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Abstract: A procedure is proposed whereby input and hysteretic energy spectra developed for single-degree-of-freedom 
(SDOF) systems are applied to multi-degree-of-freedom (MDOF) steel moment resisting frames.  The proposed procedure 
is verifi ed using four frames, viz., frame with three-, fi ve-, seven- and nine-stories, each of which is subjected to the fault-
normal and fault-parallel components of three actual earthquakes. A very good estimate for the three- and fi ve-story frames, 
and a reasonably acceptable estimate for the seven-, and nine-story frames, have been obtained.  A method for distributing the 
hysteretic energy over the frame height is also proposed.  This distribution scheme allows for the determination of the energy 
demand component of a proposed energy-based seismic design (EBSD) procedure for each story.  To address the capacity 
component of EBSD, a story-wise optimization design procedure is developed by utilizing the energy dissipating capacity 
from plastic hinge formation/rotation for these moment frames.  The proposed EBSD procedure is demonstrated in the design 
of a three-story one-bay steel moment frame.
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1   Introduction

Like any earthquake spectrum, input and hysteretic 
energy spectra are derived from single degree-of-
freedom (SDOF) systems.  Since most structures in 
reality are multi-degree-of-freedom (MDOF) systems, 
a methodology for estimating input and hysteretic 
energy demands for MDOF systems using information 
from single-degree-of-freedom (SDOF) systems is 
needed.  Furthermore, for the purpose of design an 
energy distribution scheme is needed to apportion the 
total system hysteretic energy to each part of a MDOF 
structure.  

In this paper, a methodology to extend the energy 
demands from a SDOF system to a MDOF system is 
proposed.  An energy distribution scheme that can be 
used for the design of multi-story steel moment frames 
is also proposed.  In addition, a story-wise optimization 
design procedure for steel moment resisting frames is 
developed by utilizing their energy dissipating capacity 
from plastic hinge formation/rotation.  

Regardless of the size of the structure or whether it is 
a SDOF or MDOF system, the fi rst step in energy-based 
seismic design (EBSD) is to determine the seismic energy 
demand on the structure due to the design earthquake.  
Seismic energy demand or hysteretic energy is the 
inelastic component of the absorbed energy of the total 
seismic input energy imparted to a structure and it is a 
function of the hysteretic behavior of the structure.  For a 
given design earthquake, structures of equal weight/mass 
but have different hysteretic behavior will experience 
different seismic energy demands.  Expectedly, different 
seismic energy demands will require different energy 
dissipation capacities.  In EBSD, the structure has to be 
designed so its energy dissipation capacity will exceed 
the energy demand.  The fact that almost all practical 
structures are MDOF systems means one needs to go 
beyond SDOF systems and study the seismic input 
and hysteretic energy of MDOF systems.  Compared 
to SDOF systems, the determination of seismic energy 
demand for MDOF systems is understandably more 
diffi cult.  The number of dynamic equations involved 
along with the potential coupling effect of different 
responses makes the determination of seismic input 
energy and the accompanying hysteretic energy in 
MDOF systems rather diffi cult.  However, using SDOF 
systems as the basis, research has shown that the input 
energy for MDOF structures can be obtained in an 
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approximate manner.
Akiyama (1985) used the S00E component of the 

1940 El Centro record to compute the input energy 
using a Fourier Spectra for a fi ve-story building.  He 
compared it with the input energy of an equivalent one-
story building having the same fundamental period of 
vibration, total mass, and yield strength, and concluded 
that the input energy for the MDOF structure could be 
estimated from the input energy of the equivalent SDOF 
system.  He also reported that the parameters that affected 
earthquake input energy were mainly the mass and 
period of the structure.  Nakashima et al. (1996), in their 
study on the energy behavior of structures with hysteretic 
dampers, found that the total input energy and hysteretic 
energy for MDOF systems were approximately the same 
as those of the equivalent SDOF systems. They also 
found that this was true even for a large value of post-to-
pre-yield stiffness ratio.  The effect of post-to-pre-yield 
stiffness ratio was only important on the distribution of 
hysteretic energy at different levels of the structure.  

Shen and Akbas (1999) computed earthquake input 
energy for a three-, six- and ten-story moment resisting 
steel frames using equivalent SDOF systems. They 
compared the input energy expressions formulated 
based on the energy balance equation and empirical 
equations by Housner (1956), Akiyama (1985), Fajfar et al. 
(1989), Kuwamura and Galambos (1989) and Uang and 
Bertero (1990) and found that energies for MDOF and 
the corresponding equivalent SDOF structures were 
signifi cantly different since the empirical equations did 
not take into account structural properties such as period 
of vibration and hysteretic behavior.  

Chou and Uang (2003) developed an empirical 
formula to estimate the absorbed energy in multistory 
fames using an energy spectra developed for SDOF 
systems. They used a static pushover analysis to 
determine the yield force and ductility factor of an 
equivalent SDOF system.  For low-to-medium rise 
buildings, they showed that by using just two modes 
of the MDOF systems their empirical formula could 
be used to estimate the absorbed energy in MDOF 
systems from the equivalent SDOF systems.  Li et al. 
(2007) and Ye et al. (2009) also proposed procedures for 
obtaining hysteretic energy of MDOF structures from 
equivalent SDOF structures.  Their procedures take into 
account only the fi rst mode of the MDOF structures.  
Using eight examples (two regular and six irregular 
MDOF structures), they concluded that their procedure 
was an effective and simple way of obtaining the 
hysteretic energy demands of MDOF structures.  Ye et 
al. (2009) also studied the energy-based seismic design 
and its application for steel braced frame structures, 
and proposed an inelastic input energy spectrum for 
SDOF structures together with a relationship between 
hysteretic energy and input energy.  They concluded 
that the input energy for MDOF structures could be 

estimated from the equivalent SDOF structures.  For 
structures in the moderate and long period regions, they 
proposed expressions to estimate the input energy for 
MDOF systems from their equivalent SDOF systems as 
well as presented equations for the ratio of hysteretic-to-
input energy for MDOF structures. 

In this study, an equation that relates the energy 
demand of a MDOF system and the corresponding 
SDOF systems is formulated and proposed.  An energy 
distribution scheme is then developed to allow for the 
allocation of this energy demand to each story of a steel 
moment resisting frame.  A story-wise design procedure 
suitable for use in an EBSD of these frames is then 
introduced.

2   Equivalent SDOF systems

The equations of motion for a MDOF system with 
n degrees of freedom subjected to earthquake ground 
acceleration g

( )u t  can be expressed as 

g( ) ( ) ( ) ( )t t t u t     Mu Cu Ku M             (1)  

where , , M C K  are the mass, damping and stiffness 
matrices of size (n × n), respectively; ( )tu , ( )tu , ( )tu  
are the relative acceleration, velocity and displacement 
vectors of the n-degrees of freedom system, respectively; 
and ι is the infl uence vector that accounts for the effect 
of ground excitation on a specifi c degree of freedom of 
the structure (Chopra, 2012). 

