Arab J Sci Eng
DOI 10.1007/s13369-017-2766-x

@ CrossMark

RESEARCH ARTICLE - SPECIAL ISSUE - COMPUTER ENGINEERING AND COMPUTER SCIENCE

GA-Based Customer-Conscious Resource Allocation and Task
Scheduling in Multi-cloud Computing

Tamanna Jena!® - J. R. Mohanty?

Received: 5 April 2017 / Accepted: 27 July 2017
© King Fahd University of Petroleum & Minerals 2017

Abstract Resource allocation in multi-cloud computing is
a complicated chore; there are many constraints and con-
figuration in accordance with cloud providers as well as
cloud customers. Mapping the incoming job request to avail-
able virtual machines (VMs) is a non-polynomial complete
problem as the nature of traffic quite arbitrary. Customer
requirements and capacity of applications change frequently.
To bridge the gap between frequently changing customer
requirement and available infrastructure for the services,
we propose Genetic Algorithm-based Customer-Conscious
Resource Allocation and Task Scheduling in multi-cloud
computing. The algorithm is basically divided into two
phases, namely genetic algorithm-based resource allocation
and shortest task first scheduling. The objective is to map the
tasks to VMs of the multi-cloud federation in order to have
minimum makespan time and maximum customer satisfac-
tion. Rigorous experiments were done on synthetic data and
compared the simulation results with the existing scheduling
algorithm. Results of simulation illustrate that the proposed
algorithm outrun the existing ones as per concerned metrics.

Keywords Resource allocation - Genetic algorithm -
Heterogeneous multi-cloud computing - Virtual machine -
Task scheduling

B Tamanna Jena
tamannasinghdeo @gmail.com

J. R. Mohanty

jnyanal @gmail.com

School of Computer Engineering, KIIT University,
Bhubaneswar, India

School of Computer Application, KIIT University,
Bhubaneswar, India

Published online: 30 August 2017

1 Introduction

Multi-cloud computing is a technical paradigm, which pro-
vides resources of various capacities to customers. Each
job request receives unique job id after registration in the
multi-cloud federation. For day-to-day enterprise operation,
health, military, IT industry operations, etc., cloud computing
is inevitable. The varied features of multi-cloud comput-
ing like on-demand services, pay-as-you-go pricing model,
dynamic scaling, virtualisation and no vendor lock-in make
cloud platform appealing for industries of all capacities and
research society. The cloud services are provisioned in the
form of storage datacentre. However, Infrastructure as a Ser-
vice (IaaS) cloud uses a scheduling policy to allocate VMs
to the customer requests. Amazon Web Services (AWS)
use First In First Out, scheduling using batch processing.
The success of cloud computing relies on load balancing,
efficient scheduling and importantly collaborating among
peer cloud service providers to form a reliable federation
to provide complex problem-solving techniques handling
day-to-day business, scientific and engineering applications.
No datacentre provides unlimited resources to accommodate
dynamic scaling. Customer having high demanding applica-
tions reserves higher instances to get the timely deployment.
The multi-cloud computing has its own share of challenges.
In multi-cloud computing platform optimising numerous
resources which are distributed in a different geographical
region is challenging. Basically, a centralised management is
established to achieve resource allocation followed by task
scheduling. Centralised cloud broker monitors the fitness,
status of VMs and the scheduling procedures. Assigning
available tasks to VMs is one of the concerned problem
which has taken attention from academia, business and
research, assigning VMs to include two-phase processes,
namely mapping and scheduling. Mapping includes allo-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s13369-017-2766-x&domain=pdf
http://orcid.org/0000-0003-2703-7420
http://orcid.org/0000-0002-8762-3037

Arab J Sci Eng

cating the incoming tasks to processing units termed VMS,
followed by arranging the order of the allocated tasks. In this
paper, we propose GA-based Customer-Conscious Resource
Allocation and Task Scheduling (GACCRATS). The algo-
rithm is divided into two crucial phases, namely resource
allocation and task scheduling. The experimental outcomes
prove that the proposed model outperforms the existing algo-
rithms in terms of makespan time and customer satisfaction
rate in the multi-cloud platform.

Outline of the paper is as follows: (1) development of
the GA-based resource allocation algorithm in the multi-
cloud environment. (2) Scheduling of the allocated tasks
to resources using shortest task first algorithm. Simula-
tion of proposed algorithm on synthetic data. We compared
the simulation results with the preexisting algorithms, i.e.
COTS algorithm and TLBO algorithm. The remaining paper
is organised as follows: Sect. 2 shows the related work
along with application in a multi-cloud environment. Sec-
tion 3 describes the proposed cloud model along with the
scheduling policy in detail. Section 4 contains the proposed
algorithm, and results will be discussed in Sect. 5 along with
performance metrics. The conclusion is in Sect. 6.

2 Related Work

Resource allocation is assigning tasks to resources having
certain objectives like load balancing, minimum execution
time, minimum cost and much more [1]. The objective of
the paper is to allocate resources to incoming tasks in a
balanced manner such that minimisation of makespan time
and maximisation of throughput and customer satisfaction
rate can be attained. Load balancing is one of the impor-
tant criteria in resource allocation; the objective is to assign
the tasks to the resources such that the processing units are
neither overloaded nor idle. Scenarios used in this paper
are the multi-cloud heterogeneous federation system. Our
model consists of numerous physical machines which further
splits into multiple virtual machines. We tried to simulate the
multi-cloud, consisting of many physical machines owned by
different cloud providers which are under one federation. Our
model consists of three vital components: the multi-cloud
federation, cloud provider and cloud user. The multi-cloud
consists of multiple physical machines (mainly owned by dif-
ferent cloud provider). Cloud user is interested in deploying
applications using the multi-cloud resources. The simula-
tion, an incoming workload, is generated using Poisson’s
distribution function, where the range of rate of arrival of
incoming application (lambda) varies from four to hundred.
Applications are of various sizes. Each application is divided
into multiple tasks. Tasks are assigned to virtual machines
(VMs). Task scheduling is of an immense importance which
relates to the efficiency of the entire multi-cloud computing

S @ Springer

environment. It is basically deciding the sequence of execu-
tion of the tasks by virtual machines. So both load balancing
and scheduling are two approaches on two separate levels
of abstraction. Resource allocation is somewhat even more
abstract than load balancer and scheduler. Resource alloca-
tion involves the assignment of available tasks to VMs in an
optimum manner, minimising the makespan time. It is found
that multiple tasks are allocated to single VM, therefore after
optimum resource allocation of an efficient task scheduling
enhances the performance of the system. In major cases exe-
cuting the prioritised job requests/ tasks is crucial for the
system behaviour.

Scheduling of the cloud-task pair is one of the most
challenging problems for distributed computing [1-9]. Cus-
tomers requirement is dynamic in nature. Many existing
algorithms become futile, as the requirement of users changes
as well as working environments. Task scheduling algo-
rithm based on changing customer requirement is extensively
studied by many researchers. Haizea, a lease management
architecture that enables resource consumers to negotiate
the two kinds of leases, is described [10-14]. Tasks are
broadly divided into two types, Advance Reservation (AR)
and Best Effort (BE) tasks. Tasks which can reserve resource
in advance are AR type; it is non-preemptive in nature. The
requirement of resource needs to be mentioned clearly during
the time of registration like the type of the application, pro-
cessing power required for the execution of the application,
duration of resource required for complete execution. Detail
of requirement needs to be communicated between the cloud
provider and cloud user in SLA. As applications are divided
into two categories AR and BE applications, AR application
further divided into numerous AR task and BE application is
further divided into numerous BE tasks. AR tasks are non-
preemptive in nature, whereas BE tasks are preemptive in
nature.

Armstrong et al. [2] tried to allocate resources to the
task and predict runtime of the incoming workload when
the rate of arrival is uncertain, proposed Opportunistic Load
Balancing (OLB) and Limited Best Assignment (LBA) for
determining the performance of heterogeneous mapping
algorithm. They suggested that machine learning algorithm
(basically genetic algorithm) will be better suited in finding
resource allocation to a task. Dasgupta et al. [15] used Cloud
Analyst simulator for implementation and GA to evenly dis-
tribute the load and allocate tasks to VMs. Criteria they used
for simulation are a homogeneous physical machine, linear
nature of incoming of job request and the same priority for all
jobs. The drawbacks are the same priority of task which may
lead to improper usage of resources. Important applications
may suffer long waiting, whereas applications which are not
very important may get executed first. It is improper usage
of resources. Incoming job request is not linear in a real-life
scenario. Fang et al. [16] proposed two types of mapping

