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Abstract Reliable determination of seismic liquefaction

potential of soil is an important obligation in earthquake

engineering. In this study, neuro-fuzzy group method of

data handling (NF-GMDH) was employed for prediction of

strain energy required to induce liquefaction. The NF-

GMDH-based model was developed using particle swarm

optimization. A wide-ranging database of soil element tests

was used to develop an advanced model, capable of pre-

dicting soil liquefaction resistance accurately. Input vari-

ables of the model were chosen based on the previous

studies on the liquefaction potential assessment. Results of

geotechnical centrifuge tests were also involved during the

training process for adequate generalization of the pro-

posed model for future predictions. A parametric analysis

was then performed to evaluate sensitivity of the proposed

model to variations of the influencing parameters. A

comparison between performance of the developed model

and previously recommended relationships was done. The

results clearly demonstrate that the proposed model, which

was derived based on laboratory results, can be success-

fully utilized for strain energy-based estimation of lique-

faction potential.

Keywords Liquefaction � Sand � Strain energy �
NF-GMDH � PSO

1 Introduction

Liquefaction is the phenomena when there is loss of

strength in saturated and cohesionless soils because of

increased pore water pressures and hence reduced effective

stresses due to dynamic loading. After the disastrous

damage observed during the Niigata and Alaska 1964

earthquakes, the liquefaction phenomenon has become the

scope of many studies in the field of geotechnical earth-

quake engineering (e.g., Lee and Fitton 1969; Seed and

Idriss 1971; Seed et al. 1975; Dabiri et al. 2011). Several

methods are developed to assess the liquefaction potential

in the field. The available methods for evaluation of liq-

uefaction are classified into three main groups (Green

2001; Alavi and Gandomi 2012): stress-based methods,

strain-based methods and energy-based methods.

The most widely used method for evaluating liquefac-

tion is the stress-based approach. This method was pro-

posed by Seed and Idriss (1971) and Whitman (1971).

Stress-based method is mainly empirical and is based on

laboratory and field data. In this approach to correlate real

earthquake motion to laboratory harmonic loading condi-

tion, the equivalent shear stress level, the number of cycles

and the equivalent earthquake duration should be defined

such that differences are always available between the

results of researches (Ishihara and Yasuda 1975; Seed et al.

1975; National Research Council 1985; NCEER 1997).

Although this approach has been continually modified as a

result of newer studies and the increase in the number of

liquefaction case histories (e.g., NCEER 1997; Youd et al.

2001), this deficiency still persists. Dobry et al. (1982)

proposed the strain-based method as an alternative to the

empirical stress-based procedure. This method was derived

from the mechanics of two interacting idealized sand grains

and then generalized for natural soil deposits (Green 2001;
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Baziar and Jafarian 2007). The strain-based method has

been less common than the stress-based method because of

the fact that the strain approach only predicts the initiation

of pore pressure buildup, which is required for liquefaction

occurrence, but does not imply that liquefaction will

happen.

Energy-based assessment of liquefaction potential con-

siders effects of strain and stress concurrently, unlike the

stress- or strain-based procedures (Liang 1995; Baziar et al.

2011). In the energy-based method, the amount of strain

energy required to trigger liquefaction in sandy soils is

obtained from laboratory testing or field data. Figure 1

represents a schematic of shear stress–strain curve (hys-

teresis loop) from a cyclic triaxial test. The area inside the

hysteresis loop represents the dissipated energy per unit

volume of the soil mass. The summation of energy is

computed until the onset of liquefaction phenomena. For

prediction of liquefaction triggering, this strain energy is

compared with the strain energy divulged by dynamic

loading such as earthquake to the sand layer during the

seismic design event (Jafarian et al. 2011).

