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We give the first determination of the capital income distribution  

in Romania using individual income tax data. 

 

The capital income inequality dominates the total income inequality. 

 

The tail distribution of the capital incomes is a Pareto 

distribution with Pareto exponent 1.4. 

 

 

Cover letter and Highlights



A Pareto upper tail for capital income
distribution
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Abstract

We present a study of the capital income distribution and of its con-
tribution to the total income (capital income share) using individual
tax income data in Romania, for 2013 and 2014. Using a parametric
representation we show that the capital income is Pareto distributed
in the upper tail, with a Pareto coefficient α ∼ 1.44 which is much
smaller than the corresponding coefficient for wage- and non-wage-
income (excluding capital income), of α ∼ 2.53. Including the capital
income contribution has the effect of increasing the overall inequality
measures.
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1 Introduction

The related subjects of income and wealth inequality have received consid-
erable attention recently, both as topics of public debate and for their role
in economic and social theory [32, 2]. The total income can be represented
largely as the sum of the labor income and of the capital income, and their
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ratio is a measure of the relative weights of the two components in the GDP
(the labour-capital split). The labor-capital split and its role in economic
growth is a subject of intense debate nowadays [32, 24]. There is also an
active interest in the study of the capital income and of its role in the theo-
ries of income distribution [32, 5]. This is due especially to the fact that the
upper tail of the income distribution is dominated by capital income, and
this observation motivates the increased interest in the study of the capital
income and its distribution.

As several authors noted [26, 32], the inequality in income distribution is
significantly greater for the capital income than for other types of income.
It is also worth mentioning that the capital income distribution is also im-
portant for its determinant role in the personal income inequality, as shown
in [5, 15, 39]. The authors of these studies present evidence that there is
a strong link between the aggregate role of capital in the economy and the
distribution of income.

In a recent paper [29] we presented a first study of the income distribution
in Romania, using tax income data at individual level. This study included
only the contributions of wages and social redistribution income (pensions,
unemployment and social benefits). In this paper we complete the study of
the income distribution by including also the capital income. We present
an analysis of the capital income shares to the total income, and study the
distribution of the capital income. Furthermore, we expand the data coverage
by presenting data for income distribution in Romania for 2013-2014.

The first studies of the income distribution are traced back to the work of
the Italian economist Vilfredo Pareto [31] who noticed that the upper tail of
the income distribution appears to be well described by a power law. This is
known as Pareto distribution, and the exponent of the power law is known as
the Pareto coefficient. Later studies have shown a dependence of the Pareto
coefficient on the time period and country studied.

Several distributions appearing in economics and social sciences appear to
be well reproduced by Pareto distributions in their upper tail. For example,
this was observed for the size distribution of cities [18], firm sizes [4, 41] and
stock market movements [42], [20]. A comprehensive introduction into the
various applications of the power laws to different areas of economics, as well
as the a survey of the mechanisms responsible for their emergence is given in
[17]. In the area of income distribution there is a general accepted idea that
the upper tail follows a Pareto distribution [30], [3], [34], [35], [6], [16], [23],
[22], [7, 8], [1], [13], [10], [11], [21], [44], [43].
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The main results of our study are that the capital income distribution has
a greater inequality than other types of income, and it is well described by
a Pareto distribution in its upper tail. We present a distributional analysis
of the capital income, showing that it can be decomposed into three distinct
regions, and determine the types of income which dominate the contribution
in each region.

The paper is organized as follows. In Section 2 we give a descriptive
analysis of our data sets, giving results for the quantile distributions of the
various types of incomes considered, and their inequality measures. In Sec-
tion 3 we present a distributional analysis of the capital income data series,
using a parametric representation which includes a Pareto distribution in the
large incomes region. Section 4 discusses the conclusions of the study of the
paper.

2 Income Data

We used for this analysis individual tax income data for 2013 and 2014. Three
main categories of income have been aggregated: wages (A), non-wage (B),
and capital (C). A detailed list of the types of income included in the study
is given in the Appendix A. The main contributors to the capital income are
interest income, dividends, and income from real estate sales.

We show in Table 1 the summary statistics of the partial and total incomes
of each type A,B,C for 2013 and 2014, determined from an analysis of the
gross personal tax income data. The income data is quoted on an annualized
basis. The numbers of tax payers receiving income of each type are denoted
NA,B,C . Because each given person can receive income of several types, the
total number of tax payers is different from the sum

∑
i=A,B,C Ni.