Arab J Sci Eng

in cloud computing, where the objective is load balancing.
First phase involves mapping of the tasks to the VM, and the
second phase involves mapping of VM to host. They consid-
ered response time and demand for resource to schedule task.
They proposed the formula to calculate load balancing from
the predicted load. Jang et al. [17] used GA for task alloca-
tion and task scheduling. They divided cloud computing into
four categories (budgetary strategy of cloud computing), i.e.
very high priority, high priority, mid-priority and low prior-
ity. Attributes on which these categories are divided and how
they are handled differently are unclear. Javanmardi et al. [18]
used hybrid model using GA and fuzzy theory for resource
allocation in the cloud environment. They generate two chro-
mosomes for each application, first one based on job length,
CPU speed, and the second chromosome is created on the
job length and bandwidth of resources. Authors used fuzzy
theory on these chromosomes to produce offspring instead
of traditional crossover operator. However, how they reduce
execution time and cost using fuzzy theory is unclear. Chan-
drasekaran et al. [19] used GA for load balancing of virtual
machine resources. Here every possible solution is repre-
sented as a tree. The scheduling and managing node of the
system on the first level is the root node, while all of the
N nodes on the second level stand for physical machines
and the M nodes on the third level stand for the VMs on
certain physical machines. The drawback of the algorithm
is incoming load is assumed to be linear, and load amount
to be stable. Dam et al. [20] used GA and GEL (gravita-
tional emulation) load balancing problem among VMs. GA
has global nature towards the problem space where GEL
searches locally. Basically, the proposed algorithm tries to
minimise the makespan as well as reduce the number of
VMs who are going to miss their deadlines. The drawback is
GEL algorithm uses some random elements that do not move
always in the same way and does not stop always with the
best possible solution. Panda et al. [12] presented three task
scheduling algorithms, namely MCC, MEMAX and CMMN,
for heterogeneous multi-cloud systems. The MCC is a single-
phase scheduling, while other two algorithms are two-phase
scheduling. The objective on which they focussed is reduc-
ing makespan and enhancing average cloud utilisation. Not
much is done regarding customer satisfaction rate.
Researchers have used improved differential evolution
algorithm to optimise task scheduling followed by resource
allocation on the basis of cost and time, Taguchi method is
used to populate potential offspring, and model used includes
processing time, waiting time, receiving time, processing
cost and receiving cost [21]. Some researcher enforced the
multi-objective approach to calculating Pareto optimal of
total makespan and cost [22,23]. Particle swarm optimisa-
tion (PSO) is used to schedule application to cloud resources
considered two types of cost (transmission cost and compu-
tation cost). All available computing tasks are gathered and

ranked in the task pool; resources are allocated in accor-
dance with task weightage [24-26]. A quality of service
(QoS)-constrained resource allocation problem is proposed
using game theory. They showed that Nash equilibrium
always exists whenever resource allocation game has fea-
sible solutions [25]. ‘Skewness’ is termed as the measure
of unevenness in the multi-dimensional resource utilisation
of server [26]. Lesser the skewness, higher the utilisation of
server in cloud computing will be. Some researchers used
map reduce involving three phases: part, comp and group.
Key of each phase is saved in hash key table [27]. Part
phase initiates mapping of tasks to respective resources,
comp phase compares between parts, and finally, group
phase wraps the similar entities using task reduce. Numerous
mapped task can read and execute entries running con-
currently, causing reduce tasks to be overloaded. Many
researchers propose one load balancer in between the map
phase and reduce phase to address the overloading [28-30].
Some researcher used GA-based mapping [15] in cloud com-
puting, not in federated multi-cloud computing. They did not
suggest scheduling after mapping. Some used historical data
and current states compute in advance; they used GA-based
scheduling strategy. The solution which has least influence
on the system and the least migration cost is termed as the
best solution [31,32].

Many researchers have used GA-based task scheduling in
cloud computing [33-36]. However to the best of our knowl-
edge GA-based resource allocation and categorization of the
applications into AR and BE types in multi-cloud computing
domain is not attempted by any researchers yet. We proposed
GA-based resource allocation algorithm to allocate resources
to tasks and shortest job first scheduling algorithm to sched-
ule the allocated tasks to the resources. Some researchers
used ant behaviour to collect information about the status of
cloud node before assigning any task to VMs. Algorithms
propose phases, on the arrival of the request pheromone is
initiated, and ant starts searching for the forward path from
the start node [37,38]. Load balancing mechanism using ant
colony and complex network theory in open cloud comput-
ing federation (OCCF) is also proposed by researchers [38].
Forward movement is meant by one overloaded node to next
node in order to validate whether it is overloaded or not. If
the next node is found to be overloaded, then it will detour
to the previous node. Basically, ant behaviour is practiced to
identify the lightly loaded node to allocate incoming tasks in
order to achieve load balance. Some used weighted least con-
nection (WLC) algorithm; the available tasks are allocated
to the virtual machines of the clouds having least number
of connections (assigned loads) [39]. All proposed methods
have its share of pros and cons; few are discussed above.

Our model comprises of GA-based resource allocation
and shortest job first task scheduling. The objective is to
efficiently allocate resources such that makespan time will

@ Springer

Arab J Sci Eng

be minimised and customer satisfaction can be enhanced.
Researchers [40] have established a relationship between
makespan time and customer satisfaction rate but ignored
that waiting time also impacts customer satisfaction rate.
Nature of task also contributes towards the makespan time.
If a number of AR tasks will be there, then provisioning
will be better, as these tasks are registered prior to its exe-
cution time and time of computability is communicated. In
the case of BE task, provisioning is a more on-demand type.
So cloud federation does not get much time for auto-scaling.
In our model, a relationship between a type of task, waiting
time, execution time and makespan time with customer sat-
isfaction is established. Many researchers have used Haizea
concept. Haizea is an open source resource lease manager
in cloud computing [1,14,30,32]. In accordance to Haizea,
all incoming applications are divided into two categories, i.e.
AR (advance reservation) and BE (best effort). We have also
considered Haizea concept in our model. We categorised all
the incoming applications into two groups AR and BE. The
applications are queued in their respective queues. The appli-
cations in AR queue are prioritised over BE applications.

3 Multi-cloud Model and its Description

Multiple datacentres are connected to provide services to
multiple customers. Datacentres having a variant processing
capabilities from different cloud service providers, connected
by voluntary federation, termed multi-cloud computing.
Cloud user can send the request to the centralised cloud bro-
ker. Then, the centralised mapping (resource allocation to
tasks) is done in accordance with the availability of resources.
Load balancing is practiced across all involved datacentres.
Mainly a number of resources are limited, so computational
capability of resources is limited, whereas incoming work-
load is arbitrary in nature.

The objective of multi-cloud computing is to deploy max-
imum applications made by cloud user, trying to minimise
makespan time and to minimise waiting time. A number of
servers in multi-cloud computing are numerous compared to
a single cloud provider. Each application is subdivided into
multiple independent tasks. These tasks are allocated to VMs.
In cloud computing, allocation of resources to tasks is similar
to travel salesman problem, NP-complete problem. Allocat-
ing VMs to a large number of tasks is challenging. Scheduling
huge number of tasks having a different configuration, fol-
lowing different SLA is quite challenging. Figure 1 includes
diagrammatic representation of multi-cloud computing, its
vital components and flow of control among its units. Multi-
cloud computing composed of multiple heterogeneous cloud
providers having the same or different geographical distribu-
tion. Cloud broker is responsible for assigning unique job ID
to all incoming applications or workloads after SLA agree-

@ Springer

Multi-cloud Federation

Cloud-let4

2\

Fig. 1 Diagrammatic representation of multi-cloud federation

ment is established between the cloud provider and cloud
user.

Incoming applications are divided into multiple tasks.
Similarly, physical machines are divided into multiple VMs.
Genetic algorithm (GA) is used to find the best task-VM pair,
for all tasks to be executed. GA is a better-suited heuristic
algorithm to balance load evenly. After allocation of a task
to resources, it is found that many instances multiple tasks
are assigned to single VM. Some authors suggested First In
First Out (FIFO) task scheduling. We implemented FIFO and
traditional shortest job first (SJF) algorithm. When multiple
tasks are allocated to single VM, then task having shortest
CPU burst is executed first.

By using GA-based resource allocation algorithm, it is
found that load is balanced, resource utilisation is better, and
by implementing traditional shortest job first (SJF) makespan
time is minimised. Tasks in a batch constitute chromosome.
The length of the chromosome depends upon the number of
tasks in a batch that needs to be executed.

Figure 1 shows the architecture of the model support-
ing GA-based task mapping to balance workload evenly
among available virtual machines followed by shortest job
first scheduling. The main components are as follows:

1. Users User can register their application for deployment
from anywhere in the world to the cloud broker in a multi-
cloud environment.

2. Cloud Broker Broker acts as an interface between a group
of cloud providers and users. In order to deploy an appli-
cation, it requires resources from all the multiple cloud
provider. During the registration stage, SLA needed to be
signed and job request type needs to defined like Advance
Reservation (AR) or Best Effort (BE).

3. GA-basedresource allocation Each applicationis divided
into multiple tasks. Each task is categorised into two cat-
egories (i) Advance Reservation (AR) and (ii) Best Effort
(BE). Depending upon the available resources in the
multi-cloud environment and expected makespan time,
the task is allocated to resources using GA operators.

Arab J Sci Eng

4. Shortest Job First Scheduler Since tasks are numerous
and of varying capacities, when tasks are allocated to
resources, then deployment of the tasks is scheduled on
the basis of the shortest job first instead of traditional
FIFO.