The progress of advanced computational methods for

problems analysis necessitates the accurate determination

of soil liquefaction potential. In recent years, new aspects

of modeling, optimization and problem solving have

evolved in light of the pervasive development in compu-

tational software and hardware. These aspects of software

engineering are referred to as soft computing-based meth-

ods such as artificial intelligence which is a powerful tool

for multivariate and nonlinear modeling. In case of com-

plicated problems, experimentalists prefer these trial

approaches rather than analytical optimization. Numerous

researchers applied artificial intelligence models for or

prediction in the various topics of geotechnical and struc-

tural engineering such as stress–strain modeling of soil

(Penumadu and Zhao 1999), slope stability (McCombie

and Wilkinson 2002), landslide (Oh and Pradhan 2011),

settlement of shallow foundations (Shahin et al. 2002),

bearing capacity of reinforced footings (Javdanian et al.

2012), groundwater (Tabesh and Dini 2009; Rakhshan-

dehroo and Ghadampour 2011), liquefaction (Baykasoglu

et al. 2009), retaining wall (Heidari 2011), dynamic soil

properties (Jafarian et al. 2014; Javdanian et al. 2015),

predicting scour depth (Najafzadeh and Azamathulla

2013a, b; Najafzadeh et al. 2014) and dynamic analysis of

structures (Salajegheh and Heidari 2004; Heidari and

Salajegheh 2006; Heidari 2010).

In the past years, the GMDH networks provided suc-

cessful evaluations in various fields of geotechnical engi-

neering sciences such as prediction of the scour depth

around hydraulic structures (Najafzadeh et al. 2013a, b;

Najafzadeh et al. 2014a, b) and estimation of the Su-NSPT

correlation (Kalantary et al. 2009). Application of the

GMDH networks yielded relatively precise estimations

than those obtained using empirical equations-based

regressive models. The main concern of the GMDH net-

work is to present analytical solutions for various problems

within a feed-forward network in the form of quadratic

polynomial whose weighting coefficients are obtained

using regression method (Najafzadeh et al. 2013a, b;

Kalantary et al. 2009).

In recent decades, the structure of the GMDH network

has been improved using multistage fuzzy decision rule as

neuro-fuzzy GMDH to obtain physical insights of problems

with high degree of complexity. The NF-GMDH networks

have been successfully applied to the different problems

such as grinding characteristics and forecasting the unre-

liable mobile communication (Nagasaka et al. 1995;

Hwang 2006). The neuro-fuzzy GMDH has higher flexi-

bility and lower complexity compared to the GMDH net-

work. The other advantages of the NF-GMDH models were

presented in the literature (Najafzadeh and Azamathulla

2013a, b; Najafzadeh and Lim 2014; Najafzadeh 2014).

In this paper, a new approach is introduced based on

NF-GMDH model for assessment of the soil liquefaction

potential. The GMDH-based model is trained and tested

separately using two different datasets of laboratory tests

results. Also, the particle swarm optimization (PSO)

algorithm is applied in topology design of the NF-GMDH

model for prediction of the liquefaction triggering. The

performance of the proposed model is also evaluated

through centrifuge validation set. A parametric analysis

was carried out to evaluate the sensitivity of the proposed

model to the variation of the influencing parameters. The

results of the developed model are compared with those

obtained from the previous empirical and statistical rela-

tionships. It is shown that the NF-GMDH models are able

to learn with a high accuracy for the complex correlation
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Stored energy

Dissipated energy
(Strain energy)

Fig. 1 Hysteretic stress–strain curve for cyclic loading
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between liquefaction potential and its influencing factors. It

is clear that a precise correlation is easier to use in the

routine geotechnical projects compared with the field

measurement techniques.

2 Methodology

2.1 Framework of Neuro-Fuzzy GMDH

The GMDH network is a learning machine based on the

principle of heuristic self-organizing, designed by Ivakh-

nenko (1971). Also, it is a series of operations of seeding,

rearing, crossbreeding, selection and rejection of seeds that

correspond to the determination of the input variables,

structure and parameters of model, and selection of model

by principle of termination (Madala and Ivakhnenko 1994).

The other descriptions of GMDH network were presented

in the literature (Onwubolu 2008).

