is available.

Data privacy game
Setup: The challenger C runs Setup(λ), KeyGen(λ) to gener-

ate system parameter Ω and public/private key pairs (PKr , SKr ),
(PKs, SKs) of DR and DS, respectively. Then, C sends (PKr , PKs) to
A.

Phase 1: A makes the following queries.

1. Enc Query (Iwi , wi): A adaptively selects the index–keyword
pair (Iwi , wi) for the Enc query. C responds with EIwi =
Enc(PKr , SKs, Iwi , wi).

2. Authorization Token Query (wi): A adaptively selects the
keyword wi for the authorization token query. C responds
with δwi = AuthToken(PKr , wi).

3. Trapdoor Query(δwi , wi): A adaptively queries the trapdoor
Twi for the keyword wi ∈ W . C responds with Twi =

Trapdoor(PKs, SKr , δwi , wi).

Challenge: A sends two challenged index–keyword pairs
(Iw0 , w0), (Iw1 , w1). C picks a random number b ∈ {0, 1} and sends
ciphertext EIwb = Enc(PKr , SKs, Iwb , wb) to A.

Phase 2: A issues queries similar to those in Phase 1 adaptively.
The only restriction is that (w0, w1) cannot be selected for the
authorization token query and trapdoor query.

Guess: A outputs b′
∈ {0, 1} and wins the data privacy game if

b′
= b.

Definition 2. For any polynomial-time adversary A and all suffi-
ciently large λ, if the probability winning the data privacy game
satisfies

ProdpA (λ) ≤
1
2

+ negl(λ),

then we say the protocol provides data privacy.

Theorem 2. If a TPF f is secure in the random oracle model, then
our proposed protocol satisfies data privacy property, in the sense of
Definition 2.

Proof . Suppose A makes at most qh1 , qh2 , qh3 hash queries
to h1, h2, h3. To simplify the proof process, we assume Iwi =

ind1, . . . , indn, where n > 1. Suppose pk, sk are the public/private
keys of TPF f . Suppose List[wi] is initialized as List[wi].c = 0 and
List[wi].stc = st0wi , where wi = {w1, . . . , w|W |}.

First, C selects the system parameter Ω = (pp, sp), where
pp = (q, P,G1, h1, h2, h3, f , pk) and sp = (sk, List). Then, C
generates two public/private key pairs (PKs = sP, SKs = s),
(PKr = αP, SKr = α) of DS and DR, respectively. Finally, C sends
the parameter (pp, PKs, PKr ) to A.

To store the results of hash queries of (h1, h2, h3), C constructs
the respective lists: listh1 , listh2 , listh3 . The process is as follows:

h1-query: Upon receiving a string sti ∈ {0, 1}∗, if there exists
(sti, ui) in listh1 , then C returns ui. Otherwise, C picks a new random
value ui ∈ Z∗

q for each new sti and sets h1(sti) = ui. Besides, C
inserts the pair (sti, ui) into the listh1 . The listh1 is initially empty.

h2-query: Upon receiving a pair (Ki, vi), where Ki ∈ G1 and vi ∈

{0, 1}∗, if there exists (Ki, vi, ai) in listh2 , C returns ai. Otherwise, C
picks a new random value ai ∈ {0, 1}∗ for each new (Ki, vi) and sets
h2(Ki, vi) = ai. Besides, C inserts the tuple (Ki, vi, ai) into the listh2 .
The listh2 is initially empty.

h3-query: Upon receiving a pair (Ui, Vi), where Ui, Vi ∈ G1,
if there exists (Ui, Vi, zi) in listh3 , C returns zi. Otherwise, C picks
a new random value zi ∈ {0, 1}∗ for each new (Ui, Vi) and sets
h3(Ui, Vi) = zi. Besides, C inserts the tuple (Ui, Vi, zi) into the listh3 .
The listh3 is initially empty

Phase1: A adaptively issues the following queries.
Enc query (Iwi , wi): Upon receiving (Iwi , wi), where Iwi =

{ind1, . . . , indn}, C does as follows:

– searches the state list List to obtain j = List[wi].c and
stjwi = List[wi].stc .