When a new cloud user wants to use cloud computing
for deploying its application, as so many cloud providers
are there in the market, new cloud user relies on histori-
cal performances of cloud providers to verify its trend and
dependability. We proposed the relationship between cus-
tomer satisfaction with expected time of completion, waiting
time and depending upon the task type. Cloud provider with
better customer satisfaction can have higher sustainability in
the market for a long run.

The performance of constituting cloud providers, physical
machines even VMs is recorded in historical customer feed-
back database. All the components of multi-cloud computing
are connected to cloud broker so that QoS can be maintained
as per SLA.

3.1 Case Study

Consider a set of C cloud provider connected to form a multi-
cloud computing, where C = {C1,C»,. .., C;}. There are set
of Q cloud applications, where P = {P; P> ..., P;}. Each
cloud user can raise as many as job requests. Each job appli-
cation (or job request) is divided into multiple independent
tasks, such that P;; = {P11, P12,. .., Pg1,Py2, ..., Py} is the
set of tasks and C;; = {C11,C12,...,Cp1,Cp2, ..., Cpi} is
the set of VMs. Mapping function M : P;; — C;;. The main
objective is to map the customer task to VMs such that max-
imum customer tasks can be deployed in minimum time and
high customer satisfaction. Here job request is primarily cat-
egorised into two types: Advance Reservation (AR) and Best
Effort (BE). BE tasks are preemptive in nature, whereas AR
tasks are non-preemptive in nature. Priority of AR tasks is
higher than BE tasks, and service charge of AR task is higher
than BE task.

We assume there are four roles in our model, namely
the application owner, the application users, the cloud
application and the multi-cloud federated environment. The
application owner deploys her application in a cloud provider
or multi-cloud environment and tries offering services to the
application users. The application users submit jobs request
with detailed performance requirements (in the form of com-
puting capacity, duration of resource, type of task, deadlines)
to the application. The application owner rents resources (e.g.
VMs and storage) from multi-cloud provider to execute the
applications and service incoming job requests. The objec-
tive is to automate the process of resource provisioning in
the multi-cloud federated environment and execute all job
requests using the minimal amount of physical resources as

@tgoe “c"
b I w

Application 1 Application 2
Arrival Time: 0 Arrival Time: 10s

Fig. 2 The DAG of two applications

well as VM through the auto-scaling mechanism. We make
the following assumptions:

Definition 1 (Cloud Application) A cloud application con-
sists of a set of service units following certain protocols and
knowledge based on its domain. A service unit is an abstrac-
tion of a processing module/component in an application,
such as the order submission and data persistence steps for
an online shopping site, ticket booking or service-oriented
applications using the Internet. Each application is divided
into multiple independent tasks. In our model, we are consid-
ering two types of applications only, i.e. AR applications and
BE applications. The AR applications further break down to
AR tasks, and BE applications break down to BE tasks.

Definition 2 (Job Class) In Fig. 2, application 1 is AR-
type application and application 2 is BE-type application.
An application is divided into multiple tasks, represented in
the form of directed acyclic graph (DAG) showing its prece-
dence order with a strict deadline. For example application 1
is divided into 5 tasks of type AR, having deadline 45 min.
A job request is represented as {{(P), {(O, R)}, (S), (T)}, AR,
45 min}. Application 2 is divided into 5 tasks of type BE,
having deadline 90 min. It is represented as {{(1)}, {(J)}, (K),
(L)}, (M)}, BE, 90}.

Definition 3 (Cloud VM) The cloud federation may offer
different types of VM instances, suitable for different types
of workloads. The VMs have different processing powers (the
number of cores, memory, disc, etc.) and service prices. We
assume that each VM is capable of running all tasks (whether
the task is computationally intensive or input—output inten-
sive). We assume time zone to be one at all times.

Definition 4 (Workload or job request) We assume the appli-
cation owner is unaware of incoming requests in advance.
Therefore, the workload is defined as all the incoming job
requests that have been submitted with multi-cloud to be
executed using application forum.

Definition 5 (Resource Allocation) The auto-scaling mech-
anism needs to balance two decisions. The first decision is to

Springer

Arab J Sci Eng

find which VM (of which physical machine) is to be allocated
for execution of the tasks. GA operators are used to finding
the best VM-task pair having least makespan time and most
throughput.

Definition 6 (Task Scheduling Plan) The second decision,
which we termed task scheduling, is to decide the sequence
of tasks to be executed when more than one task is allocated to
asingle VM. We used traditional shortest job first scheduling
algorithm to minimise the makespan time and maximise the
throughput.

Definition 7 (Customer Satisfaction Rate) The objective is
to find a resource allocation and task scheduling plan to
enhance the customer satisfaction rate. In the market, where
multiple cloud providers are available, cloud user relies on
historical customer satisfaction rate while deciding the cloud
provider. So to attain higher customer satisfaction rate, fac-
tors which impact are throughput, makespan time and waiting
time.

Supposedly if AR tasks are readily available and waiting
for a resource where BE task is under execution using the
same resource, then BE tasks are preempted and concerned
resource is given to AR tasks. Partially executed BE task is
saved and stored in temporary queue till the complete execu-
tion of AR task. In real-world service charge for AR, tasks
are comparatively higher than BE tasks. A matrix generated
to represent the expected executed time is as follows:

C C C,
T; (ETCy; ETCyp ETCy,,
T ET ET ET
ETC — .2 ?21 .sz Fizm ’
7, \ETC,; ETCp ETC,»,

ETC;; represents the expected time taken to execute the ith
task in the jth cloud. Any task having a valid job request id can
be executed in any cloud, and at the same time, any cloud can
execute multiple tasks concurrently as per the priority. Many
cloud providers use chronological order. Different cloud
has different executing capacities, basically categorised into
high, medium and small capacities. Similarly, storage is also
categorised into high, medium and small capacities. Basi-
cally, user categorisation is based on customer’s choice and
capacity of the resource. Mapping algorithm is based on GA
followed by shortest job first scheduling. In real-life scenario,
it is found that multiple tasks are allocated to single VMs for
execution. A customer can decide nature of the task to be
AR or BE (instead of booking high reserved instances with
cloud provider). A customer can consciously decide (either
categorise task as AR or BE) about its nature of the task and
accordingly pay per usage.

@ Springer

4 Proposed Algorithm

The proposed algorithm is used to map p independent tasks to
q virtual machines of r clouds such that each task is executed
having minimum makespan time and maximum customer
satisfaction rate. Efficient resource allocation (using GA-
based task mapping) involves mapping of tasks to the virtual
machines, followed by tasks scheduling using shortest job
first. By doing as above, the balance of workload is achieved
and server usage of each resource is maximised. In our sim-
ulation, we used GA-based resource allocation algorithm
called GACCRATS and compared with TLBO [41] and
COTS algorithm [40].
The predominance of our algorithm is as follows:

e A GA-based Customer-Conscious Resource Allocation
followed by shortest task first scheduling algorithm is
developed for a heterogeneous multi-cloud environment,
considering both AR and BE tasks.

e TLBO algorithm is used to allocate resources in multi-
cloud computing. It is a recent optimisation algorithm
which is easy to implement having few constraints.

e Assessment of the proposed GACCRATS algorithm and
TLBO algorithm is compared with COTS algorithm [40].
Simulation of the proposed algorithm is done using MAT-
LAB. Numerous cloud providers are generated which are
further divided into multiple virtual machines. Workload
arriving is in accordance with Poisson’s distribution.

e Two performance metrics, i.e. customer satisfaction rate
and makespan time, are used to validate the simulation
using Genetic Algorithm-based Customer-Conscious
Resource Allocation and Task Scheduling (GACCRATS)
and TLBO [41]. GA-based mapping is followed by the
scheduling of tasks, as mainly resources received mul-
tiple tasks to be executed. So the sequence of allocated
tasks needs to be done. In this paper, we are using short-
est job first scheduling. Each task is allocated to only one
VM of any cloud. One physical machine of any cloud
provider (which is further divided into multiple VMs)
can simultaneously execute multiple tasks initiated from
multiple customers.

4.1 GA-Based Resource Allocation in GACCRATS

With the rise in an incoming application, the complexity of
resource allocation and scheduling tasks increases. In the
multi-cloud environment, the number of resources is numer-
ous and capacity of processing power is different. A number
of incoming applications to be executed are arbitrary. There-
fore, a strong and robust optimisation algorithm is required
for the scheduling of applications. To satisfy QoS, minimise
makespan time and better resource usage GA is better suited
as heuristic algorithm [2].

