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Abstract This paper develops and applies the performance-based analysis and design

methodology to assess the seismic vulnerability of mid-rise steel moment frame structures

and to optimally design the isolation devices to reduce the direct losses due to earthquake

damages. An isolated steel moment frame, originally tested in the 2011 E-Defense blind

prediction contest, is selected and modeled in detail. The numerical model and the predicted

seismic responses of the structure are validated against the full-scale shaking table test results.

Subsequently, the fragility functions are derived for the structure when subject to near-fault

ground motions exhibiting distinctive acceleration or velocity pulses and far-field motions

with less impulsive characteristics. To quantify the system level damage states of the

building, the concept of total loss ratio (TLR) is applied as the performance index to account

for the direct loss due to structural, non-structural and isolation components in relation to the

total repair cost of the original structure. The TLR considers the failure probability (as defined

by fragility functions), the damage percentage and related cost for each damage state. Finally,

among various isolation designs, the optimal configuration is derived for cases with the

minimum TLR. It is shown that the optimal design can reduce the TLR up to 90%of that of the

un-isolated structure and it also outperforms the adopted design in the test program. The study

demonstrates a systematic way of achieving the optimal isolation design with considerations

of uncertainties in earthquake inputs and the combined structural and non-structural damages.
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1 Introduction

Seismic protective devices in the form of passive or semi-active can be used to mitigate the

direct and indirect seismic losses to buildings (Lafontaine et al. 2009; Lee et al. 2006).

Among which the base isolation system has been proved as an effective passive system to

dissipate and deflect earthquake input energy through lengthening the fundamental struc-

tural period to avoid the dominant frequency of ground motions (Kelly 1986; Skinner et al.

1993). For the steel moment frames (SMF), the base-isolation technique becomes more

favorable as it provides sufficient structural damping, which is not usually provided by the

superstructure itself. To design an isolation system, although the current building design

codes (e.g. ASCE 7-10 2010) provide descriptive methods, they cannot incorporate

uncertainties inherent with ground motion characteristics, building modeling parameters

(e.g. material properties, member stiffness and strength), capacity estimations, and varia-

tions in geometric irregularities of buildings, etc. More importantly, the isolation design

cannot be directly related to the expected performance of buildings.

To further define and quantify the structural performance, the performance-based design

and analysis methods emerged. The concept was formally established in SEAOC Vision

2000 document (1995) and further developed in several design documents (e.g. ATC-40

1996; FEMA 273 1997a; FEMA 274 1997b; ATC-58 2012, etc.). The methodology intends

to logically quantify the seismic hazards and link predictable/measurable performance

requirements to design decisions based on damage levels. The outcome of the methodology

is often the estimated frequency (in probability sense) with which a particular performance

metric will exceed various levels for a given design at a specific location. For the SMFs,

nonlinear drift estimations that are often used to define the performance levels were pro-

vided (Sabelli et al. 2003). In addition, Haselton et al. (2007) produced an analysis and

design methodology for a benchmark moment frame building to address its seismic per-

formances in terms of damage-repair cost, loss-of-use duration, as well as operability, life-

safety, and collapse potential.

Such performance based earthquake engineering (PBEE) framework is particularly

useful in the case of base isolation design when the device parameters can be directly

related to a probabilistic performance index, which facilitates the comparison of different

isolation designs. For example, Sayani and Ryan (2009) developed a response index to

compare the relative performance of many systems and to predict the best system to

achieve a given performance objective for both base-isolated and fixed-base buildings.

Zhang and Huo (2009) developed a performance index considering both column and

isolator damage for isolated highway bridges. Recently, researchers presented the total

seismic loss as an intuitive performance index by providing the expected losses to

stakeholders (Aslani and Miranda 2005; Dhakal and Mander 2006; Solberg et al. 2008; Bai

et al. 2009; Graf and Lee 2009; Shu et al. 2017). To estimate the loss to a specific building,

the damage is usually categorized into different components such as structural and non-

structural damage. Damage to each of these components is evaluated in terms of per-

centage of the replacement cost of the component. Most current loss approaches use

probabilistic integrated methodologies such as fragility curves to estimate the losses due to

structural and non-structural damage (i.e. combines fragility curves with loss functions).

However, not many existing studies have applied the PBEE framework for the structural

design considering the total loss.

This paper adopts the performance-based methodology to evaluate the effectiveness and

optimum design parameters of isolation devices for a SMF such that the overall damaging

potential of seismically isolated building system is minimized. The concept of total loss
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ratio (TLR) is implemented to account for the direct loss due to both structural and non-

structural damage in relation to the total repair cost of the original structure. By relating

fragility functions at different damage states to the total loss ratio, isolation devices with

various mechanical properties can be evaluated under this probabilistic framework to

derive the optimal design based on the minimum damage probability in terms of the TLR.

Following a brief introduction of PBEE framework to derive fragility functions of defined

damage states, the paper presents the loss model based on the TLR. This is then applied to a

five-story steel moment resisting frame building to derive its fragility curves for both un-

isolated and isolated cases. The numerical model for the building was developed and

calibrated with the shake table test data. Subsequently, a detailed parametric study of

various isolation parameters is conducted and the TLR is obtained to serve as the criteria

for evaluating the merit of each design. Finally, the optimal design range for isolation

devices is determined.

2 The fragility function methodology and the loss assessment

The performance based approach involves four stages: hazard analysis, structural analysis,

damage analysis, and loss analysis (Porter 2003). In the hazard analysis, one evaluates the

seismic hazard (k[IM]), which describes the annual frequency with which seismic exci-

tation is estimated to exceed various levels. Seismic excitation is parameterized by an

intensity measure (IM) such as spectral acceleration at fundamental period of structure

(Sa(T1)), peak ground acceleration (PGA), peak ground velocity (PGV), and magnitude

(Zhang and Huo 2009; Mackie and Stojadinović 2007). In the structural analysis, one

creates a structural model to estimate the uncertain structural responses, measured in terms

of a vector of engineering demand parameters (EDP), conditioned on seismic excitations

(i.e. p[EDP|IM]). EDP is then the input to a set of fragility functions that model the

probability of various levels of physical damage (expressed by damage measures, or DM),

conditioned on structural responses (i.e. p[DM|EDP]). Physical damage is described at a

detailed level, defined relative to particular repair efforts required to restore the component

to its undamaged state. The last stage in the analysis is the probabilistic estimation of

performance (parameterized by various decision variables, DV), conditioned on the dam-

ages (i.e. p[DV|DM]). DVs measure the seismic performance of the building in terms of

greatest interest to facility owners, whether in dollars, deaths, downtime, or other metrics.