Table 1 lists the average incomes of each type X̄i = Xi/Ni, their standard
deviation, the numbers of tax payers, and the Gini coefficients for the partial
and total income. We compute averages relative to the number of persons
receiving each type of income.

One can compare with the results for 2013 in [29]. In this paper the
average wage income was quoted as 19,413 RON and the average non-wage
income was 3,025 RON. The average wage is consistent with the result in
Table 1, while the difference noted for the non-wages result is larger due to
the inclusion of other types of income. In [29] this income category included
only i) pensions income, ii) unemployment benefits and iii) social benefits.
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The capital income contributes a significant proportion to the total in-
come. The weights of the three types of income A,B,C in the total income
are (56.6%, 24.8%, 18.6%) for 2013 and (56.0%, 24.4%, 19.5%) for 2014. We
note that the capital income has a large standard deviation, which suggests
a much broader distribution than that of the other types of income. This
can be seen also in the Gini coefficient of this income, which is larger than
that of other income types. The Gini coefficients obtained in our case (0.92
and 0.93) are greater than the values for other countries: for example in [15]
it is reported that the average value for this coefficient during the period
1980-2003 is 0.75 for U.K., 0.78 for U.S. and 0.81 for Germany.

The large value of the inequality coefficient for the capital income explains
the increase of the Gini coefficient of the total income, after including the
capital income contribution. Additional measures of income inequality are
presented in Table 7.

Figure 1 presents the Lorenz curves for the total and capital income. This
graphical representation illustrates clearly that the capital income is much
more inequally distributed than the total income. The Lorenz curves are
tabulated in numerical form in Table 6.
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Figure 1: Lorenz curve for income distribution for 2013 and 2014. The Lorenz
curve of the total income is shown as the solid curve, and the Lorenz curve
of the capital income is shown as the dashed curve.

Commonly used measures of inequality are the ratios of the top 10%/top
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Table 1: Summary data for the total income for 2013 and 2014: mean and
standard deviation of the yearly income, the number of tax payers, and the
Gini coefficient. The numbers of tax payers receiving each type of income
are denoted NA,B,C . Due to overlap between different types of income, their
sum is different from the total number of tax payers N .

Parameter 2013 2014

Average Income
Wages 19,411.8 20,623.1

Non-wages 12,037.3 12,017.2
Capital 11,464.1 13,752.1
Total 19,646.0 20,826.4

Standard Deviation of Income
Wages 32,005 33,361

Non-wages 48,037 49,356
Capital 1,236,169 1,730,903
Total 698,923 942,826

Number of taxpayers
NA 6,217,274 6,302,494
NB 4,397,170 4,719,291
NC 3,455,928 3,298,395
N 10,853,791 11,142,053

Gini coefficient
Wages 0.533 0.530

Non-wages 0.550 0.558
Capital 0.921 0.932
Total 0.625 0.627

90% and top 1%/top 99% income shares1. Table 2 presents the numerical
values of these two ratios for all three types of income separately, and for
the total income. From this table one can see again that this ratio is much

1We define them as the ratio of the total income in the 0-10% decile to the total income
in the 90%-100% decile, and analogous for the top 1%/99% income shares. Another
definition found in the literature uses the ratios of the average incomes in the respective
deciles.
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larger for the capital income than for the other types of income. The results
also point to a slight increase of the inequality of the capital income in 2014
compared with the previous year.

Table 2: The values of the two ratios top 10% / top 90% and top 1% / top
99% income shares, separately by type of income, and for the total income.

Wages (A) Non-wages (B) Capital income (C) Total Income

2013
top 10%/90% 83.21 189.61 806.39 382.92
top 1%/99% 2591.24 2329.77 5410.87 4263.01

2014
top 10%/90% 78.91 208.4 1005 387.26
top 1%/99% 2487.23 2795.66 6827.21 4640.23

Finally, we present also the relative contributions of the capital income
to the total income, separated by deciles of the total income distribution.
Figure 2 shows, for each decile of the total income, the capital income shares.

3 Capital income distribution

We study in this Section the details of the distribution of the capital income.
We start by introducing a few notations. Denote pi(x) the probability dis-
tribution function (pdf) of the type i of income: i = A,B,C. The number
of persons with income of type i in the range [x, x+ dx] is Nipi(x)dx where
Ni is the number of people paying type-i income. The total income of type
i paid is Xi =

∫∞
0

pi(x)xdx. The distribution functions are normalized as∫∞
0

pi(x)dx = 1. We also denote the corresponding cumulative distribution
functions Fi(x) =

∫ x

0
pi(y)dy.