Arab J Sci Eng

98 PP9P90P9

DlncemeLrso Toud provtders

Figure 3 illustrates the resource allocation process where
each user introduces his application’s tasks, and the cloud
federation termed multi-cloud uses the appropriate
approaches to allocating resources to these tasks by consid-
ering optimisation parameters, such as minimum makespan,
resources utilisation and maximum customer satisfaction.
Therefore, the optimisation problem can be solved using
heuristic algorithms such as genetic algorithm (GA), par-
ticle swarm optimisation (PSO) and ant colony optimisation
(ACO). In this paper, the proposed resource allocation algo-
rithm in the multi-cloud environment is based on GA with
some modifications. According to modifications, the parents
will be considered in each population besides the offspring
produced after the crossover process. Also, the elitism selec-
tion is used to select the best chromosomes to overcome
the limitation of premature convergence. Genetic algorithm
(GA) is based on the biological concept of generating the
best fit solution using Darwin’s theory of survival strategy
in evolution. GA is considered a population-based heuristic
algorithm in growing area of artificial intelligence. Accord-
ing to the genetic algorithm, ‘survival of the fittest’ is used
as the method of resource allocation, in which the tasks are
assigned to resources according to the value of fitness func-
tion for each parameter. The main principles of the GA are
described as follows [17]:

~=__Intercloud federation

Lbbd i o

Fig. 3 Resource allocation principle

1. Initial Population The initial population consists of a
set of all possible solution that is used in GA to find
out the best solution. The initial population is populated
by random allocation of tasks to VMs. Each individual
solution of a population is called chromosome. So initial
population consists of numerous chromosomes. These
chromosomes are making the set of all individuals that
are used in the GA to find out the optimal solution. The
number of chromosomes in the initial population is equal
to the population size. Every individual is represented
as a chromosome for making it suitable for the genetic
operations. From the initial population, the individual’s
chromosomes are selected, and genetic operators are
applied on them to form the chromosomes for next gener-
ation. The mating chromosomes are selected randomly.

2. Fitness Function The productivity of any individual chro-
mosome depends on the fitness value. It is the measure

of the superiority of an individual chromosome in the
population. The fitness value shows the performance of
an individual in the population. Therefore, the individ-
ual chromosome will survive or die out according to the
fitness value. Hence, the fitness function is the deciding
factor in the GA.

. Selection The selection mechanism is used to select an
intermediate solution for the next generation based on
Darwin’s theory of survival. This operation is the guid-
ing channel for the GA based on the performance. There
are various selection strategies to select the best chro-
mosomes such as roulette wheel, Boltzmann strategy,
tournament selection and selection based on rank. We
used elitism selection process in which the best fit chro-
mosome is moved to the next generation as it is so that
the chromosome having highest fitness value is not lost
in the process of GA.

4. Crossover The crossover operation is done by select-
ing two parent chromosomes from the population and
then creating a new child chromosome by alternating and
re-joining the parts of those parents chromosome. This
hybridisation process is a guiding process in the GA, and
it boosts the searching mechanism.

5. Mutation After crossover, mutation process takes place.
It is the important genetic operator that boosts genetic
diversity in the population pool. The mutation is the vital
operation which addresses premature convergence to a
large extent. It takes place whenever the chromosome
population tends to become homogeneous due to an iter-
ative process of reproduction and crossover operators.
Mutation probability is usually set to a considerable low
value. Mutation alters (changes 0—1 or vice versa in the
case of binary chromosomes) one or more gene (consti-
tuting components of chromosomes are called genes) val-
ues in the chromosome from its initial state. This results
in the entirely new chromosome values being added to the
population pool. With these new gene values, the genetic
algorithm may be able to produce a better solution [33].

Mapping is one of the critical process used in the resource
allocation phase. It involves identification of the cloud (VM)-
task pairs such a way that makespan time is minimised, high
customer satisfaction rate is attained, and the load is evenly
balanced across all resources. Since the search space is huge,
GA is used to identify the best task-cloud pair having min-
imum makespan time and maximum customer satisfaction
algorithm for the proposed GACCRATS algorithm, notations
referred in Table 1. GACCRATS algorithm uses a queue to
store all incoming job requests. Initially, the queue was null
when valid job requests start coming; then, each application
further subdivided into multiple tasks. This process selects a
task to its appropriate VM using algorithm based on GA [15].
For this, it finds the unassigned tasks along with its require-

@ Springer

Arab J Sci Eng

Table 1 Notations and their definitions

C—Set of cloud provider

C;j—Set of virtual machines present in multi-cloud computing,
where i number of cloud providers and each physical machine is
divided into j number of VMs

P;j—Set of tasks, where i number of applications and each
application is further divided into j number of task

Q,—Temporary queue for readily available tasks.

Qar—Queue for available Advanced Reservation task

O pe—Makespan time of the task (sum of execution time and
waiting time)

MS (temtask, tempcioud)—Makespan time of the task (sum of
execution time and waiting time)

EST (temptask, tempcioud)—EST is the waiting time for the
resource. Time period at which the task can start execution,
provided its interdependent predecessor tasks are all executed
prior

g—Physical resources which are further subdivided into multiple
VMs, |Cijl is g

p—Application is further divided into multiple independent tasks,
which are to be deployed, | P;;| is p

ETC (temptask, tempcioud)—expected time of completion ith task
of jth VM. X(temptask, tempcioud)—Execution status of task

ments. Then, it compares the completion time/execution time
of other available tasks to find the most suitable task-VM
pair having least makespan time. The above procedure is
repeated till all unassigned tasks are allocated to respective
VMs. Load balancing problem is formulated as p number
of tasks submitted by cloud user having ¢ number of VMs
in the multi-cloud computing environment. Makespan time
depends on waiting time of resource and processing capacity
of the VM.

F(x) = min(MS) + (1/max(CSR) D
MS = f(MIPSemptask, EST) 2)
MS = w;*(NIC/MIPS) + w;*EST 3)

CSR = f (ESTtemptask, ETCtemptask) 4

Computability metric called makespan time (MS) of each
processing unit indicates the rate of utilisation of resource
expressed in Egs. 2 and 3, whereas Eq. 4 indicates the rela-
tionship between customer satisfaction rates, waiting time
for a resource, expected a time of completion. Where MS
is makespan time of the task/job request/application, CSR
is customer satisfaction rate, NIC is a number of million
instruction present in the job, MIPS is a number of million
instructions that can be executed by that machine, and w; w»
are predefined weights. It is challenging to decide the value
of the weights as it varies from organisation to organisation.
Weights w; and w; range between 0.1 and 0.9 such that their
summation is 1.

Springer

Algorithm 1 for GACCRATS

Algorithml: GACCRATS(GA based customer conscious resource allocation and
task scheduling in Intercloud computing
Input:

A) A set of customer job-requests following Poisson’s distribution.

B) A set of independent tasks (each job request is sub-divided into multiple
independent tasks).

C) A set of cloud providers involved in the federation.

D) A set of virtual machines (multiple cloud providers are further divided into
numerous VMs).
Output:

A) Makespan time

B) Customer satisfaction rate

1) While Or # NULL

2) Set makespan= 0

3) Breakup job-application into multiple tasks

4) Call GA_MAPPING(ETC, EST, p, q)

5) Call TASK_SCHEDULING(ETC, EST, p, q, MS)
6) endwhile

Algorithm 2 for Resource Allocation

Algorithm2: GACCRATS (GA based Customer-Conscious Resource
Allocation and Task Scheduling)

1. While Qr # null do
If Qur# null (if task ready available is Advance Reservation then)
If Opi# 0 (if task ready available is Best Effort task then)
For tempcloud= {1, 2, 3,...., q}

For temptask= {1, 2, 3,..., p}

temptask«— Task(Qur)

Find EST (temptask, tempcloud)

MS (temptask, tempcloud) = ETC(temptask, tempcloud) + EST(
temptask, tempcloud)
9 Call GA_task_cld_pair(pi, g; that gives min (MS(temptask,
tempcloud))

PNANRAWN

10. Call BE_PREMPT TASK(EST(temptask), MS(temptask,
tempcloud), tempcloud)

11. endfor

12. endfor

13. else

14. temptask<— Task(Qpr)

15. Call UPDATE Qr

16. Call SCHEDULE AR _TASKS MMS(ETC_AR, temptask;)
17. Call SCHEDULE BE TASKS MMS(ETC BE, temptask:;)
18. MS (temptask, k) = ETC(temptask, k) + EST (temptask)
19. endif

20. endif

21. endwhile

Algorithm 3 for GA based resource allocation and task
scheduling
Algorithm3: Procedure 1: GA_task_cld_pair (pi, i)
1. Set parameters«— Population(Populationsi.., crossover rate(p.) and
activation function)
. Evaluate Population
. Fitness Evaluation: Use Egn I to evaluate fitness value of chromosomes
. Seclection: next generation «—Best_fit_chromosome(elitism)
. Best_Solution(Population)
. parents<«— select parents(Population, Populationi..)
. Jor each parent; , parent;e Parent(Population)
. child,, child;«—Crossover(parent; , parents, Pcrossover)
. children<— Mutate(child;, Pauation)
10.end
11.Evaluate_Population(Children)
12.Best_Solution«—Get (Best_Solution(Children))
13.New_Population—Replace(Population, Children)
14.End
15.Return Best_Solution
16.Call SJF algorithm
17 .Endif

O 003N L AW

Arab J Sci Eng

Algorithm 4 for BE PREMPT TASK

Algorithm4: Procedure2: BE_PREEMPT TASKS(EST(temptask), MS(temptask,
tempcloud), tempcloud)
1. Ifti=1
type BE is
2. Temptask= tge
3. While 4, = 2
resource is given to AR task

// resource tempcloud is executing temtask of

/| Tempcloud— tgg, resource is allocated to tsz
// resource tempcloud prempt BE task and