– for each index indm,where m = 1, 2, . . . , n, C com-
putes st(j+m)wi = fsk(st(j+m−1)wi ), UT(j+m)wi = u(j+m)wi and
CI(j+m)wi = a(j+m)wi ⊕ indm, where u(j+m)wi = h1(st(j+m)wi )
and a(j+m)wi = h2(K , st(j+m)wi ) are obtained by making h1, h2
queries, respectively.
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– updates List to make List[wi].c = (j + n) and List[wi].stc
= st(j+n)wi .

– returns EIwi = (UT(j+m)wi , CI(j+m)wi ) to A, where m =

1, 2, . . . , n.

AuthToken query (PKr , wi): Upon receiving wi, C performs the
following:

– selects a random number k ∈ Z∗
q , then computes AU1wi =

k · P and Awi = k · PKr .
– makes a h3 query to obtain h3(Awi , AU1wi ) = zi and computes

AU2wi = zi ⊕ (List[wi].c ∥ List[wi].stc).
– returns the authorization token δwi = (AU1wi , AU2wi ).

Trapdoor query (δwi , wi): Upon receiving (δwi , wi), C directly
returns List[wi] as the trapdoor Twi = (c, stcwi ) of wi, where c =

List[wi].c and stcwi = List[wi].stc .
Challenge: If A decides to terminate at the end of Phase 1, then

it outputs two challenged index–keyword pairs (Iw0 , w0), (Iw1 , w1),
where |Iw0 | = |Iw1 |. C performs the following:

– picks a random value b ∈ {0, 1} and searches List to obtain
j = List[wb].c and stjwb = List[wb].stc .

– for each indm, where m = 1, 2, . . . , |Iwb |, C selects a
random string st∗(j+m)wb

instead of computing st(j+m)wb =

fsk(st(j+m−1)wb ). Then, C makes the h1, h2 queries to obtain
u(j+m)wb = h1(st∗(j+m)wb

) and a(j+m)wb = h2(K , st(j+m)wb )
before computing CI(j+m)wb = a(j+m)wb ⊕ indm.

– sets List[wb].c = (j + |Iwb |) and List[wb].stc = st∗(j+|Iwb |)wb
– returns EIwb = (u(j+m)wb , CI(j+m)wb ) to A, where m =

1, 2, . . . , |Iwb |.

Phase2: A issues queries similar to those in Phase 1. The only
restriction is that (w0, w1) cannot be selected for the authorization
token query and trapdoor query.

Guess. Finally, A outputs its guess b′
∈ {0, 1}. If b′

= b, then C
outputs 1; otherwise, C outputs 0.

According to the security definition of TPF, A cannot distinguish
between fsk(st(j+m)wb ) and a random string st∗(j+m)wb

without having
the private key sk of TPF f (i.e., one-wayproperty). Therefore, EIwb is
legitimate in the attacker’s view. Since EIwb is obtained by random
oracle h1, h2, A’s output b′ will satisfy b′

= b with probability at
most 1

2 . In otherwords, ifA can obtain any st(j+m)wb with probability
ProOWf (λ), then the probability thatA canwin the data privacy game
is ProdpA =

1
2 + ProOWf (λ). However, since the TPF f is secure,

ProOWf (λ) ≤ negl(λ) and ProdpA ≤
1
2 + negl(λ). Thus, our protocol

achieves data privacy.

5.3. Authorization token privacy

To preserve the privacy of DR’s query, the authorization token
should not leak keyword information. In the authorization token
privacy game, the attackerAplays a challenge–response gamewith
the challenger C and attempts to distinguish an authorization to-
ken of designated keyword from some other authorization tokens.
If A wins the game, then A has obtained some useful information
from the authorization token set.

Authorization Token privacy game
Setup: The challenger C runs Setup(λ), KeyGen(λ) to gener-

ate system parameter Ω and public/private key pairs (PKr , SKr ),
(PKs, SKs) of DR and DS, respectively. Then, C sends (PKr , PKs) to
A.

Phase 1: A makes the following queries.

1. Authorization Token Query(wi): A adaptively selects the key-
word wi for authorization token query. C responds with
δwi = AuthToken(PKr , wi).

2. Trapdoor Query(δwi , wi): A adaptively selects the key-
word wi for trapdoor query. C responds with Twi =

Trapdoor(PKs, SKr , δwi , wi).

Challenge: A adaptively outputs a challenge authorization to-
ken pair (w0, w1). C picks a random γ ∈ {0, 1} and returns δwγ =

AuthToken(PKr , wγ )
Phase 2: A can choose to continue making the above queries,

and the only restriction is that (w0, w1) cannot make the trapdoor
queries.