If we denote  
1

( ) ( ) ( )
n

i i
i

t t x t


  u x   where Φ is the 
n × n mode shape matrix composed of n mode shape 
vectors ϕi, each of dimension n × 1, and is the modal 
displacement vector composed of modal displacements 
xi(t), i = 1,2,…n, then upon substituting the terms for 
u(t), Eq. (1) can be written as

g
1 1 1

( ) ( ) ( ) ( )
n n n

i i i i i i
i i i

x t x t x t u t
  

       M C K M       (2)

For Mode r, multiplying both sides of the above 
equation by T

r  gives

T T T T

g
1 1 1

( ) ( ) ( ) ( )
n n n

r i i r i i r i i r
i i i

x t x t x t u t
  

       M C K M         (3)

In nonlinear analysis, responses in different modes 
are often coupled.  However, in modal analysis, responses 
in different modes are assumed to be independent.  
Although theoretically incorrect, the assumption of 
modal independence has been used for nonlinear 
analysis of systems with material nonlinearity by a 
number of researchers.  Chopra and Goel (2002), Chou 
and Uang (2003), Hernandes-Montes et al. (2004) and 
Prasanth et al. (2008) have all applied this assumption 
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in determining seismic demand for buildings and found 
that the assumption was acceptable. As a result, the 
present study will assume that the different modes are 
uncoupled and are orthogonal to one another.  By using 
this assumption and by assuming classical damping for 
the system, Eq. (3) can now be written for any mode r of 
a MDOF system as

T T T T
g( ) ( ) ( ) ( )r r r r r r r r r rx t x t x t u t     M C K M          (4)

Defi ning T
r r rMM   and T

r r rCC  , and 
substituting these equations in Eq. (4) yields

T T
g( ) ( ) ( ) ( )r r r r r r r rM x t C x t x t u t     K M            (5)

Dividing both sides of Eq. (5) by Mr, and defi ning a 

modal participation factor for Mode r as 
T

r r
r

r r

L
M M

  
M  , 

and a nonlinear stiffness–displacement relationship as 
T ( ) ( )

r r r r
x t F tK  , the above equation can be written as

g

( )
( ) 2 ( ) ( )r

r r r r r
r

F t
x t x t u t

M
                    (6)

If the modal displacement is redefi ned as 
( ) ( )

r r r
x t D t  where ( )

r
D t  is a generalized displacement 

for mode r, Eq. (6) becomes 

g

( )
( ) 2 ( ) ( )r

r r r r
r

F t
D t D t u t

L
                    (7)

Equation (7) can be interpreted as the governing 
equation for the rth- mode inelastic SDOF with initial 
natural frequency ωr and damping ratio ζr for the rth- 
mode linear MDOF system (Chopra and Goel, 2002).  
The equation can be conveniently solved by standard 
software as it is similar to a standard equation of motion 
of a SDOF system.

The properties of the rth-mode inelastic SDOF 
system are determined using a pushover curve obtained 

from a nonlinear static analysis of the MDOF structure 
pushed to some predetermined displacement using 
a lateral force distribution given by Sr = Mϕr.  The 
force distribution is set to be proportional to the mode 
shape ϕr of the MDOF system.  In a classical pushover 
analysis, the roof displacement is considered to be a 
representative response and is taken as a predetermined 
target displacement to which the structure is pushed.  
However, it is important to note that some researchers, 
e.g., Manoukas et al. (2011), have proposed energy-
based static pushover analysis procedures where the 
predetermined displacement will be independent of 
any particular story displacement but a displacement 
pertinent to the energy.

Generally, the base shear Vbr versus roof displacement 
urr  plot obtained from a pushover analysis of a MDOF 

system is converted into an r

r

F

L
 versus Dr  plot of an 

equivalent SDOF system.  The relationships between 

(Vbr, urr) of the MDOF system pushover curve and ( r

r

F
L

, 

Dr) of the equivalent SDOF system are given by Chopra 
(2012) as

b b r
r*

r r

;r rr r

r r r r r

V VF u
D

L M L   
                (8a,b)

where *
r r rM L   is the mass participation factor or 

effective modal mass for Mode r. 
Figure 1(a) shows a typical actual and idealized 

pushover curve obtained from a pushover analysis 
of a MDOF system pushed to a predetermined roof 
displacement using a lateral force distribution specifi ed 
for Mode Shape r.  Figure 1(b) is a force-displacement 
relationship for the rth mode of an equivalent inelastic 
SDOF system generated from the actual pushover curve 
of Fig. 1(a). The properties of the equivalent inelastic 
SDOF (αr, ωr, Dry) are used in Eq. (7) for the analysis of 
the equivalent SDOF system.
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Fig. 1 (a) Pushover curve for the rth mode of a MDOF system; (b) Force-deformation relation for the corresponding inelastic 
                  equivalent SDOF system



134                                           EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION                                             Vol.16

3   Energy balance for MDOF systems

The energy balance equation for a MDOF system 
can be written as 

g
0 0 0 0

( ) ( )d ( ) ( )d ( ) ( )d ( ) ( )d
t t t t

t t t t t t u t t              Mu u Cu u Ku u M u
 (9) 

or

kr d a i
E E E E                            (10)

where 

kr
0

relativekineticenergy ( ) ( )d
t

E t t     Mu u    (11)

d
0

damping energy ( ) ( )d
t

E t t     Cu u            (12)

a
0

absorbed energy ( ) ( )d
t

E t t     Ku u          (13)

g
0

IE relativeinput energy ( ) ( )d
t

u t t    M u  (14)

For Mode r with the modal equation of motion given 
in Eq. (5), the modal energy balance equation can be 
expressed as

0 0

T T
g

0 0

( ) ( )d ( ) ( )

( ) ( )d ( ) ( )d

t t

r r r r r r

t t

r r r r r r

M x t x t C x t x t

x t x t u t x t

 

 

 

 

 

 

   

   

d

K M        (15)

or
kr d a IEr r r rE E E                           (16)

where 
kr d a, , , IEr r r rE E E  are the relative kinetic energy, 

damping energy, absorbed energy and input energy 
contributions by Mode r to the MDOF system, 
respectively.

Since Eq. (7) is the equation of motion of a SDOF 
with unit mass that corresponds to Mode r of the MDOF 
system, the absorbed and input energy per unit mass for 
this equivalent SDOF system are therefore 

,SDOF SDOF
g

0 0

IE( )
( )d and ( ) ( )d

r rt t
a r

r r
r

E F t
D t u t D t

m L m
       

(17a,b)

Because ( ) ( )r r rx t D t , T( ) ( )r r r rF t x t K  , 
T

r rL  M   and *
r r rM L  , the above equations can be 

written as

,SDOF

0

T
*

0
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a r
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r
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r
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
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 
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In the event that the mode shapes are mass 
normalized, Mr = 1 and so Γr is numerically equal to Lr, 
the above equations can be written as 

,SDOF SDOF
2 2

IE1 1
and IE

( ) ( )

r r
a r r

a
r r

E
E

m m 
 

  
(19a,b)

Equations (18a), (18b); or Eqs. (19a), (19b) if the 
mode shapes are mass normalized; are the absorbed and 
input energy equations that relate the rth mode of the 
MDOF system with its equivalent SDOF system with 
properties described by Eqs. (8a), (8b). The amount of 
input and absorbed energies of a MDOF system obtained 
using these mode-based relationships is dependent on 
the modal characteristics of the MDOF system besides 
the seismicity of the site.