The densities pA(x), pB(x) of the wage (A) and non-wage income (B) have
been studied in [29]. The density pA(x) was found to be well approximated by
an exponential distribution in the small incomes region, and by a power law
(Pareto distribution) with Pareto coefficient α = 2.53 in the high incomes
region. The non-wage income (B) has a smaller contribution to the total
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Figure 2: The relative contribution to the capital income to the total income
(capital income shares), divided by deciles of the total income. The graphical
representation follows that in Schlenker, Schmid [39].

income, such that the distribution of the total income (A+B) is dominated
by that of the wage income (A).

In this paper we study the capital income distribution pC(x). The plots
of the empirical distribution pC(x) of the capital income for 2013 and 2014
are presented in Fig. 3. We also show the logarithm of the complementary
cumulative distribution function log(1− FC(x)) vs log x in Figure 4.

While the plots of the densities of the capital income do not show much
detail, the log-log plot of the complementary distribution function F̄C(x) =
1−FC(x) shows the presence of two regions of low-middle and large incomes,
with distinct qualitative behavior. In each region the plot is approximatively
a straight line, and they are separated by a threshold at xT ≃ 120, 000 RON.

Visual inspection of these plots suggests thus that the long upper tail of
the distribution pC(x) could have a Pareto form. The region of middle and
low incomes could also be interpreted as a power law since the log-log plot
shows an approximate straight line in this region, but this observation could
be misleading since other distributions such as for example the log-normal
distribution can show a straight line in a log-log plot of the complementary
cumulative distribution function.

We will perform here a more careful analysis of the functional dependence,
which will confirm the presence of a power law in both regions. In order to
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construct a parameterization for the entire capital income distribution we
proceed with the analysis of the log x data series.
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Figure 3: Plot of the empirical distribution of the capital income pC(x) for
2013 and 2014.

Figure 5 shows the density function of log x for 2013 and 2014. Both
densities start to have values significantly greater then zero at log x = 4.6 and
they have a prominent peak at log x = 5.45 for 2013 data and at log x = 5.05
for 2014 data series. The 2013 data series, besides the peak at log x = 5.45
have a second but smaller peak at log x = 4.95. Both functions have a
similar shape that can be decomposed into three distinct regions plus the
above mentioned peaks.

We are thus led to adopt a piece-wise fit for the distribution of y := log x,
consisting of three regions:

• Low incomes region x1 ≤ y ≤ x2: the density qC(y) is approximated as
a Gamma distribution.

• Middle incomes region x2 ≤ y ≤ x3: the density qC(y) is approximated
as an exponential distribution.

• High incomes region y ≥ x3: the density qC(y) is approximated as a
shifted exponential distribution.
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Figure 5: Density of y = log v, the log of the capital income v distribution
for 2013 and 2014.

In addition, the contributions of the peaks seen in Fig. 5 are modelled as
step functions of constant height c. We note that y = log x > 0 is positive
definite, as the minimum capital income is x = 1.

This piece-wise representation has also an economic interpretation, as
each region receives contributions from different types of capital income. The
region of low capital incomes is dominated by interest income, dividends,
stock transactions income, rents and lease income. These account for 86.7%
of the total capital income in this region.

The middle- and large-incomes regions are dominated by income from
real estate transactions. These are divided into two groups, of low- and high-
value transactions, with distinct functional distribution. These account for
70% of the capital income in the middle-income region, and for about 67%
of the income in the high-income region.

3.1 Parametric representation of the capital income

We will denote the distribution of y = log x as qC(y). This is related to
the distribution function of the capital income pC(x) as qC(y) = xpC(x) =
eypC(e

y).
The piece-wise parametric representation described above for the distri-
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bution qC(y) is written explicitly as

y ≤ x1 : qC(y) = 0(1)

x1 < y < xd1 : qC(y) =
ba11

Γ(a1)
· ya1−1 · e−b1·y(2)

xd1 ≤ y ≤ xd2 : qC(y) = c1(3)

xd2 < y < xd3 : qC(y) =
ba11

Γ(a1)
· ya1−1 · e−b1·y(4)

xd3 ≤ y ≤ xd4 : qC(y) = c2(5)

xd4 < y ≤ x2 : qC(y) =
ba11

Γ(a1)
· ya1−1e−b1·y(6)

x2 < y ≤ x3 : qC(y) = λ1 · e−λ1·y(7)

y > x3 : qC(y) = λ2 · e−λ2·(y−a2)(8)