Guess: A outputs γ ′
∈ {0, 1} and wins the authorization token

privacy game if γ ′
= γ .

Definition 3. For any polynomial-time adversary and all suffi-
ciently large λ, if the probability winning the authorization token
privacy game satisfies

ProatpA (λ) ≤
1
2

+ negl(λ),

then we say the protocol achieves authorization token privacy.

Theorem 3. If the CDH assumption holds in the random model, then
the proposed protocol achieves authorization token privacy, in the
sense of Definition 3.

Proof . Suppose A makes at most qh1 , qh2 , qh3 hash queries
to h1, h2, h3, and A solves the CDH assumption with probabil-
ity ProCDHA . To simplify the proof process, we assume Iwi =

ind1, . . . , indn, where n > 1. Suppose pk, sk are the public/private
keys of TPF f , List[wi] is initialized as List[wi].c = 0, and
List[wi].stc = st0wi , where wi = {w1, . . . , w|W |}.

There exists a simulator S given P, a · P, b · P wishes to output
ab ·P (i.e. S solves the CDH assumption). S simulates the challenger
and interacts with A as follows:

Let pk, sk be the public/private key of a secure TPF f . Then,
S selects the system parameter Ω = (pp, sp), where pp =

(q, P,G1, h1, h2, h3, f , pk) and sp = (sk, List). S generates the
public/private key pair (PKs = s · P, SKs = s) of DS, and sets DR’s
public PKr = a · P . Then, S sends (pp, PKs, PKr ) to A.

To store the results of hash queries of (h1, h2, h3), respectively,
C constructs listh1 , listh2 , listh3 . The process is as follows:

h1-query: Upon receiving a string sti ∈ {0, 1}∗, if there exists
(sti, ui) in listh1 , then C returns ui. Otherwise, C picks a new random
value ui ∈ Z∗

q for each new sti and sets h1(sti) = ui. In addition, S
inserts (sti, ui) into listh1 , which is initially empty.

h2-query: Upon receiving a pair (Ki, vi), where Ki ∈ G1 and
vi ∈ {0, 1}∗, if there exists (Ki, vi, ai) in listh2 , then C returns ai.
Otherwise, C picks a new random value ai ∈ {0, 1}∗ for each new
(Ki, vi) and sets h2(Ki, vi) = ai. In addition, C inserts the tuple
(Ki, vi, ai) into the (initially empty) listh2 .

h3-query: Upon receiving a pair (Ui, Vi), where Ui, Vi ∈ G1, if
there exists (Ui, Vi, zi) in listh3 , then C returns zi. Otherwise, C picks
a new random value zi ∈ {0, 1}∗ for each new (Ui, Vi) and sets
h3(Ui, Vi) = zi. In addition, C inserts the tuple (Ui, Vi, zi) into the
listh3 . The listh3 is initially empty.

Phase1: A adaptively issues the following queries.
Authorization Token query(PKr , wi): Upon receivingwi, C per-

forms the following:

– selects a number k ∈ Z∗
q randomly, and computes AU1wi =

kP and Awi = kPKr .
– makes a h3 query to obtain h3(Awi , AU1wi ) = zi, and com-

putes AU2wi = zi ⊕ (List[wi].c ∥ List[wi].stc)
– returns the authorization token δwi = (AU1wi , AU2wi ) of wi.

Trapdoor query (δwi , wi): Upon receiving (δwi , wi), C returns
List[wi] as the trapdoor Twi = (c, stcwi ) of wi, where c = List[wi].c
and stcwi = List[wi].stc .
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Table 2
Computation cost and security properties: A comparative summary.