In this paper, a neuro-fuzzy GMDH model-based PSO

algorithm has been proposed for liquefaction potential

prediction. The structure of neuro-fuzzy GMDH is con-

structed automatically using heuristic self-organized algo-

rithm (Hwang 2006). The neuro-fuzzy GMDH network is a

very flexible algorithm, and it can be hybridized easily by

other iterative and evolutionary algorithms. Furthermore, a

simplified fuzzy reasoning rule is utilized to improve the

GMDH network as follows (Ohtani et al. 1998):

Fkj xj
� �

¼ exp � xj � akj
� �2

=bkj

� �
ð1Þ

If x1 is Fk1 and x2 is Fk2, then output y is wk. Gaussian

membership function is used in terms of Fkj which is

related to the kth fuzzy rules in the domain of the jth input

values xj. Parameters akj and bkj are constant values for

each rule. Also, y parameter is defined as output that has

been expressed as follows:

y ¼
XK

k¼1

ukwk ð2Þ

uk ¼
Y

j

Fkj xj
� �

ð3Þ

where wk is real value for kth fuzzy rules (Hwang 2006;

Ohtani et al. 1998).

NF-GMDH model is one of the adaptive learning net-

works that have hierarchical structure. In this model, each

neuron has two input variables and one output. General

configuration of NF-GMDH is indicated in Fig. 2. As

depicted in Fig. 2, output of each neuron in a layer is

considered as the input variable in the next layer. The final

output is calculated using average of the outputs from the

last layer. As shown in Fig. 2, the inputs from the mth

model and pth layer are the output variables of the (m-1)th

and mth model in the (p-1)th layer. The mathematical

function for calculating the ypm is:

ypm ¼ f yp�1;m�1; yp�1;m
� �

¼
XK

k¼1

lpmk :wpm
k ð4Þ

lpmk ¼ exp �
yp�1;m�1 � a

pm
k;1

� �2

b
pm
k;1

�
yp�1;m � a

pm
k;2

� �2

b
pm
k;2

8
><

>:

9
>=

>;

ð5Þ

where lpmk and w
pm
k are the kth Gaussian function and its

corresponding weight parameter, respectively, that are

related to the mth model in the pth layer.

In addition, a
pm
k and b

pm
k are the Gaussian parameters

that are utilized for the ith input variable from the mth

model and pth layer. Also, final output is expressed using

the following function:

y ¼ 1

M

XM

m¼1

ypm ð6Þ

The learning process of feed-forward neuro-fuzzy

GMDH is known as an iterative method to solve the

complicated systems. In each iteration, error parameter for

network can be obtained as follows:

E ¼ 1

2
y� � yð Þ2 ð7Þ

where y� is the predicted value.

2.2 Development of NF-GMDH Using PSO

Algorithm

In this research, the NF-GMDH model is developed using

particle swarm optimization (PSO) algorithm. The basic

structure of the NF-GMDH network consists of partial

descriptions. As mentioned in the previous section, grouped

parameters in the form of Gaussian variables and weighting

coefficients related to the fuzzy rule are unknown in each

partial description (PD). The PSO algorithm is applied to

optimize grouped-unknown parameters in PDs.

yƩ/3

m=1m=1 m=1

m=2 m=2 m=2

m=3 m=3 m=3

p=1 p=2 p=3

x1
x2

x3

x4

x5

x6

Fig. 2 A feed-forward network for the NF-GMDH model
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The particle swarm optimization (PSO) was inspired by

the social behavior of animals such as fish schooling,

insects swarming and birds flocking. PSO was introduced

by Kennedy and Eberhart (1995) to simulate the graceful

motion of bird swarms as a part of a socio-cognitive study.