The loss models for repair cost are often based upon well-established principles of con-

struction cost estimation.

2.1 Selected ground motion ensembles

A sufficient number of earthquake records need to be selected for the fragility analyses to

obtain conceptually and statistically better building response predictions. Researchers in

the past may either artificially generate ground motions or collect them from historical

events that represent typical and severe earthquake events (Ryan and Chopra 2004). In this

study, three ensembles were collected with a total of one-hundred motions that represent

pulse-type (near-fault) motions and non-pulse-like (far-field) motions. The first two

ensembles are the acceleration and velocity pulse motions identified by Tang and Zhang

(2011), representing ground shakings relatively closer to fault rupture during some larger

earthquakes. The third ensemble collects another 50 far-field earthquake records
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representing non-pulse-like ground motions. The three ground motion ensembles represent

events with various probability of occurrence at different locations and occurring on firm

soil conditions.

As the ground motions are characterized by the user-defined IMs, the choice of IM plays

a crucial role in both running the fragility analysis and interpreting simulation results. With

the suggestion by Mackie and Stojadinović (2005), in a logarithmic reference frame, the

linear consistency of the results from probabilistic analysis can be an indicator of the

applicability of the IM, which is used to interpret the results. Based on this criterion, the

PGA and PGV are good choices of IM for relating to the EDP measures. This study

chooses PGA as the ground motion IM based on their efficiency, practicality, sufficiency

and hazard computability compared with other IMs (Padgett et al. 2008). In addition,

Sa(T1) is not used in this study as the fundamental period of the isolated structure is

changing, which is determined by the effective period of the isolation system.

Figure 1a, b shows the averaged acceleration spectra with 5% damping for pulse-type

(red dash-dotted lines), far-field (blue dotted lines) and all 100 motions (black solid line) at

the fault normal (left) and fault parallel (right) directions, respectively. Since the PGA is

selected as the IM, its distribution among all 100 motions is shown Fig. 1c. The averaged

PGAs are 0.480, 0.571 and 0.147 g for acceleration pulse-type, velocity pulse-type and far-

field motions, respectively. In addition, the averaged PGA for all the motions is 0.336 g.

The ground motions are carefully selected to represent the second level—severe level
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Fig. 1 Information of selected ground motion ensembles and the spectra: a acceleration spectra along FN
direction, b acceleration spectra along FP direction, c PGA distribution
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ground motion in Japan. The selection is based on the target spectrum. Correspondingly,

the PGAs of the selected motions are within the neighborhood generally considered for the

severe level. With the selected motions, no scaling is needed for the fragility analyses,

which is introduced in detail in the subsequent section.

2.2 The fragility function methodology

The fragility function methodology serves as the foundation of the proposed loss esti-

mation model in this paper. Typically, a fragility curve defines the conditional probability

of attaining or exceeding a (or several) specified damage state(s) (DS) for a given set of

ground motion intensity measures. The fragility curves are commonly generated by the

incremental dynamic analysis (IDA) or the probabilistic seismic demand analysis (PSDA)

(Zhang and Huo 2009). This paper adopts the PSDA method, where cloud approach (i.e.

using un-scaled earthquake ground motions) is used for nonlinear time history analysis and

the regression analysis is applied to obtain the mean and standard deviation for each limit

state (LS) by assuming the logarithmic correlation between the median EDP and an

appropriately selected IM:

EDP ¼ aðIMÞb ð1Þ

where the parameters a and b are regression coefficients obtained from the response data of

nonlinear time history analyses. For the PSDA analyses, the aforementioned ground

motions ensembles are used without scaling. Besides, the structural modeling details are

provided in the subsequent sections. By taking the logarithmic of above equation, one

arrives at:

lnðEDPÞ ¼ ln aþ b lnðIMÞ ð2Þ

The provided equation is a linear regressed equation between ln(EDP) and ln(IM) based

on the calculated response distribution. The regression analyses aims at the smallest

standard deviation rEDPjIM , which could be estimated as:

rEDPjIM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 ½lnðEDPiÞ � ðln aþ b lnðIMiÞ�2

n� 2

s

ð3Þ

where n is the total number of EDP responses (here is also the number of earthquake

records) and i is the index of each individual record from 1 to n. Subsequently, a capacity

model uses the EDPs or functions of EDPs to derive the damage index (DI) that can be

compared with the LSs correspondent to various dictated DSs. For simplicity, the DI for

each structural component (SC) is chosen the same as the EDP in this study. By further

assuming a lognormal distribution of EDP at a given IM, the fragility functions (i.e. the

conditional probability of reaching a certain damage state for a given IM) can be written as:

p½DI�LSjIM� ¼ 1� U
lnðLSÞ � lnðaIMbÞ

rEDPjIM

� �

ð4Þ

where rEDP|IM is the standard deviation of the logarithmic distribution computed from

Eq. (3) and U(•) is the standard normal distribution function. Alternatively, the fragility

function can be deployed as:
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p½DI�LSjIM� ¼ 1�
Z LS

0

1
ffiffiffiffiffiffi

2p
p

rEDPjIM
e

½lnðEDPÞ�lnðaIMbÞ�2

2 rEDPjIMð Þ2 dðlnðEDPÞÞ ð5Þ

With the provided linear regression analyses in the logarithmic space, and the computed

standard deviations, the fragility functions could be easily generated as it follows the

standard cumulative normal distribution.

2.3 Damage index and damage states for isolated steel moment frame

The capacity models, which are described in terms of a DI as a function of EDPs, are

commonly used to measure the damages states. For general building inventory, FEMA

(2003) presented the HAZUS-MH MR4 Technical Manual, which provides typical DS

definitions and the performances for various design codes were evaluated. The HAZUS

manual defines four different earthquake damage levels, namely the slight, moderate,

extensive and complete damages. In addition, buildings are categorized to high-, moderate-

, and low-code seismic design standards, or not seismically designed (i.e. the pre-code

buildings).