4    Estimating hysteretic and input energies for 
     MDOF systems

The proposed modal-based procedure for estimating 
the input and hysteretic energies for a MDOF structure 
from its modal SDOF structures is outlined below:  

(1) Estimate the initial periods of vibration for the 
MDOF structure and the corresponding effective modal 
masses.

(2) Determine the number of modes to be used so 
that the sum of effective modal masses considered is ≥ 
90% of the total mass of the structure as recommended 
by FEMA 273 (1997).

(3) For each mode, generate pushover curve by 
pushing the MDOF structure with a lateral load pattern 
that matches the respective mode shape.

(4) For each mode, use the expressions given in Eqs. 
(8a,b) to develop a force-displacement relationship for 
an inelastic equivalent SDOF system from the modal 
pushover curve of the MDOF system.

(5) From the resulting pushover force-displacement 
curve, determine the yield force, initial stiffness and 
post-yield stiffness ratio for each mode.

(6) Using the yield force, initial stiffness and post-
yield stiffness ratio for each mode, determine the 
corresponding ductility factor. The ductility factor can 
be determined using one of the following approaches

(a) by time history analysis of the SDOF for a given 
earthquake, or

(b) from a ductility-based yield force spectra if 
readily available, or
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(c) from a prescribed desired ductility level
Options (a) or (b) is used if the main objective is 

to determine the energy capacity of an MDOF systems, 
whereas option (c) is used if the objective is to design an 
energy dissipating mechanism for a MDOF system. 

(7) Using the ductility factor and period of vibration, 
obtain the input and hysteretic energies for each mode 
from the input and hysteretic energy spectra developed 
for SDOF systems. 

(8) The input and hysteretic energies of  the MDOF 
structure are then computed using the following 
equations 

* SDOF
MDOF

1

* SDOF
MDOF

1

IE
IE ( )

HE
HE ( )

m

m

rn

r
r

rn

r
r

M
m

M
m





 

 




              (20a,b)

where 
*
rM = mass participation factor for mode r

m = system mass
nm = number of modes considered 
IEMDOF = estimated input energy for the MDOF 

system 
HEMDOF = estimated hysteretic energy for the MDOF 

system
IEr

SDOF/m = input energy per unit mass of the SDOF 
system for Mode r 

HEr
SDOF/m = hysteretic energy per unit mass of the 

SDOF system for Mode r

5   Verifi cation study

The ability of Eq. (20a) to estimate input energy 
for MDOF structures from the input energy equations 
for SDOF systems is demonstrated using four moment 
resisting frames with 3-, 5-, 7- and 9-stories.  These 
moment resisting frames have been used previously by 
researchers such as Gupta and Krawinkler (1999), Chou 
and Uang (2003) and Prasanth et al. (2008) and frame 
details can be found in these references.  The design 
parameters used for and the design procedures involved 
in the design of these ductile moment resisting frames 

can be found in Chou (2001).  The 9-story building has 
steel moment resisting frames in both directions and was 
designed by a SAC commissioned consulting fi rm based 
on the procedures of UBC (1997).  The 3-story and 
9-story buildings were composed of steel columns and 
beams whereas the 5-story and 7-story buildings were 
designed using steel encased reinforced concrete (SRC) 
columns and steel beams.  For the 3-, 5- and 7-story 
frames, a reduced beam section with 50% reduction in 
both the top and bottom fl anges was used to reduce the 
demand to the connections.  Other than at the base of the 
columns, this ensures that hinges do form fi rst at beam 
ends for a given connection.

To determine the number of modes to be used in the 
analysis, the recommendation by FEMA 273 (1997) that 
the sum of the effective modal masses considered is ≥ 
90% of the total mass of the structure is used.  As shown 
in Table 1, two modes are considered suffi cient for the 
present study. 

Static pushover analysis results for the fi rst and 
second modes of these frames are shown in Figs. 2(a) 
and 2(b), respectively.  The static pushover analyses were 
obtained by subjecting the frames to a pattern of lateral 
loads that emulate the modal shape of the respective 
mode until the roof displacement reaches a prescribed 
value.  The prescribed displacement of each frame for 
each mode is limited to a drift ratio of 0.02.

The 9-story building was designed for Site Class 
D, whereas the 3-story, 5-story, and 7-story frames 
were designed for Site Class C.  The higher yield force 
observed for the fi rst and second modes of the 9-story 
frame when compared to the other three frames is due 
to the inherent demand of higher yield force for a higher 
seismic coeffi cient.  For the fi rst mode pushover case, 
yielding mostly occurred at lower stories with plastic 
hinges forming at the column base and beams in the fi rst 
and second stories, whereas in the second mode case 
much of the yielding occurred at upper stories, primarily 
at the level where the lateral force pattern for the second 
mode shape changes sign.

Following the procedure outlined above, the force–
displacement relations for the equivalent SDOF systems 
that correspond to the fi rst and second modes of the 
MDOF frames are determined and shown in Figs. 3(a) 

Table  1   Periods of vibration and effective modal masses

Frame 3-Story 5-Story 7-Story 9-Story
Period T1 (s) 1.06 1.48 1.85 2.14
Period T2 (s) 0.35 0.53 0.66 0.80
M1

*(103 kg) 384.39 639.89 906.24 3719.69
 M2

*(103 kg ) 48.86 86.51 113.66 484.21
ΣMr

* (103 kg) 433.25 726.39 1019.89 4203.89
System mass m (103 kg) 442.53 761.59 1080.83 4504.57

ΣMr
*/m 97.9% 95.4% 94.4% 93.3%
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and 3(b).  Note that the yield forces for these systems 
are higher for the second modes indicating that most of 
the yielding is occurring in the fi rst mode.  A summary 
of the yield forces and other parameters used in the input 
energy analysis for the equivalent SDOFs is given in 
Table 2.

To demonstrate the applicability and validity of the 
proposed procedure, the four MDOF frames and their 
modal equivalent SDOF systems are subjected to the 
fault normal and fault parallel components of three 
earthquake ground motions.  The characteristics of these 
earthquakes are given in Table 3.  These earthquakes are 
scaled in such a way that they will cause yielding in the 
frames without collapse and/or excessive distress.  The 
scale factors used are summarized in Table 4.

A total of 72 earthquake time history analyses were 
performed: 48 using BISPEC (2012) for the equivalent 
SDOF components and 24 using Perform-3D (2011) for 
the MDOF systems. The input energy for both systems 
were analyzed and compared.  The results are presented 
in Figs. 4 to 7 for the 3-, 5-, 7- and 9-story frames, 
respectively, and the ratios of the input energy for the 
equivalent SDOF systems to that of the MDOF frames 
(IEESDOF/IEMDOF) are summarized in Table 5.  From this 

comparison, it can be concluded that Eq. (20a), used in 
conjunction with the proposed procedure, is capable of 
producing a reasonable estimate of the input energy for 
MDOF systems using input energy from their associated 
equivalent SDOF components.