It involves a number of particles that are initialized ran-

domly in the search space of an objective function. These

particles are referred to as swarm. Each particle of the

swarm represents a potential solution of the optimization

problem. The ith particle in tth iteration is associated with a

position vector, Xt
i , and a velocity vector, Vt

i , that are

shown as follows:

Xt
i ¼ xti1; x

t
i2; . . .; x

t
iD

� �
ð8Þ

Vt
i ¼ vti1; v

t
i2; . . .; v

t
iD

� �
ð9Þ

where D is dimension of the solution space.

The particle flies through the solution space and its

position is updated based on its velocity, the best position

particle (pbest) and the global best position (gbest) that

swarms have visited since the first iterations are:

Vtþ1
i ¼ xtVt

i þ c1r1 pbestti � Xt
i

� �
þ c2r2 gbestti � Xt

i

� �

ð10Þ

Xtþ1
i ¼ Xt

i þ Vtþ1
i ð11Þ

where r1 and r2 are two uniform random sequences gen-

erated from interval [0, 1]; c1 and c2 are the cognitive and

social scaling parameters, respectively; and x t is the inertia

weight that controls the effect of the previous velocity.

Shi and Eberhart (1998) proposed that the cognitive and

social scaling parameters c1 and c2 should be selected as

c1 = c2 = 2 to allow the product c1r1 or c2r2 to have a

mean of 1. The performance of PSO is very sensitive to the

inertia weight ðxÞ parameter which may decrease with the

number of iterations as follows (Shi and Eberhart 1998):

x ¼ xmax �
xmax � xmin

tmax

:t ð12Þ

where xmax and xmin are the maximum and minimum

values of x, respectively, and tmax is the limit numbers of

optimization iteration.

Performing the NF-GMDH and PSO algorithms is a

parallel action in each PD. Two fuzzy rules were used to

model the neuro-fuzzy in each PD. NF-GMDH-PSO has

nine input variables and one output. Throughout modeling

the NF-GMDH-PSO model, 15 PDs were produced in the

first layer. After that, the second layer was generated using

15 PDs from the first layer. This process could be contin-

ued until minimum error of training network is obtained.

The NF-GMDH-PSO model with three layers was gener-

ated throughout optimization process. Training error of

optimization process was 0.00348. The hybridization of the

NF-GMDH network and the PSO algorithm within a

parallel process is illustrated in Fig. 3. The value of the

control parameters of the PSO algorithm is presented in

Table 1. Selections of the control parameters were con-

ducted from experiences of previous researches (e.g., Shi

and Eberhart 1998). Two fuzzy rules were applied to

develop each PD. Hence, 90 fuzzy rules were used to build

three layers of NF-GMDH-PSO network. From performing

the training stage, many partial descriptions for the first

layer are given as follows:

LogWð Þ11 ¼ 0:7216exp �
r

0

0 � 0:4508
� �2

1:4754
� Dr � 0:4508ð Þ2

1:4754

" #

þ 0:3289exp �
r

0

0 � 0:8116
� �2

0:1764
� Dr � 0:8116ð Þ2

0:1764

" #

ð13Þ

LogWð Þ12¼ 0:8183 exp � Dr � 0:4291ð Þ2

1:5
� FC � 0:4291ð Þ2

1:5

" #

þ 1:5 exp � Dr � 1:4291ð Þ2

0:2106
� FC � 1:4291ð Þ2

0:2106

" #

ð14Þ

Set
P=P+1

Yes

Start

Performance of the PSO algorithm in 
partial description (PD)

Construct partial description (PD) by 
weighting coefficients

Computation of training error (E) in 
partial description (PD)

Create the combinations of inputs 
parameters

E>Euser

Build the NF-GMDH model

Stop

No

Fig. 3 Flowchart of the NF-GMDH-PSO
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LogWð Þ13 ¼ 1:259exp � FC � 0:8079ð Þ2

0:0367
� Cu � 0:8079ð Þ2

0:0367

" #

þ 0:7822exp � FC � 0:2654ð Þ2

0:8352
� Cu � 0:2654ð Þ2

0:8352

" #

ð15Þ

The superscript and subscript of each parameter present

the number of pertaining layer and partial description,

respectively.