For building structures, both structural and non-structural components (NSC) can be

vulnerable to earthquake damages. The NSC damage (i.e. building contents) often repre-

sents the majority portion of the total repair cost after earthquake (Yun et al. 2002). The

SCs include load resisting members of superstructure (e.g. beams and columns). Their

damage levels correlate well with curvature or displacement/inter-story drift etc. (Williams

et al. 1997; Fajfar and Gašperšic 1996). In addition, the plastic displacement and the

ductility demand are shown to be reliable indicators of severe damage to structural

members (Kircher 2003). In addition, since the non-structural damages can be triggered by

the response intensities lower than those required to produce structural damages, they are

necessary to be included in the overall loss assessment of buildings. The NSCs could be

categorized to the drift sensitive NSCs and the acceleration sensitive NSCs. According to

HAZUS-MH MR4 Technical Manual, most of the NSCs are sensitive to the floor accel-

erations. Consequently, the inter-story drift is selected as the damage index for structural

damage while the maximum top floor acceleration is selected to quantify the non-structural

damages. To consider the drift sensitive NSCs such as the partition walls, the veneer and

finishes, and the penthouses potentially available for the SMFs, the study slightly increases

the cost of the SCs provided in the subsequent sections.

It is noted that base isolation can reduce the floor accelerations hence can minimize the

nonstructural damages (Lafontaine et al. 2009). Meanwhile, the isolation devices of iso-

lated buildings can also experience large horizontal drifts, leading to the damages of the

isolation devices and their neighboring structural members (Hall et al. 1995). Existing

studies usually relate the damages of the bearings with their shear strain, displacement or

drift (Zhang and Huo 2009). In this study, the bearing shear strain is selected to quantify

the damages to the isolation system. Therefore, three EDPs, namely the peak inter-story

drifts, the maximum floor accelerations, and the bearing shear strains, are selected to

evaluate the performance of isolated buildings. Finally, to keep the study simple, collateral

damages and the interconnected damages are not considered in this study.

A mid-rise steel moment frame is selected subsequently as an example to implement the

proposed PBEE framework. According to the FEMA definition (2003), the sample struc-

ture is categorized into S1 M category and the four DSs for S1 M type buildings are given

in the document. The slight damage is defined when minor deformations in connections or
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hairline cracks in welds occur. The moderate damage state is the observation of some

yielded steel members exhibiting observable permanent rotations at connections; few

welded connections may exhibit major cracks through welds or few bolted connections

may exhibit broken bolts or enlarged bolt holes. The extensive damage, arrives when most

steel members have exceeded their yield capacity, flanges buckle and connections fail. The

final state of complete damage happens when significant portion of the structural elements

have exceeded their ultimate capacities or some critical structural elements or connections

have failed resulting in dangerous permanent lateral displacement, partial collapse or

collapse of the building. Table 1 summarizes the inter-story drift performance level of a

mid-rise SMF at threshold of damage states while Table 2 summarizes the absolute floor

acceleration used in subsequent sections at threshold of damage states for NSCs.

As the sample structure belongs to the moderate code seismic design level, Table 3 lists

the four DSs and their corresponding damage indexes (i.e. the limit EDPs) for the sub-

sequent analyses. Specifically, as the bearing damages have not been defined by FEMA,

their shear strain damage states used in this study are referred from the study by Zhang and

Huo (2009). The damage states are defined such that they are generally suitable for most of

the isolation systems. For the triple pendulum bearings, for example, in the work by Fenz

and Constantinou (2008), for a 50-mm height isolator according to the design, the second

stiffening effect become fairly large at 140 mm. The isolator could not afford much more

displacement after this amount due to a locked situation incurring damage to the isolator

itself. This displacement corresponds to an equivalent ‘‘shear strain’’ between 250 and

300%, which is around the neighborhood of the 250% (defined as the complete damage

state). Therefore, assuming the damage state 100, 150, 200, 250% for the slight, moderate,

extensive, and complete damage is a fair statement, which quantitatively defines the

performance of isolation at the system level for the generalized isolation systems.

2.4 The loss assessment

After obtaining the damage indexes for individual components, the component damage

states can be determined. However, a comprehensive DS incorporating the component

level damages is needed to derive the system level fragility. Previous studies suggest that

system fragility can be derived based on the functionality or repair cost after earthquakes

(Mackie and Stojadinović 2005) or be generated as a union of the component level fragility

using a joint probabilistic seismic demand model (Nielson and DesRoches 2007). In this

study, a probabilistic loss model is inherited from FEMA documentations to quantify the

system level damage state (FEMA 2003). It directly relates earthquake hazard to building

responses and subsequently to total losses in the form of the repair cost ratio. This loss

Table 1 Inter-story drift ratios for structural damage states (FEMA 2003)

Slight Moderate Extensive Complete

High-code seismic design level 0.0040 0.0080 0.0200 0.5333

Moderate-code seismic design level 0.0040 0.0069 0.0157 0.0400

Low-code seismic design level 0.0040 0.0064 0.0135 0.0333

Pre-code seismic design level 0.0032 0.0051 0.0108 0.0267
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estimation framework is also closely tied with the component fragility functions and is

compatible with the overall PBEE framework presented above.

The total loss ratio (TLR) is the cost of earthquake repairs as a percentage of the

replacement value of the original building cost. It has been proved to be a useful perfor-

mance index to civil structures (Shu et al. 2017). For a base-isolated structure, the TLR is

defined by Eq. (6):

TLR ¼
cst

P4
i¼1 P

st
ðiÞr

st
ðiÞ þ cns

P4
i¼1 P

ns
ðiÞr

ns
ðiÞ þ ciso

P4
i¼1 P

iso
ðiÞ r

iso
ðiÞ

cst þ cns þ ciso
ð6Þ

where i = 1–4 stands for the four damage states. rstðiÞ, r
ns
ðiÞ, and risoðiÞ are the percentage

damaged for each of the damage state for SCs, NSCs, and isolation system with detailed

values presented in Table 3. The cst, cns and ciso stands for the original cost for the three

components. Notice that cst shall also include the cost of the drift sensitive NSCs, if there is

any. Besides, Pst
ðiÞ, P

ns
ðiÞ, P

iso
ðiÞ are the probabilities that are bounded by the four fragility

curves within each fragility curves of these three components. In addition to the damage

indexes for structural, non-structural and isolation devices, Table 3 also lists the damage

percentage corresponding to four damage states as part of the loss model. The damage

percent increases as the damage states progress. In addition, this loss model has been

roughly calibrated and validated with building design documents (e.g. ATC-40 1996) and

cost data collected from the construction practice (Plotner et al. 2016).