The two peaks in the low incomes region have been represented as step
functions. Their boundaries for the 2013 data are xd1 = 4.8 and xd2 = 5.1
for the first peak, and xd3 = 5.4 and xd4 = 5.5 for the second and most
prominent peak. The peak heights are c1 = 0.285 and c2 = 0.565. A similar
representation is used for the 2014 data, except that there is only one peak
of height c1 = 0.55 in the region [xd1, xd2], with xd1 = 5.0 and xd2 = 5.1.

The parameters of the probability density functions were estimated by
the Maximum Likelihood Estimation (MLE) method. The boundaries x2, x3

were estimated using a goodness of fit approach, using an algorithm that is
presented in the Appendix B, see Algorithm 1.

The numerical values of these parameters corresponding to the best fit
are shown in Table 3. Figure 6 shows the empirical density function qC(y)
and the result of the fit (blue curve) for the density of y = log x for 2013 and
2014. The fit quality is seen to be very good.

3.2 Discussion of the parametric distribution of the

capital income

In the previous section we obtained a parametric description of the density
qC(y) of y := log x with x the capital income. In this section we study the
implication of the results for the distribution of the capital income pC(x). We
also present the results of an alternative determination of the distribution in
the upper tail of the capital income distribution.
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Table 3: Parameter values for the best fit to the distribution of log x, with x
the capital income for 2013 and 2014. The values of the parameters for the
second peak, appearing only in the distribution qC(y) for 2013, are xd3 = 5.4,
xd4 = 5.5.

Parameter 2013 2014 Parameter 2013 2014

x1 4.6 4.6 a1 17.75081 19.6427
xd1 4.8 5.0 b1 2.78872 3.13746
xd2 5.1 5.1 λ1 0.15174 0.079479
x2 9.45 9.15 λ2 1.44091 1.43023
x3 11.7 11.7 a2 8.90577 9.02909
c1 0.285 0.565 c2 0.55 −
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Figure 6: Plots of qC(y), the best fit to the distribution of y = log v with v
the capital income.
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3.2.1 Upper tail of the capital income

We start with the region of large capital incomes. This corresponds to the
upper tail region log x > x3 which is described by a shifted exponential dis-
tribution with the rate λ2. This translates into a power law distribution for
pC(x), with the same exponent λ2. The complementary cumulative distribu-
tion function is

F̄C(x) =

∫ ∞

x

λ2e
−λ2(y−a2)dy = x−λ2 · eλ2·a2 .(9)

This gives a power law dependence in x in the upper tail of the capital income
distribution, for both time periods under consideration. This dependence is
typically denoted as a Pareto law with probability distribution function

fPareto(x) = cx−α−1 , x > xmin ,(10)

where and c, xmin are constants and α is called the Pareto coefficient. This
probability density function has the complementary cumulative distribution
function

F̄Pareto(x) =

∫ ∞

x

fPareto(u)du =
(xmin

x

)−α

(11)

which has the same form as Eq. (9) with the identification α = λ2.
From Eq. (9) we obtain:

log(1− FC(x)) = λ2 · a2 − λ2 log x ,(12)

which corresponds to the linear part of the log-log plot shown in Figure 4 for
the high income region.

Using the estimated values for λ2 from Table 3 we get that the high
income region of the capital income distribution is well described by a power
law with the Pareto coefficients α2013 = 1.44 for 2013 and α2014 = 1.43 for
2014.

We checked the values of Pareto coefficients by computing them also using
the procedure described in [9] and [46]. This is also based on maximum
likelihood estimation. In the case of integer discrete data {vi}, i = 1, n which
is the case of the income data, the approximate value of the Pareto coefficient
α is given in Annex B.4 of [46]:

(13) α̂ ≈ n

[
n∑

i=1

log
xi

xmin − 1
2

]−1

.
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We used the poweRlaw package [19] to estimate the following parameters
of the power law for the capital income in the higher incomes region: i) the
Pareto coefficient α, ii) the threshold value xmin marking the lower boundary
of the region for the Pareto law, and iii) the Kolmogorov-Smirnov statistics.
The numerical results for these parameters are shown in Table 4. As men-
tioned, these parameters are related to those of the parametric distribution
in the upper tail as α = λ2. Also one can identify vmin = ex3 . The values of
the Pareto coefficients obtained by the method of [19] agree well with those
determined by the MLE method described in Appendix B and listed in Ta-
ble 3. Also the threshold values xmin where the Pareto distribution starts,
agree well with ex3 = 120, 572, where we used x3 = 11.7 from Table 3.