2.3 Model Performance

In order to examine the robustness of the proposed models,

the coefficient of determination (R2), mean absolute per-

centage error (MAPE) and root-mean-squared error

(RMSE) between the measured and predicted strain energy

required to induce liquefaction (W) were obtained accord-

ing to the following equations:

R2 ¼
Pn

i¼1 xmi
� �2�

Pn
i¼1 xmi � x

p
i

� �2
Pn

i¼1 xmið Þ2
ð16Þ

MAPE ¼ 1

n

Xn

i¼1

xmi � x
p
i

xmi

����

����� 100 ð17Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 xmi � x
p
ið Þ2

n

s

ð18Þ

where n is the number of data and xmi and x
p
i are measured

and predicted values, respectively.

3 Experimental Database

A wide-ranging database was used from previously pub-

lished laboratory tests for development of the model

(Towhata and Ishihara 1985; Arulmoli et al. 1992; Liang

1995; Green 2001). The database contains cyclic triaxial,

cyclic torsional shear and simple shear tests. These

experimental studies were conducted on sand and silty

sands (Baziar and Jafarian 2007). The database includes

284 element tests data.

The database was divided into two separate groups

denoted as training and testing sets consisting of 75 and

25% data, respectively. Once the training of the model has

been successfully accomplished, the performance of the

trained model is validated using the validation data, which

have not been used as the part of model building process

(Heidari 2008). The data division process was performed

so that the main statistical parameters of the training and

testing subsets (i.e., maximum, minimum, mean and stan-

dard deviation) become close to each other. For this pur-

pose, a trial selection procedure was carried out and the

most possible consistent division was determined (Masters

1993). Descriptive statistics of the data groups variables

used in the model development are presented in Table 2.

In the present study, the most important parameters that

affect the strain energy required for triggering liquefaction

were selected based on the previous studies on the lique-

faction potential assessment. The parameters initial mean

effective confining pressure, r’0 (kPa), relative density

after consolidation, Dr (%), mean grain size, D50 (mm),

Table 1 Values of the PSO properties for prediction of the strain

energy

Parameter Range

Omega 0.04–0.09

Number of particles 50

Number of variables 6

Maximum iteration 200

Error 0.00001

C1 and C2 2.5

Weighting coefficients 0.1–1.5

Table 2 Descriptive statistics of the variables used in the models development

Variables All data Training set Testing set

Max.a Min.b Mean SDc Max. Min. Mean SD Max. Min. Mean SD

Inputs r’0 (kPa) 294 41.1 98.88 27.86 294 41.1 98.33 27.57 294 41.1 100.5 28.85

Dr (%) 105.1 -44.5 47.60 33.63 105.1 -44.5 48.80 33.31 97.9 -36.5 43.99 34.58

FC (%) 100 0 20.44 26.32 100 0 22.02 28.47 100 0 15.68 17.76

D50 (mm) 0.46 0.03 0.234 0.13 0.46 0.03 0.23 0.131 0.46 0.03 0.248 0.126

Cu 5.88 1.57 2.39 1.02 5.88 1.57 2.41 1.023 5.88 1.57 2.31 1.01

Cc 1.61 0.74 0.952 0.196 1.61 0.74 0.945 0.194 1.61 0.74 0.971 0.201

Output Log W (J/m3) 4.544 2.477 3.267 0.451 4.544 2.477 3.252 0.44 4.44 2.49 3.313 0.519

a Maximun
b Minimum
c Standard deviation
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uniformity coefficient, Cu, coefficient of curvature, Cc,

fines content, FC (%), used as input parameters, and

measured strain energy density required for occurrence of

soil liquefaction, W (J/m3), was the single output variable.

Parameters r’0 and Dr represent initial density of soils, and

they were referred as intergranular contact density. Also,

Cu, Cc and D50 are grain size distribution parameters and

have been used to capture the grain size characteristic. In

addition, FC is individually considered as a factor which

controls the potential of pore pressure buildup. It is note-

worthy that further experimental and statistical studies are

needed to reflect the effect of other effective parameters

such as mode of shear and degree of saturation (Saikia and

Chetia 2014) on the evaluation of liquefaction potential.