To simplify the calculation, one could assume that SC has a value of A, and the other

two categories cost aA and bA, respectively. The total replacement cost of the isolated

building is therefore the sum of cost for each component [i.e. ð1þ aþ bÞA]. Notice that a
demolition cost should also be added to the total cost. The coefficients a and b, are
obtained based on previous observations and value estimations of total NSCs and isolation

system. The value of a varies with different types of building according to their functions

and placement of acceleration sensitive components. For this study, a values of 0, 50 and

Table 2 Floor acceleration for non-structural damage states (unit: g) (FEMA 2003)

Slight Moderate Extensive Complete

High-code seismic design level 0.30 0.60 1.20 2.40

Moderate-code seismic design level 0.25 0.50 1.00 2.00

Low-code seismic design level 0.20 0.40 0.80 1.60

Pre-code seismic design level 0.20 0.40 0.80 1.60

Table 3 The damage states and the damage indexes for sample steel moment frame

Description Percentage
damage

Accel. (non-str.)
(g)

Disp. (str.)
(%)

Bearing shear strain (iso.)
(%)

1 Slight 2 0.25 0.40 100

2 Moderate 10 0.50 0.69 150

3 Extensive 50 1.0 1.57 200

4 Complete 100 2.0 4.00 250
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100% are chosen and studied to account for different situations that might happen in the

SMF. b is set to 8% in this study as the total cost for base isolation devices, which is

usually within 10% of the structural cost (i.e. the upper bound of b). Equation (6) can be

rewritten as:

TLR ¼
P4

i¼1 P
st
ðiÞr

st
ðiÞ þ a

P4
i¼1 P

ns
ðiÞr

ns
ðiÞ þ b

P4
i¼1 P

iso
ðiÞ r

iso
ðiÞ

1þ aþ b
ð7Þ

Following the introduced PBEE procedure, fragility curves can be derived for each

component based on three EDPs (i.e. the maximum inter-story drift for structural damage,

the absolute maximum top floor acceleration for non-structural damage, and the shear

strain for isolation devices). As schematically sketched in Fig. 2, each component is

bounded by four fragility curves. Since the repair cost of the higher damage states have

already included the repair cost of the lower damage states, the probabilities of each

damage state in Eqs. (6) and (7) are computed as the difference between the conditional

probabilities of the bounding fragility curves. For each of the three components (e.g. SCs),

probability values (P(1), P(2), P(3), and P(4)) that correspond to each performance level can

be obtained for a given IM from the fragility curves and they satisfy 0�
P4

i¼1 PðiÞ � 1. The

following case study demonstrates the entire process of calculation TLR based on the

fragility curves for each component.

3 The isolated steel moment frame: case study

In order to demonstrate the developed methodology, an experimentally tested fixed-base

steel building and its retrofitted counterpart using base isolation are selected. The shake

table tests were conducted on the largest earthquake simulator at E-Defense in Japan (Ji

et al. 2013; Yu et al. 2010, 2013). The structure was also the subject of the Blind Prediction

Contest (2011). Consecutive numerical studies have also been done based on the tested

data to explore the structural seismic responses as well as the effectiveness of the passive
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damage states
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Fig. 2 Illustration of bounded
probability in percentage for each
state
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control devices (Yu et al. 2010; Dao and Ryan 2014). In this section, numerical models are

developed and the fragility curves are derived for the fixed-base and isolated steel building.

3.1 Structure information

The layout of the 5-story steel building structure could be found in the Blind Prediction

Contest (2011). Shown in Fig. 3, it consists of a two bay by two bay plane with 7000- and

5000-mm span in X direction and two 5000-mm spans along the Y direction. This study

assumes ‘‘Y direction’’ (in Fig. 3) as the weaker yet major direction, and ‘‘X direction’’ as

the stiffer yet secondary direction. Figure 3a shows the elevation view of the frame with a

3850-mm tall first story and four 3000-mm tall stories above. Figure 3b shows the plan

view also in the unit of mm. The structural elements are designed to withstand potential

strong ground motions in Japan. Further information of the building could be obtained

from the work from Tokyo Institution of Technology (Kasai et al. 2011). The numerical

model for the building follows a bilinear hysteretic behavior, which is characterized with

elastic stiffness K1_B, post-yielding stiffness K2_B and characteristic strength Qd_B. The

static pushover analysis (Fig. 3c) reveals that the bilinear parameters along the major

direction of the designed building are K1_B = 25 MN/m, K2_B = 1750 kN/m, and

Qd_B = 4194 kN, where ‘‘B’’ stands for the building in the subscript. The story weights are

842, 841, 822, 816, 798, and 1153 kN from the ground level to the roof level respectively

which adds up to 5309 kN above the isolation system. The first modal period T1 is 0.65 s.

In addition, assuming all diaphragms are rigid, the first seven natural frequencies of the

building are 1.52, 1.58, 1.87, 4.81, 4.98, 5.87, and 9.35 Hz respectively. The torsional

mode for the story diaphragms is the sixth mode, which is considered insignificant for this

structure.

The tested base-isolated structure is seated on nine friction pendulum bearings. The

bearings are triple pendulum isolators with two inner sliding surfaces and two outer sliding

surfaces with their sectional geometry and elevation view demonstrated in Fig. 4a (pro-

vided with permission from the related authority). All of the bearings have been lab tested

and the test result for one of the bearings is shown in Fig. 4b (provided with permission

from the related authority) where a bilinear behavior generally captures the force–dis-

placement relationship within the tested displacement range. Based on this information, the

originally designed isolators can be assumed to have bilinear responses and their pre-yield

and post-yield stiffnesses are K1_I = 35 MN/m, K2_I = 760 kN/m, and Qd_I = 386 kN,

where ‘‘I’’ stands for the isolation system in the subscript. The strength in terms of building
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Fig. 3 Structural information of full-scale 5-story steel MF building: a elevation view of the tested steel
structure, b plan view of the tested steel structure, c two directional pushover curves
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weight is 7.27%. The stiffness ratio between the pre-yielding stiffness K1_I and post-

yielding stiffness K2_I is measured by a parameter N = K1_I/K2_I. For the model repre-

senting the tested pendulum isolator design, the stiffness ratio N is about 46. The effective

isolation period of the structure is around 2.19 s when the isolators experience 100% shear

strain. Besides, the effective isolation period at 200% shear strain is 2.87 s (considering the

hardening effect) and 3.10 s (ignoring the hardening effect). In addition, the inelastic

features of the isolation system compared with that of the superstructure corresponds to

Qd_I/Qd_B = 9.2% and K1_I/K1_B = 1.4 approximately.

Moreover, not provided in the figure, the hardening behavior could be expected at a

larger strain level for the triple pendulum bearings, stiffening the isolated layer of the

building (Fenz and Constantinou 2008). Makris and Vassiliou (2011) discovered similar

responses between the friction bearing with two sliding surfaces and a bilinear behavior

with the initial stiffness and post-yielding stiffness matching the 1st and 3rd segmental

stiffness of the triple pendulum isolators. Consequently, parallel to the bilinear behavior, a

nonlinear elastic hardening behavior was added in the numerical simulation after 150%

isolator shear strain while modeling the triple pendulum isolators. The hardening element

makes the triple pendulum isolators very stiff at nearly 250% shear strain representing a

locked condition.