6   Hysteretic energy distribution

Although Eq. (20b) provides a means to convert the 
hysteretic energy of a SDOF system for application in 
a MDOF building structure, a distribution scheme is 
still needed to distribute this energy to each story of 
the multistory frame.  This is analogous to the use of a 
distribution scheme to distribute the base shear over the 
height of a building in a force-based design approach.  
Using a statistical approach, Seneviratna and Krawinkler 
(1997) as well as Shen and Akbas (1999) investigated 
the hysteretic energy (HE) distribution over the height 
of a building but were not able to identify any consistent 
pattern.  On the other hand, Akbas et al. (2001) from 
their study of regular frames with a damping ratio of ζ = 
0.02 concluded that hysteretic energy distribution along 
the height is linear.  Ye et al. (2009) counter-argued 
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that hysteretic energy distribution could be considered 
linear only for damping ratio ζ > 0.1 and proposed 
linear equations to distribute the HE over the building 
height for structures with damping ratio ζ > 0.1. It is 
imperative to note that such high damping could only be 
attained if supplementary damping devices are installed 
in the structure. Based on a multi-mode pushover 
analysis approach, Chou and Uang (2003) established 
a relationship between the end rotations and hysteretic 
energy of the framing elements in a particular story, and 

recommended distribution patterns, which they referred 
to as energy shapes, at different stages of loading.  These 
energy shapes are functions of cumulative end rotations 
in each story. They proposed three different energy 
shapes for each of the fi rst two modes and distributed 
the hysteretic energy contribution by each mode to the 
different stories of the structure. More recently, Wang 
and Yi (2012) developed a procedure for estimating the 
total hysteretic energy for MDOF systems from their 
equivalent SDOF systems and proposed the following 

Table 2  Equivalent SDOF parameters

Mode 1
Frame Period (s) D1y (cm) F1y/L1(cm/s2) α Γ1

3-Story 1.06 8.2 289.6 0.07 1.481
5-Story 1.49 13.21 236.3 0.03 1.912
7-Story 1.85 17.02 196.4 0.02 5.175
9-Story 2.14 27.94 241.3 0.06 4.609

Mode 2
Frame Period (s) D2y (cm) F2y/L2(cm/s2) α Γ2

3-Story 0.342 8.13 2743.2 0.02 0.528
5-Story 0.537 9.78 1341.2 0.05 0.703
7-Story 0.654 14.61 1346.2 0.035 0.649
9-Story 0.781 21.59 1397 0.01 1.663

Table  3  Ground motions used for the verifi cation study (Units are in centimeters and seconds)

Ground motion
Fault normal (FN) component Fault parallel (FP) component

CAV PGA PGV CAV PGA PGV
Loma Prieta 185.12 62.77 14.98 135.46 38.84 6.02

Northridge-01 230.69 64.06 3.16 172.37 35.69 1.99
Chi-Chi Taiwan 310.39 69.55 7.51 273.05 50.7 7.31

Table 4  Ground motion scaling factors

Ground motion                            
Frame

Loma Prieta
(LP)

Northridge-01
(NR)

Chi-Chi 
(CHI)

FN FP FN FP FN FP
3-Story 7.14 12.5 5 11 7.14 10
5-Story 8.33 12.5 5 11 7.14 10
7-Story 8.33 12.5 5 11 7.14 10
9-Story 6.5 12.5 5 11 7.14 10

Table 5  IEESDOF /IEMDOF for multi-story frames (FN = Fault normal, FP = Fault parallel)

 Input energy ratio, IEESDOF /IEMDOF

Record LP-FN LP-FP NR-FN NR-FP CHI-FN CHI-FP
3-Story 0.98 1.08 1.11 0.98 0.99 0.99
5-Story 0.92 1.12 0.97 0.96 1.03 0.82
7-Story 1.11 0.89 0.94 1.06 0.81 0.84
9-Story 1.03 1.11 0.77 1.00 0.90 0.76
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distribution equation of hysteretic energy for MDOF 
systems.

, ,

, total,
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where ϕi,j = displacement at story i for mode j; ∆ϕi,j = 
ϕi,j  - ϕi-1,j; mk = mass of story k; HEi, j = hysteretic energy 
dissipated by story i for mode j; HE total, j = total hysteretic 
energy for mode j and N = number of stories.  Upon 
application of the procedure for three six-story pin 
supported buildings subjected to a total of nine ground 
motions, three records each on hard, intermediate and 
soft soils, they concluded that their proposed equation 
was suitable for hard soil site and for buildings whose 
lateral displacement shape was controlled by the fi rst 
mode shape.

For a given mode, it should be noted that Eq. (21) 
can be expressed in terms of work done by external 
forces applied at each story level in acting through the 
story displacements.  This is because in modal pushover 

analysis, it is common practice to defi ne the lateral load 
pattern as the product of the mass matrix and mode shape 
vector.  Therefore, Eq. (21) can be rewritten as

,
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              (22)

where N is the number of stories, Ri is the energy ratio 
for story i, WEi and WEtotal are the work done by story i 
and the total work done by the frame for a given mode, 
respectively; Fk is the modal force acting at story k, dk 
is the displacement at story k, and ∆di = di-di-1 is the 
interstory displacement of story i.

An advantage of expressing the energy ratio as 
a function of work done is that the change in energy 
distribution due to inelasticity can be more conveniently 
captured. As shown in Fig. 8, a study by the authors 
has shown that Eq. (22) performs better than schemes 
proposed by others when compared to the actual hysteretic 
distribution but tends to underestimate the hysteretic 
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energy demand at the lower stories (especially the fi rst 
story) and overestimate the demand at upper stories. This 
is because when a multistory frame is pushed beyond the 
performance limit of life safety, plastic hinges tend to 
form at the base where the moment, shear and axial force 
are the highest.  To obtain better solutions, it is proposed 
that Eq. (22) be modifi ed to
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 (23)

To use the above equation, a designer only needs 
to compute the modal forces for each mode using any 
existing procedure, apply these forces to the multistory 
frame, and calculate the displacements due to these 
modal forces.  For comparison, the hysteretic energy 

distributions calculated using Eq. (23) were plotted in 
Fig. 9 along with the actual hysteretic distributions.  It 
can be seen that the proposed distribution equation 
produces results that match reasonably well with the 
actual hysteretic energy distributions for the 3-, 5-, 7- 
and 9-story frames.

7  Energy-based seismic design

The objective of energy-based seismic design 
(EBSD) is to design a structure so its energy dissipation 
capacity exceeds the hysteretic energy demand from a 
design earthquake or a set of design earthquakes, i.e., 

capacity demand(Hystereticenergy) (Hystereticenergy)  (24)

For a structure subject to a given earthquake, the 
right side of Eq. (24) can be evaluated using a hysteretic 
energy spectrum in conjunction with Eqs. (20b) and (23).  
To evaluate the left side of the equation, information 
on the type of frame and energy dissipative devices 
used (Foti, et al., 1998; Benavent-Climent, 2011; Liang, 
et al., 2012) are needed.  In the present study, moment 
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resisting steel frames are used and it is assumed that no 
supplementary energy dissipative devices are present.  
As a result, EBSD in essence is a plastic design and the 
formation of plastic hinges, and the amount of rotation 
they experience constitute the energy dissipative capacity 
of the structure. 