We also estimated the uncertainty in determining the vmin and α param-
eters using the bootstrap procedure described in [9]. We used again the
poweRlaw package [19] with B = 2500 bootstrap iterations and obtained the
results presented in Figures 7 to 10. The goodness of fit for the Pareto region
of the capital income was tested with the bootstrapping procedure described
in [9]. The p-values obtained for our income data series are presented in
Table 4, and show a very good fit of the data by the Pareto distribution.

Table 4: The parameters of the Pareto distribution for the capital income
distribution in the upper tail region, for 2013 and 2014. D denotes the
Kolmogorov-Smirnov statistics for the goodness of fit for each year.

Parameter 2013 2014

xmin 138,000 132,000
α 2.435 2.428
D 0.006 0.005

p-value 0.93 0.92
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Figure 7: Uncertainty on xmin for 2013, high income region. Red lines denote
the 95% confidence interval.
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Figure 8: Uncertainty on xmin for 2014, high income region. Red lines denote
the 95% confidence interval.
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Figure 9: Uncertainty on α for 2013, high income region. Red lines denote
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Figure 10: Uncertainty in computing α for 2014, high income region. Red
lines denotes the 95% confidence interval.

In [29] the total wage (A) plus non-wage (B) income distribution for 2013
was found to be well represented for large incomes x > 100, 000 RON by
a similar Pareto distribution with exponent α = 2.53 and scale parameter
xmin = 140, 859 RON. The Pareto exponent of the capital income distribution
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in the large incomes region α2013 = 1.44 is appreciably smaller than that of
the A+B income distribution α = 2.53 found in [29]. This explains partially
why the capital income has a larger inequality. The magnitude of the xmin

coefficient is also partly resposible for the difference in inequality.
We computed the length of the Pareto tail of the capital income distri-

bution, defined as the ratio of the number of the capital income earners with
income larger than xmin to the total number of capital income earners. This
is 1.41% for 2013 and 1.73% for 2014. These numbers compare well with
other studies [40] that showed a length of approximative 1% for the Pareto
tail for Japan and [11] where a Pareto tail of 1% to 3% length is reported for
U.K., U.S. and Germany.

We also determined that the dominant type of income for the Pareto tail
comes from real estate transfers: approximatively 67% of the total income
greater than the threshold shown in Table 4, while the other types of capital
income are dominant in the lower and middle ranges of incomes.

3.2.2 Middle capital incomes region

We consider next the region x2 < log x ≤ x3 of middle capital income,
shown as the almost flat region in Fig. 6. In this region the complementary
cumulative distribution function of the capital income has the form

F̄C(x) = e−λ2·(x3−a2) + e−λ1·logx − e−λ1·x3 =(14)

= e−λ1·logx + A = x−λ1 + A

where we defined A = e−λ2·(x3−a2) − e−λ1·x3. In this region the capital in-
come distribution has again Pareto form up to a constant term, with Pareto
coefficient α = λ1.

3.2.3 Small capital incomes region

Finally, we consider the region x1 < log x ≤ x2 of small capital incomes. In
this region the distribution of log x is well described by a Gamma distribution
Γ(a1, b1). In addition there is one peak (for 2014) and two peaks (for 2013),
which are modeled as step functions.

The contribution to the capital income in the peaks observed in this region
(log x ∈ [5.0, 5.1]) comes mostly from interest income. For 2013 the interest
income contribution is 74.4% and for 2014 it is 87.3%.
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In this region the complementary cumulative distribution function of x is
computed as follows. For simplicity of calculations we ignore the peak area
that only add a constant value to the cumulative distribution function.