Although the designed and tested isolators for the building are triple pendulum bearings,

other types of isolators can also be used for base isolation design. In current practice, three

types of isolators are commonly used: elastomeric bearings (ERB) (Kumar et al. 2014),

lead-rubber bearings (LRB) (Kalpakidis et al. 2010), and friction pendulum systems (FPS)

(Kelly 1986). In addition, new types of isolation systems have been invented and tested

over the decades such as the fiber-reinforced elastomeric isolators (Moon et al. 2002).

Nonetheless, the generalized hysteretic behavior of isolation system is close to bilinear

(Naeim and Kelly 1999). Therefore, to represent the hysteresis behavior of isolation system

in a broader sense, the bilinear behavior is assumed for the generalized isolation systems.

Features for special isolators such as the hardening effect of the triple pendulum isolators

are consequently not considered in the subsequent system level study. Table 4 summarizes

the parameters and formulas for bilinear modeling of these three isolation devices. In the

subsequent parametric study, various isolation devices with different K1, K2 and Qd have

been selected to determine the optimal design of the isolation system.

Fig. 4 Triple pendulum isolation system and their tested behavior: a section and elevation of a tested TFP
bearing, b tested result of TFP bearing and its equivalent bilinear behavior
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3.2 Modeling of the isolators

In additional to the rate independent bilinear behavior, Casciati (1989) considered the

Bouc–Wen model (Bouc 1971; Wen 1975, 1976) as a smoothed form of the bilinear model

and generalized it to the bi-directional case. The Bouc–Wen model was proved an accurate

model for the steel elements and the isolation system. This paper implements the bi-

directional coupled bilinear and Bouc–Wen model into the software platform OpenSees

(2017). The implementation of the bi-directional Bouc–Wen model was documented by

Makris and Zhang (2002) in detail. According to this model, restoring force P = [Px Py]
T

consists of an elastic-hardening component and a hysteretic component, given by:

P ¼ K2uþ Fp ð8Þ

where u is vector of the two directional displacements, the rate of plastic force Fp is

approximated with:

_Fp ¼ ðK1 � K2Þ _u� jjFpjjg�2

QD

ðK1 � K2Þ FT
p _u

� � 1þ sgn FT
p _u

� �

2
Fp ð9Þ

where the variable g[ 0 describes the smoothness of the transition. Different isolation

devices possess different Bouc–Wen behaviors in terms of the transition smoothness

parameter. Specifically, g is set to be 2 for elastomeric bearings, 4 for lead rubber bearings

and 8 or above for friction pendulum bearings. Defining a dimensionless plastic variable Z
such that Z = Fp/QD and the uniaxial ‘‘yield’’ displacement uY = QD/(K1 - K2), Eq. (9)

can be reformed as:

_ZuY ¼ A _u� jjZjjg�2 � ðZT _uÞ½cþbsgnðZT _uÞ�Z ð10Þ

where A, b, c, and g are dimensionless quantities that control the shape of the hysteretic

loop. In this study, A = 1 and b = c = 0.5. This results in the bound of variable Z as

jjZjj � 1.

Such Bouc–Wen model has been proved versatile for modeling various seismic pro-

tection devices, such as sliding, elastomeric, or lead-rubber bearings. Figure 5 illustrates

the cyclic behaviors of the three types of isolation devices under the KGM motion of the

1995 Kobe earthquake. For the friction pendulum system, especially for the triple pen-

dulum isolators, the hardening (or stiffening) behavior at a larger strain level could be

easily modeled with the provided OpenSees element by existing studies (Fenz and Con-

stantinou 2008; Dao and Ryan 2014).

Finally, uncertainties such as heating, aging, contamination, rate-dependent effect,

seasonal temperature change will all effect the ultimate performance of the isolated

structure. For the heating problem, for example, Kalpakidis et al. (2010) has done a

Table 4 Formulas of bilinear modeling for the typical isolation devices (Zhang and Huo 2009)

Elastic stiffness, K1 Characteristic strength, Q Post-yielding stiffness, K2

ERB K1 = NK2 (N = 5–15) From hysteresis loop K2 = GA/
P

tr

LRB K1 = NK2 (N = 15–30) Fy = fy ALead K2 = (1.15–1.20)GA/
P

tr

FPS K1 = NK2 (N = 50–100) Q = lW K2 = W/R
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bounded analysis for the lead rubber bearings. Their research shows that for the earthquake

records with more than 3 obvious cycles, the strength degradation effect is not negligible

due to the temperature increase in the lead core. In addition, such effect is not substantial

and the bearings maintain their characteristic strength against the pulse-type near fault

ground motions. In this study, as the selected earthquakes are the pulse-type ground

motions and the far-field motions, the heating effect is not included in the study. Moreover,

to evaluate the structural performance at the system level, the study has a limit that the

various aforementioned uncertainties are not considered and only the basic features of the

isolation system is modeled.

3.3 Modeling of the structure

A detailed 3D structural model was generated in OpenSees and nonlinear dynamic

response history analyses were conducted using the selected ground motions. The 3D

model simulates all the structural members with displacement-based fiber elements con-

sidering nonlinear spreading along the elements. The steel elements are assumed to have

uniaxial bilinear flexural material behavior with kinematic hardening property defined by

the steel01 material in OpenSees. The deteriorating properties and the collapse features are

not added to the elements of the super structure as it usually remain elastic after being

isolated. Ignoring the deteriorating properties might lead to smaller peak inter-story drifts

and larger floor accelerations for the fixed-base situation against some big earthquake

excitations. However, as the target of this study is to explore the optimum range of the base

isolators of the isolated structure, deteriorating is not considered for higher computational

efficiency. Five-point Gauss–Lobatto integration was assigned to the elements to increase

modeling accuracy. Inelastic sections were used aggregating the axial, flexural, and tor-

sional stiffness. Within the OpenSees model, the ‘‘corotational’’ geometric transfer is

selected for the beams and columns considering larger deformation against major earth-

quake ground motions.

The predicted structural responses from the 3D model closely matched with the tested

responses provided in the Blind Analysis Contest (2011). To facilitate the fragility analysis

and the extensive parametric study that follows, a simplified model is derived and cali-

brated with the original 3D model as shown in Fig. 6a. The story stiffness K1–K5 still

follows the bilinear relationship and provides 2.5% of the elastic stiffness after yielding. To

model the triple pendulum systems, in addition to the bilinear features provided by the

developed Bouc–Wen model, a nonlinear elastic hardening behavior is added after 135%

shear strain of the isolator to capture the hardening effect (Fenz and Constantinou 2008).