Protocol Computation Security

Enc phase Authorization & Trapdoor phase Search phase FP FIA Resilience Inside KGA

Boneh et al. [5] 1Tp + 1Tmtp ≈ 15.068 ms 1Tmtp + 1Tsm ≈ 8.712 ms 1Tp + 1Tmtp ≈ 15.068 ms × × ×

Wang et al. [34] 4Tsm + 1Tp ≈ 11.286 ms 5Tsm + 1Tp ≈ 12.272 ms 4Tp + 1Tmtp + 1Tsm ≈ 38.08 ms
√

× ×

Chen et al. [13] 4Texp + 1Tmtp + 2Tmul ≈ 9.664 ms 4Texp + 1Tmtp + 2Tmul ≈ 9.664 ms 7Texp + 3Tmul ≈ 3.391 ms × ×
√

Bost [6] 1Te + 3Th ≈ 0.194 ms 1Th ≈ 0.005 ms 1Td + 2Th ≈ 5.901 ms
√

×
√

Our Protocol 1Te + 2Th ≈ 0.199 ms 3Tsm + 1Th ≈ 2.963 ms 1Td ≈ 5.896 ms
√ √ √

Challenge. If A decides to terminate at the end of Phase 1, then
it outputs a challenged keyword pair (w0, w1). C picks a random
γ ∈ {0, 1} and performs the following:

– sets AU1wγ = bP .
– selects a random string η of length l + logq, and computes

AU2wγ = η ⊕ (List[wγ ].c ∥ List[wγ ].stc).
– returns the authorization token δwγ = (AU1wγ , AU2wγ ).

Note that this challenge implicitly defines AU2wγ = h2(Awγ ,
AU1wγ ) ⊕ (List[wγ ].c ∥ List[wγ ].stc), where Awγ = abP . With this
definition, δwγ is valid in A’ view.

Phase 2: A issues queries similar to those in Phase 1. The only
restriction is that (w0, w1) cannot be selected for the trapdoor
query.

Guess: Finally, A outputs its guess γ ′
∈ {0, 1} indicating

whether the challenge δwγ is the result of AuthToken(PKr , w0) or
AuthToken(PKr , w1). In the real attack, if h2(Awγ , AU1wγ ) is not
requested by A, then δγ is an authorization token of w0 or w1 is
independent of A’ view. Thus, A’s output γ ′ will satisfy γ ′

= γ
with probability at most 1

2 . In other words, if A issues a query
h2(Awγ , AU1wγ ), this implies A can solve the CDH problem, Awγ =

abP . Thus, the probability winning the authorization token privacy
game is ProatpA =

1
2 + ProCDHA . However, if the CDH assumption

holds, then ProCDHA ≤ negl(λ) and ProatpA ≤
1
2 + negl(λ). Therefore,

our protocol achieves authorization token privacy. A are not able
to obtain any information from the authorization token.

5.4. Security requirement analysis

Inside KGA Resilience: According to the description of our
proposed protocol in Section 4, the encryption process requires
as input the parameters PKr , SKs and the index set Iwi , where the
secret key SKs of DO is used to generate the ciphertext of the set Iwi .
Thus, a malicious cloud server is not able to generate ciphertexts
of the keywords and test the given trapdoor without the secret key
SKs. SKs is key to achieving inside KGA resilience. Thus, we say our
protocol is insider KGA resilience.

Forward Privacy: Let us assume a new index ind∗
wi

of file
containing keyword wi will be inserted into the cloud server.
Let List[wi].c = j and List[wi].stc = stjwi . According to the
description of our protocol, DS first computes st(j+1)wi = fsk(stjwi ).
Then, DS computes EIwi = (UT(j+1)wi , CI(j+1)wi ), where UT(j+1)wi =

h1(st(j+1)wi ) and CI(j+1)wi = h2(K , st(j+1)wi ) ⊕ ind∗
wi
. Finally, CS

updates the encryption database ED[UT(j+1)wi ] = CI(j+1)wi . If
the user searches the updated database ED using the previous
Twi = (j, stjwi ), then CS will compute UT(j−m)wi = h3(st(j−m)wi )
and st(j−m−1)wi = fpk(st(j−m)wi ) for each m = 0, 1, . . . , (j − 1).
CS returns the search result (UT(j−m)wi , ED[UT(j−m)wi ]), where m =

0, 1, . . . , (j − 1). According to the returned result, we know the
new index ind∗

wi
is not returned. Thus, we say our protocol achieves

forward privacy.
FIA Resilience: To prevent the adversary from recovering the

content of query based on the indexes of the returned result, our
protocol randomly stores the newly inserted file and encrypts
the index of inserted file by CI(j+m)wi = h2(K , st(j+m)wi ) ⊕ indm.
However, since the adversary may inject only one file at a time,

it can still know the index of injected file corresponding to the
encrypted index. Eventually, the adversary recovers the content of
query by the returned encrypted indexes. For example, although
Bost’s protocol [6] also encrypts the index of file, it still cannot
resist such an attack. To address this drawback, we add a padding
index ind∗ if |Iwi | = 1 in our protocol. The adversary is, therefore,
unable to determine the mapping between the encrypted indexes
and the plaintext index. Therefore, our protocol can resist the file-
injected attack.