The results of centrifuge tests (Dief 2000) as validation

set were also employed in addition to the training and

testing sets for further examination and generalization of

the model performance.

4 Results

Numerous runs were performed with various initial set-

tings, and the performance of the developed model was

analyzed for each run. Consequently, the best model was

selected according to statistical criteria such as R2, MAPE

and RMSE. In addition, a comprehensive parametric study

was performed to monitor the behavior of each model

versus variations of input variables. Proposed NF-GMDH-

based model that was selected as most appropriate model

was constituted by six input parameters (r’0, Dr, FC, D50,

Cu and Cc) and one output (Log W).

Precision of the proposed model is examined by plotting

the measured versus predicted values of the strain energy

density required for occurrence of soil liquefaction, W, for

training, testing and all data as shown in Figs. 4 and 5,

respectively. The values of R2, MAPE and RMSE are equal

to 0.928, 1.404 and 0.059, respectively, for training set

(Fig. 4) and 0.868, 2.197 and 0.118, respectively, for

testing set (Fig. 5).

In order to confirm sufficient generalization for future

predictions, centrifuge validation tests (Dief 2000) were

used as another testing set. Dief (2000) performed these

tests on Nevada and Reid Bedford clean sands and LSFD

silty sand at Case Western Reserve University. He pro-

cessed the recorded accelerations and lateral displacements

of the laminar box segments using lumped mass models

and estimated the shear stress–strain history at different

depths in centrifuge models (Baziar and Jafarian 2007).

Since these accumulated dissipated energies were calcu-

lated up to liquefaction triggering, they represent the

capacity of their corresponding soils similar to experi-

mental database. Figure 6 depicts measured versus

predicted energy density for the centrifuge validation

dataset. The values of R2, MAPE and RMSE for this

dataset were obtained equal to 0.801, 2.101 and 0.101,

respectively. In fact, the evolved model has obtained high

accuracy for both testing and validation sets.

The results shown in Figs. 4, 5 and 6 indicate reasonable

good performance of NF-GMDH-based model for assess-

ment of required strain energy to induce liquefaction

because the predicted values are satisfactorily distributed

between two lines illustrating 0.85 and 1.15 times of

measured values for training and testing datasets and 0.9

and 1.1 times for centrifuge dataset.
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The values of statistical parameters of neuro-fuzzy

group method of data handling (NF-GMDH)-based model

for training, testing and all datasets are presented in

Table 3. R2, MAPE and RMSE values for centrifuge val-

idation set are also shown in this table.

4.1 Model Accuracy and Sensitivity Analysis

Difference between the measured values of logarithm of

strain energy (Log W) to the values predicted by the NF-

GMDH-based model as relative error, for both training and

testing datasets, is shown in Fig. 7. As the scattering

increases in this figure, the accuracy of the model conse-

quently decreases. It is observed that the developed model

can predict the strain energy required for occurrence of soil

liquefaction with reasonable accuracy because the relative

error is satisfactorily distributed between two lines illus-

trating ±0.3 J/m3 relative error.

Figure 8 shows the normalized strain energy (i.e., the

ratio of the measured to the predicted Log W values) versus

the predicted logarithm of strain energy values. This fig-

ure demonstrates that the average value of the normalized

Log W is 1.012 which confirms that the predictions are

reasonable. In addition, the maximum and the minimum

values of the ratio of the measured to the predicted Log

W values were 1.251 and 0.823, respectively.

Further investigation on the model performance under

various conditions was conducted through a parametric

analysis. This part of the study was performed to evaluate

whether the NF-GMDH-based model matches its predic-

tion to those measured in experimental investigations. For

this purpose, variations of inputs parameters on the amount

of strain energy required to induce liquefaction were

studied, while the other parameters were kept constant at

their mean values in the database (Table 2).