1− FC(x) = e−λ2·(x3−a2) + e−λ1·x2 − e−λ1·x3(15)

+
Γ(a1, b1 · log x)

Γ(a1)
− Γ(a1, b1 · x2)

Γ(a1)

= B +
Γ(a1, b1 · log x)

Γ(a1)

where B is a constant given by B = e−λ2·(x3−a2)+ e−λ1·x2 − e−λ1·x3 − Γ(a1,b1·x2)
Γ(a1)

and Γ(a1, b1 · x2) is the upper incomplete Gamma function.
Figure 11 shows again the log-log plot of the complementary cumulative

distribution function for both years, together with the fitted lines given by
Eqs. (12), (14) and (15) with the parameters from Table 3.
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Figure 11: Plot of log F̄C(x), the complementary cumulative distribution
function of the capital income x vs log x, where the blue dotted line is given
by Eq. (12), the red dotted line by Eq. (14) and the green dotted line by
Eq. (15).
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4 Conclusions

We present in this paper the first study of the capital income in Romania,
using individual tax income data for 2013 and 2014. This completes a study
of the income distribution performed in [29] which included only the con-
tributions from wages and social redistribution income. We give results for
the capital income shares, the inequality measures for the capital income,
and its effect on the distribution and inequality of the total income. The
details of the distribution of the capital income are studied using a para-
metric representation, which reduces in the high incomes region to a Pareto
distribution.

Previous studies of the income distribution and inequality in Romania
used either partial data, covering a single region [12], or used income survey
data [27, 28, 38]. To our knowledge the present paper in the first such study
taking into account capital income data.

Although income survey data are also available, tax records are known to
be more reliable. This is especially true for capital incomes, since apart from
rents (which are declared in a personal income statement), the other capital
incomes are taxed at the source. For example, interest income is declared by
the bank where the interest is paid, and real estate sales are declared by the
public notary recording the transaction.

Our results show that the capital income is much more unequally dis-
tributed than the wages- and non-wage income. As a result, including its
contribution increases the income inequality for the total income, as mea-
sured by a wide range of inequality measures, see Table 7. For example, the
Gini index for capital income is much larger than that for the total income,
in both years considered: while the Gini index for capital income is 0.92
for 2013 and 0.93 for 2014 it is only 0.53 for the total income. The capital
income has a greater concentration than the labor income, the Herfindahl
concentration index for the capital income being 0.0033 and 0.0048 for 2013
and 2014 while for the total income it is 0.0001167 and 0.000184 which agrees
with other studies in this area [26].

We present results for the capital income shares, which shows the break-
down of the total income into wage- and capital-income. The results agree
with a general pattern of income shares distribution observed in other EU
countries, in a study covering the period 2005-2011 [39].

The distribution of the capital income has a complex structure, and our
study reveals the presence of three distinct regions with qualitatively different
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behavior. This reflects the variety of the different types of capital income.
The interest income, dividends, rent income and lease income dominate the
distribution in the low-incomes region. Income from real estate transactions
dominates the distribution of the capital income in the middle- and high-
income region. In each of these regions the distribution follows a Pareto
law. The upper tail has a Pareto coefficient α ∼ 1.4 which is much smaller
than the corresponding coefficient observed for the wage income αA = 2.53
[29], which agrees with a higher inequality for the capital income distribution
noted from the inequality indices.

A Appendix: Breakdown by types of income

Each person can receive income of three types:

A: Wage income

B: Non-wage income

C: Capital income

We list in Table 5 the details of the income sources of each type.
We also list in Table 7 the values of the inequality measures for the various

contributions to the total income, and for the total income.

B Estimation of the capital income distribu-

tion

We describe in this Appendix the details of the Maximum Likelihood Esti-
mation method used for determining the parameters entering the functional
representation of the capital income distribution introduced in Sec. 3.1. The
procedure used is shown in symbolic form in Algorithm 1.

The distanceD between the probability distributions is measured through
the Kolmogorov-Smirnov statistics which is given by:

D = max
x

| S(x)− P (x) | .(16)

where S(x) is the cumulative distribution function of the empirical data and
P (x) is the cumulative distribution function of the fitted distribution.
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Table 5: The breakdown of the different income sources used for this study.
Type A: Wages Type B: Non-wages

Wage income from domestic labor Income from agricultural labor
Wage income from abroad Free-lance and commercial activities income

Intellectual property rights income
Gambling income
Pensions
Unemployment benefits, social benefits
Commercial mandate income
Commission income

Type C: Capital income

Stock and bonds transfers
Rental income
Leasing income
Interest income
Dividends
Income from foreign currency transactions
Real-estate transfers

The values of x2 inf , x3 inf , x2 sup, x3 sup, and s for both 2013 and 2014 used
in Algorithm 1 are given in Table B.