7.1 Energy-based seismic design and plastic design 
       relations

The underlining concept of plastic design of steel 
structures lies in the formation of plastic hinges and the 
resulting collapse mechanisms.  Consider a portal frame 
shown in Fig. 10 subject to a horizontal joint load H and 
a concentrated span load P.  The work equations for 
the two independent collapse mechanisms shown using 
the geometry of the structure (h, b), plastic moment 
capacities of the beam and columns (Mpb, Mpc), the 
applied forces (H, P) and the anticipated plastic rotations 
at collapse (θp) can be written as:

p pc pb p

p pb p

External ork Internal work
Sway mechanism ( ) (2 2 )

Beam mechanism ( ) (4 )
2

w
H h M M

bP M

 

 


    

    (25)

For design purpose, the external and internal work 
can be conceived as the energy demand and dissipation 
capacity, respectively.  Henceforth, for energy-based 
seismic design the external work can be replaced by 
hysteretic energy demand.  This approach has been 
used by Estes and Anderson (2004) in an energy-based 
seismic design of steel frames and Terapathana (2012) 
for an energy-based seismic design of reinforced 
concrete structures. As for the energy dissipation, it 
should be noted that the right hand side of Eq. (25) 
does not involve load reversal and is monotonic.  Thus, 
it is necessary to adjust the static monotonic hysteretic 
energy given by the right hand side of Eq. (25) in order 

to correlate it to the dynamic hysteretic energy capacity 
of structures subjected to earthquake loads.

For seismic evaluation of existing reinforced concrete 
structures, ATC 40 (1996) has suggested the use of a 
dynamic to monotonic hysteretic energy ratio of four, 
subject to reduction factors to account for a reduction 
in the dynamic hysteretic energy due to pinching nature 
of the hysteresis behavior of concrete sections. For 
moment resisting steel frames, with properly designed 
connections and stable hysteresis, it is reasonable to 
consider a factor of four as the ratio of dynamic-to-
monotonic hysteretic energy.  The justifi cation behind 
the use of a factor of four can be explained from the 
energy calculation of one cycle of an idealized hysteresis 
loop as shown in Fig. 11, where it can be seen that with 
stable hysteresis behavior devoid of any stiffness or 
strength degradation, the full cyclic area is four times 
the monotonic area.  A dynamic-to-static hysteretic ratio 
of four will be used in this study to design an earthquake 
resistant moment resisting steel frames based on energy 
method.  For instance, for the frame mechanism shown 
in Fig. 10(a), the hysteretic energy capacity given by 
the left hand side of Eq. (24) shall be greater than or 
equal to the hysteretic energy demand due to a design 
earthquake, i.e., 

pc pb p demand4.0 [(2 2 ) ] (HE)M M                 (26)

where (HE)demand = the hysteretic energy demand due to 
the design earthquake or suite of earthquakes.

To a practicing engineer, the effect of earthquake 
on structures is more readily understandable when it is 
tied to the resulting horizontal motions/deformations 
of the structure.  This is a useful observation to assess 
the applicability of Eq. (25) to the different possible 
collapse mechanisms a structure may undergo.  For 
the beam mechanism shown Fig. 10(b), it is obvious 
that the mechanism is related to vertical loads and is 
minimally affected by earthquake events. Thus, equating 
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the external work causing a beam mechanism to a 
hysteretic energy demand due to an earthquake renders 
it unrealistic. Similarly, for a combined mechanism of 
sway and beam mechanisms, vertical loads are involved 
and the resulting external work cannot be fully related to 
the hysteretic energy demand due to an earthquake.  As 
a result, the beam and combined collapse mechanisms 
will be discarded in the energy-based seismic design 
formulation in this study without signifi cantly affecting 
the fi nal design result. This argument is supported by 
Estes and Anderson (2004) who showed that vertical 
load mechanisms are not signifi cant when earthquake 
forces are considered.

In order to optimize the design of the beam and 
columns (i.e., obtaining the best possible combination 
of Mpb and Mpc), the plastic hinge rotation θp in Eq. (26) 
needs to be determined.  Per FEMA 350 (2000), moment 
resisting steel frames are capable of developing large 
plastic rotations, in the order of 0.02 radian or larger, 
without signifi cant strength degradation, and according 
to FEMA 267A (1997) Interim Advisory No.1, based on 

the work of SAC and other researchers on full-scale tests 
done after the Northridge earthquake, a plastic rotation 
of 0.025 to 0.030 was recommended for steel moment 
connections. Thus, in this study a design plastic rotation 
of 0.03 radians is used. 

A design method is deemed appropriate if it ensures 
that the resulting structure is safe against the design 
actions and is also cost effective. The cost of a structure 
is affected by a number of factors and for simplicity, 
member size is used in this study as an indicator of 
cost.  Since member size and member weight are often 
related, the cost aspect of a design can be addressed by 
minimizing the weight of the structure. For moment 
resisting frames, the weight of beams and columns in 
most cases can be reasonably associated with their 
corresponding plastic moment capacity. Thus, a weight 
function can be expressed in terms of the length of 
the members and their plastic moment capacities.  For 
instance, for the frame in Fig. 10, the weight function 
can be written as 

pc pb2W h M b M                          (27)

The use of this weight function as a design 
parameter reduces the energy-based seismic design to an 
optimization problem. For energy-based seismic design, 
the objective function is the weight function whereas 
the inequalities of the collapse mechanisms form the 
constraint equations.  In moment resisting frame design, 
additional constraints such as beam to column capacity 
ratio, that arise from code or detailing requirements 
may need to be considered. For instance, for the 
frame in Fig. 10, the mathematical formulation of the 
minimization problem can be written as: 
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Fig. 11   Elastic-plastic hysteresis loop
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Objective function:  
Minimize the weight function:  W = 2 × h × Mpc + 

b × Mpb
Subject to the constraint equations:
4.0 × [(2Mpc + 2Mpb) × θp]   ≥ (HE)demand ;  Strong 

Column – Weak Beam scenario
 4.0 × [4Mpc × θp]   ≥  (HE)demand ;   Strong Beam – Weak 

Column scenario
       Mpc - Mpb  ≥   1.0  ;  Code requirement

where Mpb, Mpc > 0.  (Note that if there is more than 
one column and one beam meeting at a joint, the last 
constraint equation should be expressed as ΣMpc - ΣMpb ≥ 1.0)

The above minimization for Mpc and Mpb can be 
easily achieved by using a Microsoft Excel built-in 
analysis function called the Simplex Method, which is 
a method for solving problems in linear programming.

7.2  Application to multistory frames

While the formulation of an optimization problem for 
an energy-based seismic design of a single story portal 
frame is relatively simple, the formulation for  multistory 
frames can conceivably involve many possible collapse 
mechanisms with many feasible constraint equations and 
could become rather complex.  Ridha and Wright (1967) 
proposed a classical safe approach called a story-wise 
optimization that reduces the plastic design of multistory 
frames into the design of a series of single story frames 
stacked vertically.  In this approach, the design is 
accomplished on a story-to-story basis, starting with the 
topmost story and moving down one story at a time.  The 
story-wise approach was also used by Disque (1971) for 
the design of multistory braced frames and was adopted 
by Estes and Anderson (2004) and Terapathana (2012).