The hardening element makes the triple pendulum isolators very stiff at nearly 250% shear

strain representing a locked condition. This hardening effect is removed while considering

Fig. 5 Simulated dynamic behaviors for different isolation systems in major direction under KGM record
of the 1995 Kobe earthquake: a ERB performance, b LRB performance, c FPS performance
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generalized isolation systems. Figure 6b, c compares the predicted floor displacements

from the simplified model with the full scale tested results for both base isolated and fixed-

base building subject to the Iwanuma record of the 2011 Tohoku earthquake. Subsequently,

the fragility curves from the simplified and the detailed 3D model are also compared in

Fig. 6d (roof level acceleration) and Fig. 6e (bearing displacement). The good match

further confirms the modeling accuracy of the simplified model with the original 3D model,

which is adopted for the subsequent analyses.
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3.4 Fragility analyses

Fragility analyses are conducted with the developed simplified building model to inves-

tigate the optimal design of isolation devices subject to the suite of earthquake motions.

The simplified OpenSees model is also a 3D model whose isolation system is modeled with

the two-horizontal directions coupled Bouc–Wen behavior. Nonetheless, for the EDPs

such as the inter-story drifts, the floor accelerations, and the isolation shear strains, the

study only measures the larger value instead of the vector norm out of the two directions

during each earthquake excitation. Figure 7 illustrates the relationship between the com-

puted EDPs and the corresponding PGA (unit in g) of ground motions in logarithmic scale.

The closer each point gets to the regressed linear line, the better EDP and IM are corre-

lated, indicating better regression results.

Figure 8 shows the acceleration and bearing shear strain fragility curves for the origi-

nally-designed isolated building. The building inter-story drift fragility curve is not pre-

sented here due to their extremely small values, indicating negligible SC loss after using

the base isolation (i.e. Pst � 0). To compute the TLR under very rare earthquakes (i.e. mean

PGA = 0.82 g), the first step is to compute the bonded damage probability from the

fragility curves, i.e. Pns = [0, 88.2%, 11.8%, 0] and Piso = [24.7, 20.8, 15.3, 23.9%]

respectively. From Table 3, the repair percentage rst = rns = riso = [2, 10, 50, 100%] for

the four damage states. Then, the TLR could be computed from Eq. (7) as:

TLRjPGA¼0:82g ¼
P4

i¼1 P
st
ðiÞr

st
ðiÞ þ a

P4
i¼1 P

ns
ðiÞr

ns
ðiÞ þ b

P4
i¼1 P

iso
ðiÞ r

iso
ðiÞ

1þ aþ b

a ¼ 1:0; b ¼ 0:08

Pst � 0
8:39%

ð11Þ

4 Optimum design of the isolation system

Following the calibrated numerical model and the established PBEE framework, the study

proceeds to a systematic investigation of the mechanical properties of isolation devices on

the structural responses, potential damages, and essentially the TLR of an isolated building.

Particularly, a parametric study has been conducted to explore the optimum design range

for isolation system. For each design of isolation system, the fragility curves are generated
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and then used to compute the TLR as the system level performance index for the given

isolation design. An array of isolation systems with various combinations of model

parameters are selected for the parametric study. The isolation devices have the stiffness

ratios N of 10, 20, and 50 respectively to represent the three common isolation types. For

each given stiffness ratio, the post-yielding stiffness K2_I for the isolation system is varied

from 0.01 to 0.08 times of the building elastic stiffness K1_B, and the bearing yielding

strength Qd_I is varied from 0.03 to 0.45 times the building yielding strength Qd_B. The

seismic hazard levels are dependent on-site locations. For the location and site where the

building is hypothetically designed, a basic seismic hazard analysis has been performed,

where four different hazard levels are considered in the parametric study according to the

approach recommended by Haselton et al. (2007). As an example, Table 5 lists the four site

dependent hazard levels and their mean PGAs from the uniform hazard analysis. Referring

to the corresponding value of each hazard level of IM from Table 5, the fragility proba-

bilities of four damage states for each of the EDPs could be obtained. Finally, according to

Eq. (7), the TLR for each hazard level is computed, recorded and compared to facilitate the

performance based design of the base isolation system.

For demonstration purpose, Fig. 9 plots the TLR as the function of Qd_I/Qd_B and K2_I/

K1_B under a suite of far-field motions that represents a 20% in 5 years hazard level. The

isolation devices have a stiffness ratio of N = 20 while the TLR is computed assuming zero

NSC cost (i.e. a = 0). The deeper points on the contour is marked with darker colors,

indicating better performances. The deepest point on the contour represents the smallest

TLR at the given hazard level, which also corresponds to the lowest fragility that incurs the
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Table 5 Hazard levels and their mean PGA from uniform hazard analysis

Hazard level 20% in 5 years 10% in 50 years 2% in 50 years Catastrophic
Frequent Rare Very rare Extremely rare

Equivalent mean return period 22 475 2475 Unpredictable

Mean PGA 0.20 (g) 0.55 (g) 0.82 (g) 1.20 (g)
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best structural performances. The model parameters corresponding to the bottom (opti-

mized) point therefore represent the optimal design of the isolation system. Similarly,

Fig. 10 shows TLR surfaces for pulse-type motions with non-structural parameter a = 0

and bearing stiffness ratio of N = 50 (close to the tested FPS bearings). In addition, four

figures are presented to incorporate different hazard levels at PGA of 0.2, 0.55, 0.82, and

1.2 g. In this case, considering all the hazard levels, the optimal isolation design param-

eters are approximately Qd_I = 0.12 Qd_B and K2_I = 0.08 K1_B.