4. O = tge // Preempted BE task is stored in temporary
queue O,
S. Temptask= tir // temptask is of type AR, Tempcloud— #,

resource is allocated to #4z
6. end while
7. tivg= 1

type BE
8. Temptask= tze

execution of 7z is resumed.
9. Return

// resource tempcloud is executing temptask of

// preempted gz is moved from Q, and

Algorithm 5 for Scheduling AR _tasks

Algorithm5: Procedure 3: SCHEDULE AR_TASKS MMS (ETC_AR, temptask;)
1. Qur < Qr (if task is Advance Reservation task)
2. For tempcloud=1, 2, 3... p;

3 For temptask=1, 2, 3... g

4 Find sort (temptask (Qazr)

5. min (temptask) = min (temptask (Qar))

6. MS (temptask, q) = ETC (temptask, q) + EST (temptask)
7 Endfor

8 Endfor

9. Execute min (temptask) till Q4x = null.

Algorithm 6 for Scheduling BE _tasks

Algorithm6: Procedure 4: SCHEDULE BE _TASKS MMS (ETC_BE, temptask;)
1. Ope < Or (if task is Best Effort task)

2. For tempcloud=1, 2, 3... p;

3 For temptask= 1, 2, 3, q;

4 Find sort (temptask (Qsr))

5. min (temptask) = min (temptask (QOsr))

6. MS (temptask, q) = ETC (temptask, q) + EST (temptask)
7 Endfor

8 Endfor

9. Execute min(temptask) till Qpz = null.

Algorithm 7 for Shortest Job First Algorithm

Algorithm7: Procedure 5: SJF algorithm (» number of tasks are allocated to
resource m)

1. Sort (temptask, m) as per CPU burst time.

2. While temptask yine—min (temptask)

3 execute (temptask, tempcloud) where temptask=temptask min

4 temptask =temptask min +1

5. Excute temptask =0.

6. endwhile

Algorithm 8 for Update Queue

Algorithm8: Procedure 6: UPDATE Qr (UPDATE SUCCESSOR)
1. Add the next ready task available as successor in Qrand calculate I Q7 [
2. if1QrI<QOn

3. Forg=1,2, ..,10/1

4. temp «—Delete (Q,)

S. If all the ready task predecessor to temptask is executed
6. Then add next batch of ready tasks to O,

7. Endif

8. Endfor

9. endif

10. Return

Scheduling is a process in which allocated task-cloud pair
is scheduled sequentially so that makespan time is mini-
mum and customer satisfaction rate is higher. In this process
load is evenly distributed, resulting in no server overloading.
The algorithm for GA-based Customer-Conscious Resource
Allocation and Task Scheduling is described in GACCRATS.

The algorithm 1 involves initialisation of temporary
queues QT. By using Poisson’s distribution many applica-
tions are created having a different capacity (in MIPS, million
instructions per second). The applications split into many
independent tasks. Physical machines involved split into mul-
tiple VMs in step 3. GA-based resource allocation function
is called in step 4. Step 5 includes scheduling of the multiple
tasks allocated to single VM. The output of the algorithm
is best task-VM pair having least makespan time and high
customer satisfaction rate.

Algorithm 2 involves the step-wise description of our
proposed algorithm, i.e. GACCRATS. The tasks of the appli-
cations are stored in QT. Depending upon the nature of the
application, tasks get stored in QAR or QBE. The VMs
involved are stored in the set tempcloud and all the tasks to
be executed are stored in the set temptask. Estimated time of
execution is calculated in step 7. Step 8 reveals that makespan
time is the sum of estimated completion time and waiting
time. In step 9, GA-based resource allocation procedure is
called. The number of tasks to be executed in a batch is equal
to the size of the chromosome in initialisation stage of GA.
In the first generation, tasks are randomly assigned to VMs
which are capable of executing the tasks. The fitness func-
tion is minimisation of makespan time and maximisation
of customer satisfaction rate. Steps of GA-based resource
allocation are expressed in procedure 1 as follows. Step 17
represents that the best fit chromosome is obtained as the con-
vergence criteria are met. Then shortest job first scheduling
is used to address the case when multiple tasks are allocated
to a single VM.

Algorithm 3 illustrates steps of the genetic algorithm. Ini-
tialisation of chromosomes is done randomly. The size of
the chromosome is equal to the number of tasks considered
in a batch. Many parameters of GA need to be initialised
like a number of chromosomes in population, encoding of
the chromosome, initialisation of genetic operator. Fitness
value of each chromosome is calculated in step 3. We have
used elitism selection. Genetic operators like crossover and
mutation are executed on selected chromosomes. The best
task-VM pair is obtained in step 16. Then shortest job first is
invoked in step 18.

We have used two types applications AR and BE. AR tasks
are given more priority over BE task, if a BE task is execut-
ing in time x. However, in time (x+1), the same resource
is reserved for an AR task, then BE task is preempted and
stored in the temporary queue. The resource is given to the
AR task, and on complete execution of AR task, execution
task of the BE task is resumed. These steps are carried out
in the procedure 2 of the algorithm 4. Algorithm 5 involves
procedure 3 where AR tasks are sorted as per the burst time
and makespan time of each task is calculated when executed
in different VMs. Algorithm 6 involves procedure 4 where

Springer

Arab J Sci Eng

Table 2 An ETC matrix

Task/cloud Cy Cy C3 Cy Cs
T 30 50 80 40 66
T 50 40 70 85 65
g 155 110 90 170 100
T4 140 170 130 190 100
Ts 120 160 130 70 50
Ts 145 30 170 110 90
T; 90 140 150 190 120
Table 3 Mapping sequence for GACCRATS

Task/cloud Ci Cy C3 Cy Cs
T, 30

T 40

I3 90

1 100
Ts 70

Table 4 Scheduling sequence for GACCRATS algorithm

BE tasks are sorted as per the burst time, and makespan time
of each task is calculated when executed in different VMs.

The tasks are scheduled as per the priority. Advanced
reservation tasks are computed prior to best effort tasks.
By practicing the above steps higher customer satisfaction
rate can be achieved. Balancing is a process to allocate the
remaining unassigned tasks to the idle slots of all the clouds
such that the overall makespan remains intact. The process of
balancing has two advantages. (1) It improves the customer
satisfaction. (2) It reduces the number of iterations required
to assign the tasks.

4.1.1 Hlustration of GACCRATS

The detail illustration of GACCRATS algorithm is described
as follows: Let us assume there are seven different tasks
(T to T7) mapped to five clouds (C; to Cs). An ETC matrix
is populated, as per the expected execution time to reveal
the mapping process in Table 2. The GA-based mapping is
shown in Table 3. Scheduling sequence followed by Gantt
chart for GACCRATS is shown in Tables 4, 5 in which ‘*’
represents the idle time.

In the mapping process, task T is suitably mapped to C1,
task 7 to Co, task T3 to C3, T4 to Cs, Ts to Cy, Tg to C2 and
T7 to Cy.

Now the tasks 7 and T7 are allocated to Ci, tasks T
and Ty to C,, task T3 to C3, task T4 to Cs, task T5 to Cy,
task T to C, and task 77 to C;. After allocation of tasks to
the cloud, efficient scheduling is done. Here we have used
shortest deadline first scheduling, so that makespan time will

@ Springer

Task/cloud Ci C, C3 Cq4 Cs Time of completion
T, 30 30

Ts 30 30

p) 40 70

Ts 70 70

T3 90 90

T; 90 120

T4 100 100

Ready time 120 70 90 70 100

Table 5 Gantt chart for GACCRATS

Task/cloud Cy Cy C3 Cy Cs
0-30 T Ts T3 Ts n
30-70 Ty P

70-90 * *

90-100 * * *

100-120 * * * *

be less. The Gantt chart for the GACCRATS shown in Table 5
is as follows:

4.2 Resource Allocation Using TLBO

The TLBO algorithm is a population-based teaching-learning
inspired optimisation algorithm. It is based on the effect of
the influence of a teacher on the teaching output of learn-
ers in a class. The algorithm describes two basic modes (i)
learning through the teacher in teachers phase, (ii) learning
through interaction with the other learners in learners phase.
In this optimisation algorithm, the population consists of a
group of learners which make population size. Different sub-
jects offered for learning are considered as different design
variables for the optimisation problem. The learners’ result
is corresponding to the ‘fitness’ value of the optimisation
problem. The solution having the highest learners’ value in
the entire population is considered as the teacher. The design
variables are actually the parameters involved in the objective
function of the given optimisation problem. TLBO algorithm
requires parameters like population size and a number of gen-
eration. It does not include any algorithm-specific control
operators. TLBO is basically divided into two phases.
Teacher phase: First phase of the algorithm includes learn-
ing through the teacher called teacher phase. The teacher tries
to enhance the mean output of the class in the concerned sub-
ject, taught by the teacher, depending on his or her capability.
Atany iteration, assume there are ‘m’ number of subjects, ‘n’
number of learners (where population size= 1, 2, ... n) and
‘i’ number of iteration, ‘j’ number of subjects. M; be the

Arab J Sci Eng

mean result of the learners in the particular subject ‘j’. The
best overall result Xtotal — kbest; considering all the sub-
jects together obtained in the entire population of learners
can be considered as the result of best learner kbest. How-
ever, the teacher is considered as one of the highly learned
individuals in the population who teaches learners so that
they can gain knowledge and can attain the better result. The
best learner is identified as the teacher in the algorithm. The
difference between the current mean result of each concerned
subject and the corresponding result of the teacher for each
corresponding subject is given by the following equation,

Diﬁ”erence_Meanj’k’l- =7 (Xjxvest,i — TFMj ;)

where X j kpest,i 1S the result of the best learner in subject
Jj. Teaching factor TF is included which decides the value
of mean to be updated, and 7; is the random number in the
range [0, 1]. The range of value of TF can be either 1 or 2.
The value of TF is decided randomly with equal probability
as,

Tr = round [1 + rand (0, 1){2, 1}]

X' ki = Xjki + Difference_Mean ; ;

where X ! ; is the updated value of X ;. X', ki is accepted
if it glves better function value. All the accepted function
values at the end of the teacher phase are maintained, and
these values become the input to the learner phase.