To illustrate the concept, consider a four-story frame 
shown in Fig. 12(a) with possible sway mechanisms 
developed in each story.  According to Ridha and Wright 
(1967), the design of the frame for safety against the 
sway mechanism occurring in the second story of the 
entire frame as shown in Fig. 12(b) can be achieved by 
simultaneously satisfying the design requirements for 
the standalone story mechanism shown in Fig. 12(d) and 
the resulting mechanism of the story above it as shown 
in Fig. 12(c).  This can be easily verifi ed by comparing 
the external and internal work equations of the collapse 
mechanisms shown in Figs. 12(b)‒12(d).

Because the plastic capacity of compressive 
members is affected by the simultaneous action of axial 
force and bending moment, especially in multistory 
frames where gravity loads increase toward the lower 
stories, it is necessary to include the effect of axial force 
in the formulation of the energy-based seismic design.  
One way to incorporate axial force effect into EBSD is 
to use code recommended axial force-bending moment 
interaction equations such as the ones given in the ANSI/
AISC 360-10 (2010). That is,   
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          (28)

where the subscripts c, r, x, and y represent the design 
strength, required strength, strong axis and weak axis 
bending, respectively.  For uniaxial bending about the 
strong axis, which is often the case for frame analysis 
and design, the subscripts x and y can be dropped from 
the equations and after rearranging, the interaction 
equations take the form 
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   (29)

The modifi cation factor βm accounts for the reduction 
in the design moment capacity Mc due to the presence 
of an axial force by applying an amplifi cation factor 
to the required moment capacity Mr obtained per the 
energy-based seismic design procedure. According to 
ANSI/AISC 360-10 (2010) Load and Resistance Factor 
Design (LFRD) method, the design axial force (Pc) 
and the design moment (Mc) capacities of a member 
are given by φcPn and φbMn, respectively, where φc and 
φb are resistance factors for compression and bending, 
respectively. Because these factors are likely to be 
different for different specifi cations and they change 
with time, they are both taken as unity in the following 
design examples. The primary objective here is to 
demonstrate how the energy-based design process can be 
applied without regard to the exact values of resistance 
factors used.  ANSI/AISC 360-10 (2010) also provides 
equations for determining the nominal capacities Pn 
and Mn for almost all commonly used structural shapes.  
However, for purpose of demonstrating the proposed 
EBSD procedure, all members are assumed compact and 
adequately braced against lateral torsional instability; 
thus, the nominal capacities for fl exure and compression 
are calculated as follows.

Mn = Fy Z   and    Pn = Fcr Ag                   (30)

where Fy = yield stress, Z = plastic section modulus about 
the axis of bending, Fcr = axial stress capacity assuming 
stable hysteresis behavior devoid of any stiffness or 
strength degradation, and Ag = gross cross-sectional area 
of the member.



8 Proposed energy-based seismic design 
      procedure

The procedure for applying the proposed EBSD is 
given as follows:

(1) Perform preliminary member design.
(2) Determine modal properties of the frame.
(3) Calculate the normalized input energy per unit 

mass.
(4) Obtain the hysteretic energy per unit mass.
(5) Determine the MDOF hysteretic energy demand 

and its distribution over the frame height.
(6) Optimize the member sizes using the Simplex 

method.
(7) Account for the effect of axial force on the 

plastic moment capacity.
(8) Compare the energy capacity with the associated 

demand and make sure capacity exceeds demand.
(9) Repeat the above steps until convergence.
Convergence is said to have been achieved when 

member sizes from two consecutive iterations do not 
change appreciably.  The above procedure for carrying 
out an EBSD for multistory moment resisting frames is 
summarized in the form of a fl owchart shown in Fig. 13.  
The details involved in each step will be demonstrated 
in the following section through a design example of 
a three-story frame. The procedure outlined above and 
fl owchart shown in Fig. 13 is simple and easy to follow 

but the design, like any other designs, needs some 
engineering judgment in its execution.

9  Example design 

The three-story frame shown in Fig. 14 is to be 
designed using the above proposed EBSD procedure.  
It is a moment resisting steel frame consists of beams 
and columns with rigid connections.  The roof level 
beams are subjected to uniform dead and live loads 
of 36.5 kN/m and 25.5 kN/m, respectively, while the 
dead and live loads on the remaining fl oor beams are 
43.8 kN/m and 32.8 kN/m, respectively.  The system or 
seismic mass m is consisted of 100% of the dead loads 
and 25% the live loads plus self-weight of the frame.  To 
incorporate diaphragm action, diaphragm constraints are 
employed to force the joints at a given fl oor to displace 
the same horizontally. 

The frame is assumed to be built in a location with 
site soil Class C.  A set of fi ve earthquakes from the 
PEER Beta Data Base are used and scaled to match an 
IBC (2012) response spectrum.  The response spectrum 
is generated using a built-in procedure in SAP 2000 for 
soil Class C at a site with zip code 94704.  The location is 
chosen because it lies in one of the highly seismic active 
areas in the west coast of the United States.  The design 
earthquakes are selected to be the Horizontal-1 (the 

Start with preliminary 
member selection

Hysteretic energy: Obtain hysteretic 
energy demands due to design 
earthquake(s)

Optimization problem: Formulate 
story-wise objective function and 
constraint equations

Intermediate member sizes: Solve the 
optimization problem, determine member 
plastic moment demands, Mpd, j

**Compare member plastic capacity 
(Mpc) with demand Mpd, i  ≥ Mpc, i-1

No

Final design

Yes

i = 1

i = i + 1

**It is also required to check that Mpc, i-1 is not excessively greater than Mpd, i

Fig. 13   Flowchart: energy based seismic design
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Table 6   Selected design earthquakes (Units are in centimeters and seconds)

Earthquake Station Year CAV PGA PGV Scale
Loma Prieta Bear Valley #5 1989 291.7 66.81 9.25 11.5
Loma Prieta Fremont - Mission San Jose 1989 533.84 124.21 14.1 7.5
Loma Prieta Hayward City Hall - North 1989 205.14 47.96 5.62 18.5
Loma Prieta SF - Telegraph Hill 1989 114.2 35.01 3.61 25.5
Loma Prieta Yerba Buena Island 1989 125.58 28.86 4.35 28

Landers Amboy 1992 921.8 112.86 18.22 6

main horizontal direction) component of the respective 
earthquake records.  Details of the selected earthquakes 
are given in Table 6.

Step 1: Preliminary member sizes

The preliminary members of the frame are 
determined from a gravity load design exercise using the 
ANSI/AISC 360-10 LFRD procedure within the SAP 
2000 (2014) structural analysis and design software.  
The results are presented below.

Preliminary column sizes Preliminary beam sizes
Story Size Floor level Size
1st W14 × 90 1st W18 × 76
2nd W14 × 90 2nd W18 × 76
3rd W14 × 90 Roof W18 × 76

Step 2: Modal properties

Using these preliminary member sizes, modal 
properties for the fi rst two modes that constitute more 
than 90% of the seismic mass are calculated and the 
results are given below.