Following similar steps, full sets of TLR contours are derived considering different non-

structural parameter a, earthquake hazard levels, isolation types (i.e. stiffness ratio N), and

suite of near fault and far field ground motions. The approximate optimal isolation

parameters as identified by the bottom points on these plots are summarized in Tables 6

and 7 for pulse-type motions and far-field motions respectively. The data presented in the

tables indicate that the optimum isolation parameters are not sensitive to the stiffness ratio

N (i.e. the isolation type). The optimal characteristic strength Qd_I of isolation devices is

averaged around 10% of building’s characteristic strength Qd_B. Under pulse-type motions

and without considering NSCs (i.e. a = 0), a larger Qd_I up to 0.21 of Qd_B might be

required. However, since the non-structural damage is usually inevitable, the optimal range

of Qd_I is typically around 3–12% of Qd_B, which corresponds to the isolation strength to

building weight ratio between 2.37 and 9.48%. It is noted that low hazard level (e.g. PGA

of 0.20 g case) may result in different optimum isolation designs compared with the higher

hazard levels as the damages of the isolation devices become relatively more significant

affecting the TLR when the hazard levels are small. Another interesting observation is that

when considering NSCs, the optimal selection of the post-yielding bearing stiffness K2_I is

recommended to be small. For example, K2_I is suggested to be 1–3% of structural elastic

stiffness K1_B, which corresponds to an effective isolation period greater than 3.15 s. Such

observation also confirms the effectiveness of the isolators as their replacement costs are

relatively low such that the bearing designs with more ductility (i.e. smaller K2_I) help

better protect the superstructure and the NSCs.

Despite the small variability of optimal isolation parameters for different cases, it can be

concluded that the bearings with Qd_I = (0.03 * 0.12) Qd_B and K2_I = (0.01 * 0.03)

K1_B are good choices for retrofitting the prototype building. The designed isolation sys-

tem, which has Qd_I/Qd_B = 9.2% and K2_I/K1_B = 0.03, provides a reasonable design

near the optimized range identified in this study. Another observation is that K1_I/K1_B

increases proportionally with stiffness ratio N. Since the elastic stiffness K1_I is N times the

post-yielding stiffness K2_I, the results once more imply that K1_I is insignificant whereas

K2_I plays a much more crucial role for optimal design of isolation devices. This matches

the isolator design theory where the post yielding stiffness K2_I and the characteristic

strength Qd_I dominates the bearing behavior for severe ground motions.

The minimum TLRs with optimal isolation parameters are summarized in Tables 8 and

9 for pulse-type motions and for far-field motions, respectively. The TLR increases as the

earthquake intensity increases. By comparing TLRs for buildings with different non-

structural values (i.e. a ¼ 0; 0:5; 1:0), it is noted that the majority seismic loss of the

isolated building comes mainly from the repair cost of NSCs. This is because the isolation

design significantly reduces the inter-story drifts (i.e. eliminating the structural damages)

whereas the fixed base structure incur significant damages in both SCs and NSCs (see

Table 10). Notice that the TLR of the fixed base structure could be less accurate than the

isolated structures as the strength deterioration was not considered in the numerical

structural model. The results also show that near-fault motions result in higher TLR than

the far-field motions. Moreover, it has been proved again that when K2_I fixed at a specific
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range, the stiffness ratio N has negligible effect to the building response reflected by almost

identical TLRs at given earthquake intensity.

Table 10 compares the TLRs for the fixed-base and the base-isolated building with

different isolation designs. Assuming that the NSC costs the same as the SC (i.e. a = 1.0),

Table 6 Optimal range for
design variables when structure
subject to pulse-type motions

0.20 (g) 0.55 (g) 0.81 (g) 1.20 (g) Range

Stiffness ratio N = K1_I/K2_I = 10

a = 0.0

QD_I/QD_B 0.21 0.15 0.12 0.09 0.09–0.21

K2_I/K1_B 0.08 0.08 0.08 0.08 0.08–0.08

K1_I/K1_B 0.8 0.8 0.8 0.8 0.8–0.8

a = 0.5

QD_I/QD_B 0.03 0.03 0.03 0.03 0.03–0.03

K2_I/K1_B 0.01 0.01 0.01 0.01 0.01–0.01

K1_I/K1_B 0.1 0.1 0.1 0.1 0.1–0.1

a = 1.0

QD_I/QD_B 0.06 0.03 0.03 0.03 0.03–0.06

K2_I/K1_B 0.01 0.01 0.01 0.015 0.01–0.015

K1_I/K1_B 0.1 0.1 0.1 0.15 0.1–0.15

Stiffness ratio N = K1_I/K2_I = 20

a = 0.0

QD_I/QD_B 0.18 0.15 0.12 0.09 0.09–0.18

K2_I/K1_B 0.08 0.08 0.08 0.08 0.08–0.08

K1_I/K1_B 1.6 1.6 1.6 1.6 1.6–1.6

a = 0.5

QD_I/QD_B 0.12 0.03 0.03 0.03 0.03–0.12

K2_I/K1_B 0.01 0.01 0.01 0.01 0.01–0.01

K1_I/K1_B 0.2 0.2 0.2 0.2 0.2–0.2

a = 1.0

QD_I/QD_B 0.06 0.03 0.03 0.03 0.03–0.06

K2_I/K1_B 0.01 0.01 0.01 0.01 0.01–0.01

K1_I/K1_B 0.2 0.2 0.2 0.2 0.2–0.2

Stiffness ratio N = K1_I/K2_I = 50

a = 0.0

QD_I/QD_B 0.18 0.12 0.12 0.09 0.09–0.18

K2_I/K1_B 0.08 0.08 0.08 0.08 0.08–0.08

K1_I/K1_B 4 4 4 4 4–4

a = 0.5

QD_I/QD_B 0.03 0.03 0.03 0.03 0.03–0.03

K2_I/K1_B 0.03 0.01 0.01 0.01 0.01–0.03

K1_I/K1_B 1.5 0.5 0.5 0.5 0.5–1.5

a = 1.0

QD_I/QD_B 0.03 0.03 0.03 0.03 0.03–0.03

K2_I/K1_B 0.01 0.01 0.01 0.01 0.01–0.01

K1_I/K1_B 0.5 0.5 0.5 0.5 0.5–0.5
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the originally-designed isolation devices (ASCE 7-10 2010; Dao et al. 2013; Dao and Ryan

2014) in the test structure reduced the TLR from 4.9% to almost zero under small yet

frequent earthquake input motions (e.g. 20% in 5 years, PGA = 0.2 g), while the TLR was

reduced from 53.8 to 8.39% under very rare earthquake input motions (e.g. 2% in 50 years,

Table 7 Optimal range for
design variables when structure
experiences far-field motions

The tilted data implies that a
wide range close to the values is
also close to optimal