6. Performance analysis

We will now present a comparative summary of the computa-
tion cost and security properties between our protocol and those
presented in [5,6,13,34], based on bilinear pairing operation, the
map-to-point, exponentiation, keyed hash function, scalar point
multiplication, etc.—see Table 2. The notations used in the com-
parative summary are as follows:

1. Tp: Time cost for a bilinear pairing.
2. Tmtp: Time cost for a map-to-point hash function.
3. Tsm: Time cost for a scalar point multiplication operation in

G1.
4. Texp: Time cost for an exponentiation operation in G2.
5. Tmul: Time cost for a multiplication operation in G2.
6. Te: Time cost for a encryption process of TPF, fsk(x) = y.
7. Td: Time cost for a decryption process of TPF, fpk(y) = x.
8. Th: Time cost for a keyed hash function.

As shown in Table 2, in our protocol, the computation cost of
encryption and authorization phase, trapdoor generation phase
and search phase are 1Te + 2Th, 3Tsm + 1Th and 1Td, respectively.
Our protocol is the only protocol to achieve inside KGA resilience,
forward privacy and FIA resilience.

To achieve a baseline security level for comparison, the 1024-bit
RSA algorithm is used as the trapdoor function, and the keyed hash
function is instantiated using SHA-1. G1 with order q is generated
by a generator on an elliptic curve E(Fp), where q and p are the
160-bits and 512-bits prime numbers, respectively. To evaluate the
efficiency of the five protocols, we perform our experiments on a
personal computerwith a single Intel core i5 CPU2.50GHz, 8.00GB
of RAM, a 250 GB, Lenovo T410 running Windows 7. We run the
related operations based onMIRACL library each for 100,000 times,
and the average runtime is presented in Table 3.

As shown in Fig. 7, the time cost in the protocols of Bost [6] and
ours is similar. However, our protocol is more efficient at the en-
cryption phase, due to the fact that we do not require any complex
operations, such as pairing and map-to-point. The protocol in [5]
is the most inefficient due to the need for a pairing operation and
a map-to-point hash function operation per encryption phase.

As presented in Fig. 8, our protocol has a higher computational
cost at the authorization and trapdoor phase than that of Bost [6],
although it is still significantly lower than the other protocols. As
indicated in Fig. 9, the computation cost at the search phase in our
protocol is similar to Bost’s protocol [6] but is slightly higher than
Chen et al.’s [13]. The main reason is that the decryption of RSA
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Table 3
Runtime of main operations.

operation Tp Tmtp Tsm Texp Tmul Te Td Th
Time (ms) 7.342 7.726 0.986 0.484 0.001 0.189 5.896 0.005

Fig. 7. Computation cost at encryption phase.

Fig. 8. Computation costs at authorization and trapdoor phase.

Fig. 9. Computation cost at search phase.

is a time-consuming operation. However, the search time of our
protocol is still less than the remaining protocols.

In otherwords, the performance of our protocol is similar to that
of Bost [6] and is more efficient than the remaining three protocols
studied in this paper [5,13,34]. In addition, our protocol avoids the
key management and distribution problem, and achieves inside
KGA resilience, forward privacy and FIA resilience.

7. Conclusion

Cloud of Things is likely to bemore popular and possibly result-
ing in other trends such as Cloud of Battlefield Things and Cloud
of Military Things. Therefore, it is important for any organization,
public or private, seeking to deploy Cloud of Things and related
architecture to be assured of the security of the system and privacy
of data outsourced to the cloud.

In this paper, we sought to contribute to one of many Cloud
of Things security and privacy challenges. Specifically, we defined
a searchable encryption protocol, its security model, and security
requirements. We then proved the security of the protocol, as well
as demonstrating the utility of the protocol in comparison to four
other related protocols in the literature.

Future research includes collaborating with a Cloud of Things
provider to implement a prototype of the proposed protocol, with
the aims of evaluating and refining the protocol to make it more
scalable and applicable for real-world deployment.
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