Step 3 of the Algorithm 1 involves solving a constrained minimization
problem. The function that has to be minimized is the log-likelihood of the
distribution described by Eqs. (1)-(8). This function is given below in explicit
form for 2014 (the form of the log-likelihood function for 2013 is similar with
the exception that it adds the contribution from the rectangular area of the
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Table 6: Tabulation of the Lorenz curve L(p) of the total and capital income,
2013 and 2014.

p 2013 2014
Total income Capital income Total income Capital income

0.05 0.000409 0.0005002 0.0003734 0.0004070
0.10 0.001308 0.0011142 0.0013053 0.0009067
0.15 0.003309 0.0018528 0.0034143 0.0014841
0.20 0.007287 0.0027614 0.0076538 0.0021475
0.25 0.014535 0.0038020 0.0152053 0.0029511
0.30 0.026435 0.0049754 0.0273001 0.0039153
0.35 0.043980 0.0063881 0.0449886 0.0050683
0.40 0.066281 0.0080978 0.0675307 0.0064465
0.45 0.090793 0.0101521 0.0924016 0.0081017
0.50 0.117288 0.0126287 0.1186232 0.0100823
0.55 0.146337 0.0156423 0.1471196 0.0124731
0.60 0.178366 0.0193517 0.1784502 0.0153874
0.65 0.213965 0.0239647 0.2131903 0.0189912
0.70 0.253826 0.0298354 0.2521299 0.0235474
0.75 0.299136 0.0375472 0.2965608 0.0295122
0.80 0.351880 0.0481822 0.3485781 0.0378071
0.85 0.416018 0.0642589 0.4118694 0.0507043
0.90 0.498558 0.0931939 0.4936895 0.0760989
0.95 0.615540 0.1725850 0.6095569 0.1560156
0.96 0.647045 0.2086092 0.6406299 0.1923755
0.97 0.684159 0.2600757 0.6771740 0.2426601
0.98 0.730725 0.3353214 0.7226878 0.3140789
0.99 0.795239 0.4534462 0.7858049 0.4234765
0.999 0.910667 0.7104452 0.8994391 0.6612755
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Table 7: Inequality measures for the components of the total income, and
for the total income. We define them as in Sec. 2 of [29].

2013 Total Wages (A) Capital (C) Non-wage (B)

Gini 0.62 0.53 0.92 0.55
Ricci-Schutz 0.45 0.39 0.81 0.37

Atkinson(p = 0.5) 0.37 0.25 0.78 0.31
Theil 1.07 0.56 3.47 0.81
2014 Total Wages (A) Capital (C) Non-wage (B)

Gini 0.62 0.53 0.93 0.56
Ricci-Schutz 0.45 0.39 0.83 0.37

Atkinson(p = 0.5) 0.36 0.24 0.81 0.32
Theil 1.18 0.55 3.96 0.82

Table 8: Search ranges for x2 and x3, and the step s used to search the best
fit values.

2013 2014
x2 inf x2 sup s x3 inf x3 sup s
8.5 10 0.05 8 9.5 0.05

x3 inf x3 sup s x3 inf x3 sup s
11 12 0.05 11 12 0.05
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Algorithm 1 The algorithm for estimating the parameters x2 and x3 for the
distribution of log v.

1: for x2 = x2 inf to x2 sup step s do
2: for x3 = x3 inf to x3 sup step s do
3: Compute the parameters a1, b1, λ1, a2, and λ2 solving a constrained

optimization problem for the log likelihood function
4: Compute D, the Kolomogov-Smirnov distance between the fitted

distribution and empirical distribution and save it to a list ks to-
gether with the values of the parameters

5: end for
6: end for
7: Iterate over ks and find the minimum value of D
8: Save the index of this value i
9: From ks(i) extract the values of the parameters of the distribution a1,

b1, λ1, a2, and λ2

10: Extract x2 and x3 that give the minimum D

first peak).

(17) − ll(y) = n1 · log(Γ(a1))− n1 · a1 · log(b1)− (a1 − 1) ·
∑

x1<yi<xd1

log(yi)

+ b1 ·
∑

x1<yi<xd1

(yi)− c2 · n2 + n3 · log(Γ(a1))− n3 · a1 · log(b1)−

(a1− 1) ·
∑

xd2<yi≤x2

log(yi)+ b1 ·
∑

xd2<yi≤x2

(yi)+λ1 ·
∑

x2<yi≤x3

(yi)−n4 · log(λ1)+

λ2 ·
∑

yi>x3

(yi − a2)− n5 · log(λ2)

In the following we will refer to the analysis of the 2014 data, the com-
putations for 2013 being completely similar. In Eq. (17), n1 denotes the
number of data points with x1 < yi < xd1, n2 the number of data points
with xd1 ≤ yi ≤ xd2, n3 the number of data points with xd2 ≤ yi ≤ x2, n4

the number of data points with x2 < yi ≤ x3, and n5 the number of data
points with x3 < yi.