Learner phase: It is the second phase of the TLBO algo-
rithm where learners enhance their knowledge by interacting
among peer learners. A learner interacts with other learners
randomly in order to boost knowledge. Learner objective is
to acquire new things, each time learner value is higher than
the existing one, and learner value is updated. Let us consider
apopulation size of ‘n’, randomly pick two learners P and Q
such that Xtotal p.i #* thal 0. ;» where thal P is updated
value of Xiopa1—p,; and XtOtal 0.i is corresponding updated
value of Xiota1—@,; of learner P and Q using the following
equation

Xipi=Xpi+riXip,;—
X;.’,PJ. = X},P,i +ri(X},Q,,' -

th) Ithotal P,i <Xtotal Q.i

j Pl) Ithotal 0.1 < Xtotal P.i

X ;.’ p ;1 is accepted if it gives a better function value. The
above two equations are used for minimisation problem. Fol-
lowing two equations are used for maximisation problem.

" ! / / / !
Xipi=X;pi+triX;p;—X;0) If Xiotal—0,i < Xtotal—p,i

Xipi=Xipi+riXio:=Xip) UXigu_pi < Xiou-0,

5 Performance Metrics

The performance of the preexisting algorithm [40] is com-
pared with proposed algorithm using performance metrics.
The performance metrics are customer satisfaction rate and
makespan time.

5.1 Customer Satisfaction Rate (CSR)

The customer satisfaction is the response given by a customer
for the service provider, regarding how smoothly application
is deployed within real-time and pricing strategy. In today’s
scenario ‘customise’ is the approach for higher customer sat-
isfaction rate. The user is impatient than ever, they want faster
services, lesser price and customised pricing plan [42,43].
Let us assume that there are two algorithms P and Q to pro-
cess 5 tasks, which are 71, T> T3, T4 and Ts. The expected
finish time of these tasks in algorithms P is 20, 40, 10, 50
and 90, whereas using algorithm Q is 30, 20, 50, 70 and 60.
Therefore, algorithm P has customer satisfaction rate CSR
(P) =3, as P takes the earliest time for task 7 T3 and T4,
whereas algorithm Q has CSR (Q) =2, since it takes the ear-
liest time for task 7> and Ts. The mathematical formula for
calculating customer satisfaction rate is expressed in Eqgs. 5,
6 and 7 as follows:

n
Customer Satisfaction Rate (CSR (4)) = Z (ETCi)
i=0

+> (G)+wy*) (ESTi) 5)

i=0 i=0
Customer satisfaction rate is dependent on followings:
1. Expected time to completion

2. G (customised pricing policy)
3. Waiting time for resource

Table 6 Calculation of

; . Algorithm CSR
customer satisfaction rate
P 3
[0) 2

Table 7 Parameter and its instances

Parameter Value of parameter

5,10, 15, 30, 50
16, 32, 64, 256,512

(Number of tasks) * (number of
virtual machines)

il,i2,i3, i4

Number of clouds
Number of tasks

Structure of the datasets

Reserved instances

@ Springer

Arab J Sci Eng

Assuming that customer satisfaction is high when high
capacity of AR application completes execution [10]. The
probability of a task to be completed in real time is higher
in AR mode, as they are non-preemptive in nature, whereas
BE tasks being preemptive in nature are prone to miss com-
plete execution before the deadline. In case the application is
really important for timely execution, its type of task should
be changed to AR task from BE task.

Waiting time is inversely proportional to customer satis-
faction rate. Higher the waiting time, lower is the customer
satisfaction rate. Research reveals that the cloud users are
impatient than ever. W» is a user-defined constant which
varies from 0.01 to 0.05 (cloud user decides the value of
weight while registration with the cloud). Many cloud users
rely on the historical performance of cloud provider and
customer satisfaction rate obtained from cloud users while
finalising a reliable cloud provider for their enterprise.

Let us assume that there are two algorithms P and Q to
process 5 tasks, which are 77, 1>, T3, T4 and T5. The expected
finish time of these tasks in algorithms P is 20, 40, 10, 50

and 90, whereas using algorithm Q is 30, 20, 50, 70 and 60.
Therefore algorithm P has customer satisfaction rate CSR
(P) = 3, as P takes the earliest time for task 77 73 and
Ts, whereas algorithm Q has CSR (Q) = 2, since it takes
the earliest time for tasks 75 and 75. Here algorithm P be
GACCRATS and Q be COTS.

ETC; (T;) measures the expected completion time; it is a
Boolean variable which is defined as follows:

1, it ETCp (T;) < ETCq (T;)
0, otherwise

ETCi(T}) = { (6)

Here, ETCp(T;) and ETC(7;) show the expected com-
pletion time of task 7; in algorithm P and algorithm Q,
respectively. Here earliest completion time of task 77 is 20
(using algorithm GACCRATS), whereas 30 (using COTS),
earliest completion time of task 7, is 40 (using algorithm
GACCRATS) and 20 (using COTS), earliest completion time
of task T3 is 50 (using GACCRATS) and 50 (using COTYS),
for task Ty is 50 (using GACCRATYS) and 70 (using COTYS),
for task 75 is 90 (using GACCRATYS) and 60 (using COTS).

Table 8 Comparison of

customer satisfaction rate in Datasets Observations Simulation 1 Simulation 2 Simulation 3
gl(gjoTri’h iﬁfiﬁﬁf W‘Td TLBO 3410 COTS 3.170e+02 3.112e+02 2.301e+02
TLBO 3.679e+02 4.121e+02 3.219e+02
GACCRATS 4.121e+02 4.761e+02 3.813e+02
64 * 20 COTS 2.183e+02 3.345e+02 3.271e+02
TLBO 3.014e+02 2.997e+02 3.104e+02
GACCRATS 3.234e+02 3.333e+02 3.715e+02
128 * 30 COTS 4.891e+02 3.914e+02 3.998e+02
TLBO 4.504e+ 02 4.469e+02 3.568e+02
GACCRATS 6.341e+02 5.341e+02 4.125e+02
256 * 40 COTS 2.917e+02 4.161e+02 3.714e+02
TLBO 2.507e+02 4.018e+02 3.985e+02
GACCRATS 3.348e+02 4.997e+02 4.983e+02
izztsgafgﬁgii?g? ; Datasets Observations Simulation 1 Simulation 2 Simulation 3
ﬁ?ﬁfﬁfﬁ}fﬁr}ilﬁ? 32% 10 COTS 3.127e+02 4.123e+02 5.231e+02
TLBO 3.153e+02 4.008e+02 5.004e+02
GACCRATS 2.713e+02 3.987e+02 3.378e+02
64 * 20 COTS 5.128e+02 4.224e+02 5.036e+02
TLBO 5.234e+02 4.354e+02 5.126e+02
GACCRATS 4.916e+02 3.819¢+02 4.912e+02
128 * 30 COTS 4.765e+02 3.451e+02 4.458e+02
TLBO 4.890e+02 3.523e+02 4.652e+02
GACCRATS 4.329e+02 3.923e +02 3.652e+02
256 * 40 COTS 5.392e+02 7.294e+02 5.721e+02
TLBO 5.506e+02 7.479e+02 5.592e+02
GACCRATS 4.671e+02 6.092e+02 4.295e+02

@ Springer

Arab J Sci Eng

(a) ()
g 500 600
S .
& 400 E
E —~ 400
S 300 g
5 2 200
g 200 v/
o <
2 p=
3 100 0
Sim1 Sim2 Sim3
0
sm1 Sim2 Sim3 B COTS M GACCRATS M TLBO
HCOTS M GACCRATS M TLBO)
600
(5]
(b) =
o 400 = 400
S g
S 2 200
< 300 2
k= > o0
20 Sim1 Sim2 Sim3
£ B COTS M GACCRATS M TLBO
2 100
=
O
0 (g) 600

Sim1 Sim 2 Sim 3

500
W COTS M GACCRATS I TLBO 0
E 400
=
(0 £ 300
= 800 2
S o 200
- -M
Q <
£ 600 = 100
3 0 " . .
5 400 Sim1 Sim 2 Sim 3
g M COTS M GACCRATS M TLBO
2
é 200
0 (h) o9
Sim1 Sim2 Sim3 ®
B COTS M GACCRATS M TLBO E 600
g
(d) 2 400
g 600 &4
= = 200
5
% 400
S 0 5 A ;
n Sim1 Sim 2 Sim 3
S 200 -
& COTS M GACCRATS M TLBO
o
2
3 0

Sim1l Sim2 Sim3
W COTS M GACCRATS B TLBO

Fig. 4 a Instance (i) of dataset (32 * 10). b Instance (ii) of dataset (64 * 20). ¢ Instance (iii) of dataset (128 * 30). d Instance (iv) of dataset (256 *
40). e Instance (v) of dataset (32 * 10). f Instance (vi) of dataset (64 * 20). g Instance (vii) of dataset (128 * 30). h Instance (viii) of dataset (256 *
40)

G, (T;) measures the pricing policy, Pricing rate of AR is higher than BE task [10]. BE tasks are
preemptive in nature, whereas AR tasks are not preemptive
1, if task is AR in nature. Customer satisfaction rate is dependent on least

Gi = { 0, if task is BE finish time, and G is customised pricing policy.