Step 3: Normalized input energy per unit mass (NE)

The normalized input energy spectra for an equivalent 
SDOF for soil Site Class C and hysteretic model BP, the 
mean+σ NE spectra for a design ductility level μ = 4 
are calculated using the equations derived in a study by 
Mezgebo and Lui (2016) given below.

0.116 0.116
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2 2

2
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Thus, according to Mezgebo and Lui (2016), 

For Mode 1:  (T1 = 0.318 s ) < (T = 0.83 s)  <  (T2 = 
1.57 s)  

==>  NE = C = 0.41
For Mode 2:   (T = 0.25 s)  <  (T1 = 0.318 s)

==>  NE = aT + b = 1.312×0.25-0.0021 = 0.326
Because NE is defi ned as the square root of the input 

energy per unit mass (IE/m) divided by the velocity 
index, VI (= CAV × PGV).  Therefore, the input energy 
per unit mass is given by 

         IE/m = NE2×CAV×PGV

where CAV = Absolute Cumulative Velocity; PGV = 
Peak Ground Velocity of the design earthquake.  Since 
the frame is to be designed for the mean+σ of the selected 
design earthquakes, the corresponding mean+σ VI needs 
to be calculated.  The calculation of the mean+σ VI is 
shown in the table below.  

4.
62

7 
m

2@
3.

65
8 

m

7.315 m

Fig. 14   Design example: three story - one bay frame

Period  (s) M*
r, (kg) M*

r (m) Ductility, (μ)
Mode 1 0.83 106×103 0.889 4
Mode 2 0.25 114×103 0.095 4

Σ M*
r(m) = 98.4%
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The input energy per unit mass (IE/m) for each mode 
is now obtained as follows:

Mode 1:  IE/m = NE2×VI = (0.41)2×52.325 m2/s2 = 
8.796 m2/s2 

Mode 2:  IE/m = NE2×VI = (0.326)2×52.325 m2/s2 = 
5.561 m2/s2

Step 4: Hysteretic energy per unit mass (HE/m) 

The hysteretic energy per unit mass is calculated from 
the hysteretic-to-input energy relationships developed in 
study by Mezgebo and Lui (2016).  For soil site Class 
C, hysteretic model BP, and μ = 4, the mean+σ HE/IE 
spectral shape constants are given as:
C’ = 0.651; T2  = 2.674 s; a1’ = -0.0247 and b1’ = 0.717

Since the periods of vibrations for Mode 1 and Mode 
2 are less than T2, the HE/IE ratio for both modes is 
within the constant region of the spectra and is equal to 
C’ = 0.651.  The modal hysteretic energies per unit mass 
are then given by: 

Mode 1: HE/m = (IE/m) × (HE/IE) = 8.796 m2/s2×
0.651 = 5.726 m2/s2

Mode 2: HE/m = (IE/m) × (HE/IE) = 5.561 m2/s2×
0.651 = 3.62 m2/s2

Step 5:  MDOF system total hysteretic energy demand 
             and its distribution 

The hysteretic energy demand for MDOF systems 
can be obtained using the hysteretic energy relationships 
between MDOF systems and their equivalent SDOF 
systems presented earlier.  Using Eq. (20b), the hysteretic 
energy demand for the frame is calculated as:

HEtotal =  ( M*
r× HE/m)Mode 1 + (M*

r× HE/m)Mode 2
HEtotal =  (106×103 kg) (5.726 m2/s2) +  (114×103 kg) 

(3.62 m2/s2)
           = 650 kN.m
The total hysteretic energy demand should now be 

distributed to the different levels of the frame according 
to the hysteretic energy distribution presented in Eq. (23).  
The forces and displacements to be used in Eq. (23) are 
obtained from modal pushover analysis results for Mode 1. The 
design ductility level 4 roughly corresponds to a roof 
drift ratio of 0.04, which is larger than the conventional 

value of 0.02 often used for the design of building frames 
for lateral loads.  However, a properly designed frame 
per current codes rarely passes its elastic limit at a roof 
drift ratio of 0.02, in which case the use of the energy-
based seismic design becomes irrelevant.  Therefore, for 
better distribution of the hysteretic energy demand to 
the different levels of the structure, the frame is pushed 
to roof drift ratio of 0.04.  The results of the pushover 
analysis are presented below.

The total and story level external work done during 
the pushover are computed as follows.
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The hysteretic energy demands at different story 
levels are then given as 
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HE WE 379Story1: 0.737
HE WE 514
HE 0.737 650kN m 479 kN m

HE WE 113Story 2 : 0.221
HE WE 514

HE 0.221 650kN m 144kN m
HE WE 22Story3 : 0.042

HE WE 514
HE 0.042 650kN m 2
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Step 6: Member size optimization 

The story-wise optimization of members involves 
formulating a series of story-wise collapse mechanisms 
and solving an optimization problem. The optimization 
problem relates the story level hysteretic energy demand 
to the collapse mechanism based on internal work done 
(treated in this study as plastic energy capacity or energy 

(a) (b) (c) (d) = (a × 
b × c2)

Earthquake CAV (m/s) PGV (m/s) Scale factor VI (m2/s2)
 Loma Prieta 2.916 0.092 11.5 35.654
 Loma Prieta 5.339 0.141 7.5 42.337
 Loma Prieta 2.051 0.056 18.5 39.409
 Loma Prieta 1.142 0.036 25.5 26.783
 Loma Prieta 1.256 0.043 28 42.762

 Landers 9.218 0.182 6 60.435
 52.325

Story Force (kN) Displacement (cm) Story drift (cm)
1 165 22.89 22.89
2 320 39.98 17.09
3 343 46.33 6.35
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dissipating capacity).  The steps involved in the EBSD 
method of optimization of member sizes are presented 
below starting with the third (i.e., top) story.  Columns in 
the same story are assumed to have the same size and the 
member designation used are:  MkC  = column member in 
story k, MkB  = beam member in story k.
Optimization of Members in the Third Story

Constraint equation based on mechanism in Fig. 
15(a) – Strong beam and weak column

4 × (M3C + M3C + M3C + M3C) × 0.03 ≥ 27.5 kN.m

Constraint equation based on mechanism in Fig. 15(b) 
– Strong column and weak beam

4 × (M3C + M3C + M3B + M3B) × 0.03 ≥ 27.5 kN.m

Additional constraint equation at joints – code 
requirement

 3C 3B 0M M 

and to ensure that the beam and column sizes do not differ 
signifi cantly and that more realistic values of M3C and 
M3B are obtained, the following constraint equation that 
requires that the plastic moment capacity of the beam be 
at least equal to 60% (an arbitrary value specifi ed by the 
designer) of the moment capacity of the column is also 
added.