Variation of strain energy predicted by neuro-fuzzy

group method of data handling (NF-GMDH) model against

percentage of fines content (FC) at different levels of rel-

ative density (Dr) is shown in Fig. 9. This figure includes

three curves obtained by the developed NF-GMDH model

for the relative densities of 40, 60 and 80%. The predicted
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Fig. 6 Measured versus predicted values of strain energy for

centrifuge validation set

Table 3 Target statistical parameters of NF-GMDH-based model

Group Performance

R2 MAPE RMSE

Training 0.928 1.404 0.059

Testing 0.868 2.197 0.118

All data 0.891 1.896 0.074

Validation (centrifuge tests) 0.801 2.101 0.101
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curves were evaluated as a function of FC for

r’0 = 100 kPa, D50 = 0.25 mm, Cu = 2.4 and Cc = 0.95.

Some of the measured data in the range of

20%\Dr\ 90% were also overlaid in Fig. 9 in order to

demonstrate how the experimental results of strain energy

vary with increasing FC and Dr. As shown in Fig. 9, the

amount of strain energy required up to liquefaction trig-

gering initially increases with increment of fines content

(FC) up to about 15–20% and then continuously decreases

for further increase in FC. Subsequently, the decrement

rate of W declines for larger FC. Comparison between the

results of the parametric study for FC and Dr (Fig. 9) and

experimental database confirms the obtained results and

satisfactory performance of the NF-GMDH-based model.

The trends observed in Fig. 9 are inconsistent with the

findings of some previous studies (Carraro et al. 2003;

Hazirbaba and Rathje 2009; Baziar et al. 2011) on the

effects of fines content on liquefaction resistance. Also, on

the basis of cyclic undrained triaxial tests on Yatesville

silty sand, Polito and Martin (2001) reported an increase

and then a decrease in liquefaction resistance against

increase in percentage of fines content (FC).

Figure 10 depicts variation of strain energy, W, versus

relative density, Dr, at different levels of mean grain size,

D50 = 0.1, 0.25, 0.4 mm, while the other parameters were

kept constant at their mean values in the dataset (Table 2).

The measured data are superimposed on the plot.

According to Fig. 10, the amount of W required for liq-

uefaction onset increases with increase in Dr and D50. A

similar trend for dependency of W to Dr and D50 has been

observed in the experimental data.

The effect of relative density on strain energy (W) is

more considerable for higher D50 values (coarser soil)

(Fig. 10). In other words, NF-GMDH-based curves

(Fig. 10) show that with increase in mean grains size (D50),

the increment rate of strain energy increases. This finding

is in qualitatively good agreement with the results of lab-

oratory studies carried out by Liang (1995). They con-

cluded that the strain energy of coarser soil is higher than

that of finer soil. Liang (1995) also reported that the effect

of Dr on W is more pronounced for coarse-grained soils in

comparison with the fine-grained soils.

4.2 Comparison with the Previous

Recommendations

For comparison purpose, predictions of previously recom-

mended relationships (Table 4) are used. There are several

studies that have focused on the strain energy-based eval-

uation of liquefaction potential of soil. On the basis of

undrained cyclic tests and centrifuge modeling, various

relationships were developed using multiple linear regres-

sion (MLR) for strain energy required to induce liquefac-

tion in sands and silty sands (Figueroa et al. 1994; Liang

1995; Dief and Figueroa 2001). Using wide-ranging data-

base of soil element tests, Baziar and Jafarian (2007)

developed a MLR-based equation for estimation of

W. Alavi and Gandomi (2012) recommended their corre-

lations using genetic programming (GP), linear genetic

programming (LGP) and multi-expression programming

(MEP). Two different combinations of the influencing

variables were considered for the development of their

correlations. The first combination of inputs parameters

include r’0, Dr (i.e., MEP-I and LGP-I models); the other

combination consisted of r’0, Dr, FC, D50 and Cu (i.e., GP,

MEP-II and LGP-II models).