0

Arab J Sci Eng

EST is waiting time for resource, and w> is a weight which
varies from 0.01 to 0.05 (depending on the cloud provider
tolerance, which varies organisationwise). Many new stake-
holders rely on the historical customer satisfaction rate while
finalising a reliable cloud provider for their enterprise. Using
Egs. 5, 6 and 7 it is found that customer satisfaction of algo-
rithm P is 3 and Q is 2, illustrated in Table 6.

5.2 Simulations of the Proposed Algorithm

For simulation, we used MATLAB R2014a version 8.3.0.532.
We simulate using Intel ® Core(TM)i3-5005U CPU @ 2GHz
2 GHz processor, 64-bit processing system and 8GB RAM
running on Windows 10. The above environment conducts
simulation by running the proposed algorithm on synthetic
datasets. The arrival of job requests uses Poisson’s distribu-
tion. The parameters of the data used in the simulation and
its values are expressed in Table 7.

In the beginning of the program, we take inputs as a
number of tasks and number of VMs. We have considered
the task-cloud pair, which is further concreted as TASK-VM
pair. In ETC matrix the task-cloud pair is represented, tasks
along rows and clouds along columns. Each task has dif-
ferent granularities like capacity, memory and processing
speed.

5.3 Generate Inputs of Proposed Algorithm

We populate dataset using MATLAB random function
randii(), its a type of discrete uniform distribution. The rate
of arrival is a user-defined value spanned 4—100. Arrival of
job request is generated using MATLAB function Poisson’s
function as poissrnd (JobQueueSize-UserSize)/UserSize, 1,
UserSize). Tasks are basically divided into two types:
Advance Reservation task (AR task) and Best Effort task
(BE task). The user who reserves instances in advance for
off-peak time is termed as Advance Reservation User, and
respective tasks are called AR tasks, whereas user who does
not opt for off-peak time reserved instance is termed as
Best Effort Users, and respective tasks are called Best Effort
tasks. Advanced Reserve tasks are non-preemptive in nature,
whereas Best Effort task is preemptive in nature. In a sce-
nario, when the resource is executing BE task, at the same
time AR task is scheduled; then, the resource is taken away
from BE task and given to AR task. The partially executed
BE task is kept in temporary queue till the complete exe-
cution of AR task. Execution of BE task is resumed later.
In the simulation, we run and execute both the algorithms
(GACCRATS and TLBO and compared the performance of
customer-oriented task scheduling (COTS) algorithm [40],
TLBO and proposed algorithm GACCRATS).

Springer

Makespan time comparision
100

80
60

40

}

20

0 10 20 30 40
——— TLBO —— GA COTS

Fig. 5 Comparison regarding makespan time

Customer satisfaction rate comparision

100
80
o //
40 /\//v
20
% 10 20 30 40

=== TLBO = GA CoTS

Fig. 6 Comparison regarding customer satisfaction rate

5.4 Result Analysis

The performance metrics, makespan time and customer sat-
isfaction rate are used to compare the three algorithms:
GACCRATS, COTS and TLBO. The makespan time and cus-
tomer satisfaction of the proposed algorithm GACCRATS
are determined for multiple instances and compared with
COTS [40] algorithm and TLBO algorithm in Tables 8, 9,
respectively. The graphical representation of the compari-
son of Tables 8, 9 is backed up in Fig. 4 instances a-h.
The result shows GACCRATS has higher customer satis-
faction rate in all datasets (32 * 10, 64 * 20, 128 * 30 and
256 * 40 in Fig. 4a—d in comparison with TLBO and COTS
algorithm). The performance of the proposed algorithm as
per the makespan time is represented in Fig. 4e—h, show-
ing lesser makespan time in GACCRATS than COTS and
TLBO algorithm. Implementation of TLBO is easy; however,
its solution having highest learners value is found to have
lesser fitness value than the best fit chromosome obtained by
GACCRATS in all cases. The performance of COTS algo-
rithm lies in between TLBO and GACCRATS algorithm in
case of makespan time and customer satisfaction rate. Fig-
ure 5 depicts comparison regarding makespan time among
COTS, GACCRATS and TLBO algorithms. Figure 6 rep-
resents a comparison of customer satisfaction rate among
COTS, GACCRATS and TLBO algorithms.

Arab J Sci Eng

Then figure shows a graphical comparison of makespan
time among COTS and GACCRATS algorithm. Makespan
time is found to be less using GACCRATS algorithm in com-
parison with COTS.

We generate the simulation results of proposed algorithms
using two performance metrics, namely makespan time and
customer satisfaction rate. The customer satisfaction of the
proposed algorithm GACCRATS algorithm is calculated
for twenty instances on different datasets, and compared
with proposed COTS algorithm and TLBO algorithm, few
instances are shown in Table 8. For the sake of better emi-
nence, the graphical comparison of customer makespan time
is shown in Table 9. The results clearly indicate that the pro-
posed algorithm outperforms COTS and TLBO algorithm for
all the twenty instances.

From the above simulation results, it is clear that the pro-
posed GACCRATS algorithm performs better in comparison
with COTS algorithm and TLBO algorithm. The TLBO algo-
rithm is a learning-based heuristic algorithm, which does not
have any optimisation operator. It is easy to implement; only
population size and a number of iterations are to be defined
by the user. The value of teaching factor ranges between
1 and 2. We compared the makespan time and customer
satisfaction rate of output obtained by COTS algorithm,
GACCRATS algorithm and TLBO algorithm. It is found that
in all instances GACCRATS outperforms COTS algorithm
and TLBO algorithm.

6 Conclusion

To accommodate sporadic workload in the multi-cloud envi-
ronment, where the capacity of job request may change
dynamically, machine learning provides better resource
allocation and task scheduling. A novel task scheduling
algorithm termed as Genetic Algorithm-based Customer-
Conscious Resource Allocation and Task Scheduling (GAC-
CRATS) is proposed for the heterogeneous multi-cloud
environment. We compared the algorithm performance of
COTS, TLBO and GACCRATS. COTS aims to maximise
the customer satisfaction and surplus customer expectation,
TLBO is used to find the task-VM pair having minimum
makespan time, whereas GACCRATS objective is the min-
imisation of makespan time of tasks and maximisation of
customer satisfaction rate. The algorithm mainly has two
phases, mapping and scheduling the mapped tasks. Multi-
ple instances are carried out with different compositions of
datasets in MATLAB. The results show that the performance
of the proposed algorithm has outperformed existing algo-
rithms. Scalability of the simulated multi-cloud environment
is considerably high. Data locality cost, latency arbitration,
energy consumption and running cost of multi-cloud envi-
ronment are out of the scope of the simulated scenario.

References

1. Assuncido, D.; Dias, M.; Di Costanzo, A.; Buyya, R.: Evaluating
the cost-benefit of using cloud computing to extend the capacity of
clusters. In: Proceedings of the 18th ACM International Sympo-
sium on High Performance Distributed Computing, pp. 115-131.
ACM (2009)

2. Armstrong, R.; Hensgen, D.; Kidd, T.: The relative performance
of various mapping algorithms is independent of sizable variances
in run-time predictions. In: Proceedings of Seventh Heterogeneous
Computing Workshop, pp. 79-87 (1998)

3. Pandey, S.; Wu, L.; Guru, S. M.; Buyya, R.: A particle swarm
optimisation-based heuristic for scheduling workflow applications
in cloud Computing environments. In: 24th IEEE International
Conference on Advanced Information Networking and Applica-
tions, pp. 400-407 (2010)

4. Cao, Q.; Wei, Z. B.; Gong, W. M.: An optimized algorithm for
task scheduling based on activity based costing in cloud Comput-
ing. In: 3rd IEEE International Conference on Bioinformatics and
Biomedical Engineering, pp. 1-3 (2009)

5. Li, J.F; Peng, J.: Task scheduling algorithm based on improved
genetic algorithm in cloud computing environment. J. Comput.
Appl. 31(1), 184-186 (2011)

6. Jena, T.; Mohanty, J.R.; Sahoo, R.: Paradigm shift to green cloud
computing. J. Theor. Appl. Inf. Technol. 77(3), 394-402 (2015)