We imposed three equality constraints on the minimization of the log-
likelihood function. These constraints ensure that the density qC(y) of y =
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log v has no jumps at x2 and x3, and that it is properly normalized to 1. The
later restriction can be written as

∫∞
0

qC(y)dy =

∫ xd1

x1

ba11
Γ(a1)

· ya1−1 · e−b1·ydy + c2 · (xd2 − xd1) +(18)

∫ x2

xd2

ba11
Γ(a1)

· ya1−1 · e−b1·ydy +

∫ x3

x2

λ1 · e−λ1·ydy +

∫ ∞

x3

λ2 · e−λ2·(y−a2) =

γ(a1, b1 · xd1)
Γ(a1)

− γ(a1, b1 · x1)

Γ(a1)
+ c2 · (xd2 − xd1) +

γ(a1, b1 · x2)

Γ(a1)
− γ(a1, b1 · xd2)

Γ(a1)
+

e−λ1·x2 − e−λ1·x3 + e−λ2·(x3−a2) = 1

Here γ(a, x) =
∫ x

0
t(a−1)e−tdt is the lower incomplete Γ function.

Considering the large size of our data set, in order to speed up the solu-
tion of the constrained optimization problem, we added a set of inequality
constraints C on the acceptable values of the parameters, see (20). Using
these constraints, the problem can be stated as follows

min {−ll(y)}(19)

s.t.
ba11

Γ(a1)
· xa1−1

2 e−b1·x2 = λ1 · e−λ1·x2 ,

λ1 · e−λ1·x3 = λ2 · e−λ2·(x3−a2) ,

γ(a1, b1xd1)

Γ(a1)
− γ(a1, b1x1)

Γ(a1)
+ c · (xd2 − xd1) +

γ(a1, b1x2)

Γ(a1)
− γ(a1, b1xd2)

Γ(a1)
+

e−λ1·x2 − e−λ1·x3 + e−λ2·(x3−a2) − 1 = 0 ,

C : {λ1 > 0, λ2 > 0, 1 < a1 < 45, 1 < a2 < 15} .(20)

The nonlinear optimization problem with equality and inequality con-
straints defined by (19) was solved for both data sets using the augmented
Langrangian method. The general form of the optimization problem can be
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written as:

min f(x) ,(21)

s.t. g(x) = 0

h(x) ≥ 0

Using slack variables the inequalities constraints can be easily transformed
into equality constraints:

min f(x) ,(22)

s.t. g(x) = 0

h(x)− s = 0

s ≥ 0.

The augmented Lagrangian of the problem Eq. (22) is given by:
(23)

L(x, s;λ1;λ2; σ1; σ2) = f(x)−λ1·g(x)−λ2·(h(x)−s)+
1

2
σ1‖g(x)‖2+

1

2
σ2‖h(x)−s‖2 ,

where ‖f(x)‖2 is the L2 norm.
The constraint optimization problem (21) is now transformed into a series

of unconstrained optimization problems of the form (23). A sketch of the
algorithm solving the optimization problem using the augmented Lagrangian
method is shown in Algorithm 2.

Algorithm 2 Augmented Lagrangian method

1: Choose initial values for λ1, λ2, σ1, σ2

2: repeat
3: Compute xλ1,λ2,σ1,σ2 given by argminx L(x, λ1, λ2, σ1, σ2)
4: Update λ1, λ2, σ1, σ2

5: until Stopping criteria are satisfied

A complete demonstration and a description of the augmented Lagrangian
method for nonlinear optimization problems with equality and inequality
constraints is beyond the purpose of this paper but an interested reader
could find such details in [25].

We solved the optimization problem described by Eq. (19) using the al-
abama R package [45], step 3 from algorithm 1 being a call of alabama::auglag

26



function which returns the optimal solution. Given the complexity of the al-
gorithm, and the very large size of our data sets, we implemented the for

loops in the algorithm 1 using the foreach package [36] to run each estima-
tion in parallel, and the doSNOW package [37] as a parallel back-end.

The numerical values of these parameters corresponding to the best fit
are shown in Table 3.
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