The measured results are plotted in Fig. 11a–l against

predictions of the developed NF-GMDH model and pre-

vious published relationships (Table 4). These comparisons

(Fig. 11a–l) confirm that the neuro-fuzzy group method of
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Fig. 11 Comparison between the experimental Log W versus predicted values from various models: This study (a), Alavi and Gandomi (2012)

(b–f), Baziar and Jafarian (2007) (g), Dief and Figueroa (2001) (h, i), Liang (1995) (j, k), Figueroa et al. (1994) (l)
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data handling (NF-GMDH) model can reasonably predict

the strain energy for liquefaction triggering.

Table 5 presents the values of R2, MAPE and RMSE for

the developed NF-GMDH-based model and the Log

W values estimated by other statistical equations for liq-

uefaction assessment. Although the MLR-based correla-

tions of Dief and Figueroa (2001), Liang (1995) and

Figueroa et al. (1994) yield accurate estimations for their

experimental dataset, it is clearly observed in Table 5 that

their recommendations were generally unable to accurate

prediction of Log W for the current experimental database,

which is more comprehensive in comparison with the

previous datasets. The results presented in Table 5 confirm

higher precision of the proposed model with respect to the

previous studies.

5 Summary and Conclusions

In this paper, a relatively large database including labora-

tory tests including cyclic triaxial, cyclic torsional shear

and simple shear tests on sand and silty sands was used.

Powerful intelligent tool (i.e., neuro-fuzzy group method of

data handling, NF-GMDH) was utilized to develop a

model, for prediction of strain energy required for lique-

faction onset (W). Also, the particle swarm optimization

(PSO) algorithm is applied in topology design of the NF-

GMDH model. Based on the experimental observations in

the gathered experimental database as well as the previous

studies on sandy soils, six parameters: initial mean effec-

tive confining pressure (r’0), relative density (Dr), fines

content (FC), mean grain size (D50), uniformity coefficient

(Cu) and coefficient of curvature (Cc), were used as input

parameters to develop the NF-GMDH-based model. In

addition, results of several centrifuge tests, which were not

used during model development, were employed for further

validation of the proposed model. The proposed model

showed a reasonably good performance for all element

tests (R2 = 0.891, MAPE = 1.896, RMSE = 0.074) and

centrifuge datasets (R2 = 0.801, MAPE = 2.101,

RMSE = 0.101). The relative error of strain energy

(W) values of the developed NF-GMDH-based model is

approximately below ±0.3 J/m3.

A parametric analysis was performed to investigate the

behavior of the NF-GMDH model under different condi-

tions and to compare model behavior with those observed

in the experimental studies. The results show that the

amount of strain energy required up to liquefaction trig-

gering (W) initially increases with increment of fines

content (FC) up to about 15–20% and then continuously

decreases with increase in percentage of fines. Also, W

increases with increase in relative density and mean

grains size (D50). These variation trends of the developed

model are in good agreement with the previously pub-

lished experimental results. Comparisons between the

performances of the developed NF-GMDH-based model

and previously recommended relationships (Table 4) for

liquefaction assessment have been done. It is clearly

observed that the model of neuro-fuzzy group method of

data handling (NF-GMDH) yields a much better perfor-

mance than the previous recommendations (Fig. 11;

Table 5). Therefore, the results of comparison confirm

high precision of the developed model for estimation of

strain energy required to trigger liquefaction in sandy

soils.

Although the influence of most effective parameters on

liquefaction potential was captured in the proposed

GMDH-based model of strain energy, some parameters

(e.g., mode of shear) were ignored. It is clear that a detailed

study on this subject can potentially result in a more rig-

orous energy-based model. Moreover, the methodology

presented in this paper is introduced as a method that is

currently under development and will need the use of larger

databases before it can be proposed for general application

to the current practice of liquefaction design. Definitely,

more studies on the energy-based approach are needed to

develop robust and generalized models for estimating soil

liquefaction potential.
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