7. Jena, T.; Mohanty, J.R.: Disaster recovery services in intercloud
using genetic algorithm load balancer. Int. J. Electri. Comput. Eng.
6(4), 1828-1838 (2016)

8. Jena, T; Mohanty, J.R.: Cloud security and jurisdiction: need of the
hour. In: Proceedings of the 5th International Conference on Fron-
tiers in Intelligent Computing: Theory and Application, Advances
in Intelligent Systems and Computing, vol. 515, pp. 425-433.
Springer (2017)

9. Wu, L.; Garg, S.K.; Buyya, R.: Sla-based resource allocation for
software as a service provider (saas) in cloud computing envi-
ronments. In: Cluster, Cloud and Grid Computing (CCGrid), pp.
195-204 (2011)

10. Sotomayor, B.: Haizea. Computation Institute, University of
Chicago. http://haizea.cs.uchicago.edu/whatis.html. Accessed 9
Jan 2014 (2014)

11. Panda, S.K.; Gupta, I.; Jana, P.K.: Allocation-aware task schedul-
ing for heterogeneous multi-cloud systems. Proc. Comput. Sci. 50,
176-184 (2015)

12. Panda, S.K.; Jana, P.K.: Efficient task scheduling algorithms for
heterogeneous multi-cloud environment. J. Supercomput. 71(4),
1505-1533 (2015)

13. Sotomayor, B.; Keahey, K.; Foster, I.: Combining batch execution
and leasing using virtual machines. In: Proceedings of the 17th
International Symposium on High Performance Distributed Com-
puting, pp. 87-96 (2008)

14. Sotomayor, B.; Montero, R.S.; Llorente, I.M.; Foster, I.: Virtual
infrastructure management in private and hybrid clouds. IEEE
Internet Comput. 13(5), 14-22 (2009)

15. Dasgupta, K.; Mandal, B.; Dutta, P.; Mandal, J.K.; Dam, S.: A
genetic algorithm (ga) based load balancing strategy for cloud
Computing. Proc. Technol. 10, 340-347 (2013)

16. Fang, Y.; Wang, F.; Ge, J.: A task scheduling algorithm based on
load balancing in cloud Computing. In: International Conference
on Web Information Systems and Mining, pp. 271-277. Springer,
Berlin (2010)

17. Jang, S.H.; Kim, T.Y.; Kim, J.K.; Lee, J.S.: The study of genetic
algorithm-based task scheduling for cloud computing. Int. J. Con-
trol Autom. 5, 157-162 (2012)

18. Javanmardi, S.; Shojafar, M.; Amendola, D.; Cordeschi, N.; Liu,
H.; Abraham, A.: Hybrid job scheduling algorithm for cloud

@ Springer

http://haizea.cs.uchicago.edu/whatis.html

Arab J Sci Eng

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

computing environment. In Proceedings of the Fifth International
Conference on Innovations in Bio-Inspired Computing and Appli-
cations IBICA, pp. 43-52. Springer International Publishing (2014)
Chandrasekaran, K.; Divakarla, U.: Load Balancing of Virtual
Machine Resources in Cloud Using Genetic Algorithm, pp. 156—
168. ICCN (2013)

Dam, S.; Mandal, G.; Dasgupta, K.; Dutta, P.: Genetic algorithm
and gravitational emulation based hybrid load balancing strategy in
cloud computing. In: Third International Conference on Computer,
Communication, Control and Information Technology (C3IT), pp.
1-7 (2015)

Tsai, J.T.; Fang, J.C.; Chou, J.H.: Optimized task scheduling
and resource allocation on cloud computing environment using
improved differential evolution algorithm. Comput. Oper. Res.
40(12), 3045-3055 (2013)

Chand, P.; Mohanty, J.R.: Multi objective genetic approach for solv-
ing vehicle routing problem with time window. Trends in Computer
Science, pp. 336-343. Engineering and Information Technolo-
gySpringer, Berlin (2011)

Chand, P.; Mohanty, J.R.: Environmental multi objective uncertain
transport trail model using variant of predator prey evolutionary
strategy. Int. J. Appl. Decis. Sci. 8(1), 21-51 (2014)

Gouda, K.C.; Radhika, T.V.; Akshatha, M.: Priority based resource
allocation model for cloud computing. Int. J. Sci. Eng. Technol.
Res. 2(1), 215-219 (2013)

Wei, G.; Vasilakos, A.V.; Zheng, Y.; Xiong, N.: A game-theoretic
method of fair resource allocation for cloud computing services. J.
Supercomput. 54(2), 252-269 (2010)

Xiao, Z.; Song, W.; Chen, Q.: Dynamic resource allocation using
virtual machines for cloud computing environment. IEEE Trans.
Parallel Distrib. Syst. 24(6), 1107-1117 (2013)

Kolb, L.; Thor, A.; Rahm, E.: Load balancing for mapreduce-based
entity resolution. In: 28th International Conference on Data Engi-
neering, pp. 618-629 (2012)

Al Nuaimi, K.; Mohamed, N.; Al Nuaimi, M.; Al-Jaroodi, J.: A
survey of load balancing in cloud computing: challenges and algo-
rithms. In: Second Symposium on Network Cloud Computing and
Applications, pp. 137-142 (2012)

Sudeepa, R.; Guruprasad, H.S.: Resource allocation in cloud com-
puting. Int. J. Mod. Commun. Technol. Res. 2(4), 19-21 (2014)
Gunarathne, T.; Wu, T.L.; Qiu, J.; Fox, G.: MapReduce in the clouds
for science. In: Second International Conference on Cloud Com-
puting Technology and Science, pp. 565-572 (2010)

@ Springer

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Hu, J.; Gu, J.; Sun, G.; Zhao, T.: A scheduling strategy on load
balancing of virtual machine resources in cloud computing environ-
ment. In: Third International Symposium on Parallel Architectures,
Algorithms and Programming, pp. 89-96 (2010)

Liu, H.; Xu, C.-Z.; Jin, H.; Gong, J.; Liao, X.: Performance
and energy modeling for live migration of virtual machines. In:
Proceedings of the 20th International Symposium on High Perfor-
mance Distributed Computing, pp. 171-182 (2011)

Tejaswi, T.T.; Azharuddin, M.; Jana, P.K.: A GA based approach
for task scheduling in multi-cloud environment. arXiv:1511.08707
(2015)

Zheng, Z.; Wang, R.; Zhong, H.; Zhang, X.: An approach for cloud
resource scheduling based on parallel genetic algorithm. Int. Symp.
High Perf. Distr. Comput. Comput. Res. Dev. 3(2), 444-447 (2011)
Gayathiri, N.R.: Dynamic Demes Parallel Genetic Algorithm for
Scheduling the Resources in Cloud (2011)

Sawant, S.: A Genetic Algorithm Scheduling Approach for Virtual
Machine Resources in a Cloud Computing Environment (2011)
Nishant, K.; Sharma, P.; Krishna, V.; Gupta, C.; Singh, K.P,,
Rastogi, R.: Load balancing of nodes in cloud using ant colony
optimisation. In: 14th International Conference on Computer Mod-
elling and Simulation, pp. 3-8 (2012)

Zhang, Z.; Zhang, X.: A load balancing mechanism based on ant
colony and complex network theory in open cloud computing feder-
ation. In: 2nd International Conference on Industrial Mechatronics
and Automation, vol. 2, pp. 240-243, (2010)

Ren, X.; Lin, R.; Zou, H.: A dynamic load balancing strategy
for cloud computing platform based on exponential smoothing
forecast. In: International Conference on Cloud Computing and
Intelligent Systems, pp. 220-224 (2011)

Pande, S.K.; Panda, S.K.; Das, S.: A customer-oriented task
scheduling for heterogeneous multi-cloud environment. Int. J.
Cloud Appl. Comput. 6(4), 1-17 (2016)

Rao, R.V.; Kalyankar, V.D.: Parameter optimisation of modern
machining processes using teaching-learning-based optimisation
algorithm. Eng. Appl. Artif. Intell. 26(1), 524-531 (2013)

Ding, S.; Yang, S.; Zhang, Y.; Liang, C.; Xia, C.: Combining QoS
prediction and customer satisfaction estimation to solve cloud ser-
vice trustworthiness evaluation problems. Knowl. Based Syst. 56,
216-225 (2014)

Mehdi, N.; Mamat, A.; Ibrahim, H.; Symban, S.: Virtual machines
cooperation for impatient jobs under cloud Paradigm. Int. J. Inf.
Commun. Eng. 7(1), 13-9 (2011)

http://arxiv.org/abs/1511.08707

	GA-Based Customer-Conscious Resource Allocation and Task Scheduling in Multi-cloud Computing
	Abstract
	1 Introduction
	2 Related Work
	3 Multi-cloud Model and its Description
	3.1 Case Study

	4 Proposed Algorithm
	4.1 GA-Based Resource Allocation in GACCRATS
	4.1.1 Illustration of GACCRATS

	4.2 Resource Allocation Using TLBO

	5 Performance Metrics
	5.1 Customer Satisfaction Rate (CSR)
	5.2 Simulations of the Proposed Algorithm
	5.3 Generate Inputs of Proposed Algorithm
	5.4 Result Analysis

	6 Conclusion
	References