3B 3C0.60M M

Objective Function – Weight, W 

W = 2 (3.658 M3C) +7.315 M3B 

Mathematical formulation of the minimization 
problem

Minimize:

W = 7.315 M3C +7.315 M3B

Subject to:

    0.48 M3C  ≥  27.5 kN.m

0.24 M3C + 0.24 M3B   ≥  27.5 kN.m

                 M3C - M3B   ≥ 0

                 M3C  ≥ 0.60 M3B

where  M3B  > 0,  M3C  > 0
The optimized solution obtained using the Simplex 

linear solver built in Microsoft Excel is;

M3C = 57.4 kN.m  and M3B = 57.4 kN.m

Optimization of members in the second story 
Constraint equation based on mechanism in Fig. 

15(c) – Strong beam and weak column

4 × (M2C + M2C + M2C + M2C ) × 0.03 - 4 × (57.4+57.4) × 

M3C M3C

M3C M3C

M3B M3B

M3C M3C

(a) (b)

M2B
M2B

M3C M3C

M2C M2C

M2CM2C M2C M2C

(c) (d)

M2C M2C

M1C M1C

M1C M1C M1C M1C

M1B
M1B

(e) (f)

Fig. 15   Story-based mechanisms
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0.03 ≥ 144 kN.m
Constraint equation based on mechanism in Fig. 15(d) 

– Strong column and weak beam

4 × (M2C + M2C + M2B + M2B ) × 0.03 ≥ 144 kN.m

Additional constraint equation at joints – code 
requirement

M2C + 57.24 - M2B ≥ 0

Objective Function – Weight, W 

W = 3.658 M2C +3.658 M2C +7.315 M2B  
Mathematical formulation of the minimization 

problem
Minimize:

W = 7.315 M2C +7.315 M2B

Subject to:

    0.48 M2C  ≥  157 kN.m

0.24 M2C + 0.24 M2B   ≥  144 kN.m

                 M2C – M2B   ≥ 0

                           M2B  ≥ 0.60 M2C

where  M2B  > 0,  M2C > 0
The optimized solution obtained using the Simplex 

linear solver built in Microsoft Excel is

M2C  = 373 kN.m  and M2B  = 224 kN.m

Optimization of members in the fi rst story 
Constraint equation based on mechanism in Fig. 

15(e) – Strong beam and weak column

4 × (M1C + M1C+ M1C + M1C ) × 0.03 - 4 × (373+373) × 
0.03 ≥ 479 kN.m

Constraint equation based on mechanism in Fig. 15(f) 
– Strong column and weak beam

4 × (M1C + M1C+ M1B + M1B ) × 0.03 ≥ 479 kN.m

Additional constraint equation at joints – code 
requirement

M1C + 373 - M1B  ≥ 0 

Objective Function – Weight, W 

W = 4.627 M1C +4.627 M1C +7.315 M1B  

Mathematical formulation of the minimization 
problem

Minimize:
W = 8.534 M1C +7.315 M1B
Subject to:
    0.48 M1C  ≥  569 kN.m

0.24 M1C + 0.24 M1B   ≥  479 kN.m

                 M1C – M1B   ≥ 0
                           M1B  ≥ 0.60 M1C

where  M1B  > 0,  M1C > 0

The optimized solution obtained using the simplex 
linear solver built in Microsoft Excel is

M1C = 1186 kN.m and M1B = 812 kN.m

Step 7: Effect of axial force on plastic capacity 
               demands 

To account for the reduction in the plastic moment 
capacities of columns due to the presence of an axial 
compression force as a result of the simultaneous actions 
of gravity and lateral loads during a seismic event, Eq. 
(29) is used to amplify the plastic moment demands.  
The term Pr/Pc used to calculate the amplifi cation factor 
βm is obtained as the ratio of the applied axial force 
during a seismic event to the axial compression capacity 
of the member under consideration.  In line with the load 
proportions considered while determining the seismic 
mass, the axial force is assumed to be consisted of 
100% and 25% of the applied dead and the live loads, 
respectively.  

Step 8: Plastic moment capacity versus demand 
                comparison 

The last step for each iteration in the proposed EBSD 
procedure is the selection of new member sizes that meet 
the required plastic moment capacity obtained in Step 
7.  When selecting new member sizes for columns, it is 
important to avoid the possibility of weak or extremely 
strong story with respect to the story immediately above 
it.  At this step the plastic moment capacities of current 
member sizes are compared with the required plastic 
moment capacities based on the energy-based seismic 
design.  If the plastic moment required is less than the 
plastic moment capacity of the current member size, 
then the current size remains unchanged.  For multistory 
frames, the required column member sizes can be 
excessively large at the end of the fi rst iteration and need 
to be optimized in successive iterations.  The plastic 
moment demand-capacity comparison and selection of 
new member sizes as required are tabulated below.

Story Column
size

Axial  force (kN)
βm

Plastic moment (kN.m)
Capacity Applied Required Modifi ed

1 W14×90 4306 565 1.070 1185 1268
2 W14×90 4484 365 1.042 373 389
3 W14×90 4484 165 1.019 57 58.5
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Because the current member sizes have more 
capacity than what the demand calls for, no further 
iterations are needed.  The current sizes can be taken as 
the fi nal design sections. 

10 Summary and conclusion

To apply energy-based seismic design procedures to 
MDOF systems, the input and hysteretic energy spectra 
developed for SDOF systems need to be extended.  
In this paper, a procedure for estimating input and 
hysteretic energies for MDOF systems from equivalent 
SDOF systems was proposed and verifi ed.  Furthermore, 
a distribution scheme for distributing the hysteretic 
energy over the height of a multistory steel moment 
frame was proposed.   The proposed scheme is based 
on work done by the modal forces as they act through 
the corresponding story displacements, and requires the 
designer to compute the modal forces for each mode 
using any existing procedure, apply these forces to the 
frame, and calculate the displacements due to these 
modal forces.  A comparison of this proposed hysteretic 
equation with the actual hysteretic energy distribution 
from a pushover analysis showed that the proposed 
equation gave rather good results.

An energy-based seismic design procedure 
applicable for the design of steel moment-resisting 
frames was outlined.  The procedure calls for the use 
of plastic steel design concept in conjunction with an 
optimization scheme applied to the frame in a story-wise 
manner to arrive at an acceptable design.  In the context 
of this paper, an acceptable design is one in which 
the selected members not only have suffi cient energy 

absorbing capacities to overcome the hysteretic energy 
demand but they are also the lightest.  A design example 
was used to demonstrate the working of the proposed 
procedure.

Energy-based seismic design (EBSD) is considered 
a more rational design method because it deals directly 
with energy, not just force or displacement.  The proposed 
design method is made possible by (1) developing input 
and hysteretic-to-input energy spectra for different soil 
site classes, different hysteretic models, and a range 
of ductility most often encountered for real structures 
(Mezgebo and Lui  (2016); (2) relating the input and 
hysteretic energies for MDOF and equivalent SDOF 
systems; (3) proposing a hysteretic energy distribution 
scheme for multi-story frame; and (4) recommending a 
design procedure for applying the EBSD procedure to 
steel moment-resisting frames.  Although the current 
design procedure is applicable only to steel moment-
resisting frames, the implementation of the procedure to 
other frame types is possible once the energy absorbing 
mechanisms of such frames are identifi ed and equations 
to quantify the absorbed energy for these frames are 
developed.
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