0.20 (g) 0.55 (g) 0.81 (g) 1.20 (g) Range

Stiffness ratio N = K1_I/K2_I = 10

a = 0.0

QD_I/QD_B 0.06 0.03 0.03 0.03 0.03–0.06

K2_I/K1_B 0.08 0.08 0.08 0.08 0.08–0.08

K1_I/K1_B 0.8 0.8 0.8 0.8 0.8–0.8

a = 0.5

QD_I/QD_B 0.03 0.03 0.03 0.03 0.03–0.03

K2_I/K1_B 0.01 0.08 0.02 0.02 0.01–0.08

K1_I/K1_B 0.1 0.8 0.2 0.2 0.1–0.8

a = 1.0

QD_I/QD_B 0.03 0.03 0.03 0.03 0.03–0.03

K2_I/K1_B 0.01 0.01 0.02 0.02 0.01–0.02

K1_I/K1_B 0.1 0.1 0.2 0.2 0.1–0.2

Stiffness ratio N = K1_I/K2_I = 20

a = 0.0

QD_I/QD_B 0.06 0.03 0.03 0.03 0.03–0.06

K2_I/K1_B 0.065 0.08 0.08 0.08 0.065–0.08

K1_I/K1_B 1.3 1.6 1.6 1.6 1.3–1.6

a = 0.5

QD_I/QD_B 0.03 0.03 0.03 0.03 0.03–0.03

K2_I/K1_B 0.02 0.045 0.01 0.08 0.01–0.08

K1_I/K1_B 0.4 0.9 0.2 1.6 0.2–1.6

a = 1.0

QD_I/QD_B 0.03 0.03 0.03 0.03 0.03–0.03

K2_I/K1_B 0.01 0.01 0.01 0.08 0.01–0.08

K1_I/K1_B 0.2 0.2 0.2 1.6 0.2–1.6

Stiffness ratio N = K1_I/K2_I = 50

a = i0.0

QD_I/QD_B 0.03 0.03 0.03 0.03 0.03–0.03

K2_I/K1_B 0.08 0.08 0.08 0.08 0.08–0.08

K1_I/K1_B 4 4 4 4 4–4

a = 0.5

QD_I/QD_B 0.03 0.03 0.03 0.03 0.03–0.03

K2_I/K1_B 0.01 0.02 0.03 0.03 0.01–0.03

K1_I/K1_B 0.5 1 1.5 1.5 0.5–1.5

a = 1.0

QD_I/QD_B 0.03 0.03 0.03 0.03 0.03–0.03

K2_I/K1_B 0.01 0.01 0.03 0.03 0.01–0.03

K1_I/K1_B 0.5 0.5 1.5 1.5 0.5–1.5
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PGA = 0.82 g). It is further noticed that the optimal isolation design results in an even

better reduction of TLR. A remarkable 50% performance improvement can be achieved

from such performance-based design over the code-designed isolation system for the test

building.

Table 8 Minimum TLRs under
pulse-type motions (in %)

0.20 (g) 0.55 (g) 0.82 (g) 1.20 (g)

Stiffness ratio N = K1_I/K2_I = 10

a = 0.0 Minimum loss 0.05 0.87 1.86 3.17

a = 0.5 Minimum loss 0.16 1.72 4.62 21.22

a = 1.0 Minimum loss 0.22 1.99 6.33 25.46

Stiffness ratio N = K1_I/K2_I = 20

a = 0.0 Minimum loss 0.05 0.65 1.50 2.66

a = 0.5 Minimum loss 0.16 1.69 4.50 21.29

a = 1.0 Minimum loss 0.22 1.92 6.42 25.22

Stiffness ratio N = K1_I/K2_I = 50

a = 0.0 Minimum loss 0.01 0.46 1.22 2.36

a = 0.5 Minimum loss 0.15 1.69 4.54 22.38

a = 1.0 Minimum loss 0.23 1.94 6.38 25.90

Table 9 Minimum TLRs under
far-field motions (in %)

0.20 (g) 0.55 (g) 0.82 (g) 1.20 (g)

Stiffness ratio N = K1_I/K2_I = 10

a = 0.0 Minimum loss 0.02 0.39 0.91 1.83

a = 0.5 Minimum loss 0.13 1.04 1.96 14.12

a = 1.0 Minimum loss 0.14 1.22 2.60 17.83

Stiffness ratio N = K1_I/K2_I = 20

a = 0.0 Minimum loss 0.06 0.37 0.84 1.66

a = 0.5 Minimum loss 0.14 1.05 1.88 16.79

a = 1.0 Minimum loss 0.15 1.23 2.58 18.00

Stiffness ratio N = K1_I/K2_I = 50

a = 0.0 Minimum loss 0.04 0.30 0.77 1.61

a = 0.5 Minimum loss 0.13 1.05 1.95 16.41

a = 1.0 Minimum loss 0.15 1.24 2.54 18.14

Table 10 TLRs for different
designs with 100 motions and
a = 1.0 (in %)

Case 0.2 (g) 0.55 (g) 0.82 (g) 1.20 (g)

Fixed 4.90 34.10 53.84 71.13

Designed 0.43 5.24 8.39 29.46

Optimal when N = 10 0.18 1.69 4.72 22.80

Optimal when N = 20 0.19 1.61 4.49 22.85

Optimal when N = 50 0.18 1.62 4.57 22.57
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5 Conclusions

This study applies the performance-based methodology to assess the seismic performance

of the base isolated mid-rise SMF and to optimally design the isolation devices to reduce

overall seismic loss. Adopting a fully tested SMF structure on E-Defense shake table,

the detailed and simplified numerical models were developed and calibrated with exper-

imental data. Under the PBEE framework, the total loss ratio (TLR) is implemented as the

system level performance index considering damages for structural, non-structural and

isolation components. Fragility curves are generated and utilized to derive the TLR. A

comprehensive parametric study is subsequently carried out to consider various earthquake

hazard levels, isolation designs, and both structural and non-structural damages, etc.

Finally, the optimal isolation parameters are identified that correspond to the lowest TLR.

The study demonstrates that the TLR is an effective performance index quantifying the

system level seismic performance of isolated buildings. It combines the repair costs and the

component level probabilistic performance of structural components (SC) and non-struc-

tural components (NSC) as well as isolation devices. Furthermore, the optimal isolation

parameters corresponding to the lowest TLR are functions of structural properties and

damage states. The structure will experience minimum overall damage when the charac-

teristic strength Qd_I of isolation devices is about 3–12% of structural strength Qd_B (the

strength to building weight ratio between 2.37 and 9.48%) and the post-yielding stiffness

K2_I is about 1–3% K1_B (the effective period of isolation system longer than 3.15 s). The

overall damage potential is not sensitive to the elastic stiffness of isolation devices. The

results comparing TLRs for fixed-base and base isolated buildings also show the significant

performance improvement due to isolation especially when NSCs (i.e. building contents)

are of similar values to SCs.

In summary, the study offers a systematic way to select optimal isolation device

parameters based on structural properties and performance objectives while incorporating

the uncertainties in ground motions and variability of structural properties under the fra-

gility function framework.
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