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Abstract
Preserving individual control over private information is one of the rising concerns in
our digital society. Online social networks exist in application ecosystems that allow
them to access data from other services, for example gathering contact lists through
mobile phone applications. Such data access might allow social networking sites to
create shadow profiles with information about non-users that has been inferred from
information shared by the users of the social network. This possibility motivates the
shadow profile hypothesis: the data shared by the users of an online service predicts
personal information of non-users of the service. We test this hypothesis for the first
time on Twitter, constructing a dataset of users that includes profile biographical text,
location information, and bidirectional friendship links. We evaluate the predictability
of the location of a user by using only information given by friends of the user that
joined Twitter before the user did. This way, we audit the historical prediction power
of Twitter data for users that had not joined Twitter yet. Our results indicate that
information shared by users in Twitter can be predictive of the location of individuals
outside Twitter. Furthermore, we observe that the quality of this prediction increases
with the tendency of Twitter users to share their mobile phone contacts and is more
accurate for individuals with more contacts inside Twitter. We further explore the
predictability of biographical information of non-users, finding evidence in line with
our results for locations. These findings illustrate that individuals are not in full control
of their online privacy and that sharing personal data with a social networking site is a
decision that is collectively mediated by the decisions of others.
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1 Introduction
Since the leaks of the National Security Agency global surveillance by Edward Snowden
[1], privacy in online activity has been one of the rising concerns for Internet users [2].
While these concerns date back nearly two decades [3] and have not led to wide use of
privacy-enhancing technologies [4], the topic of privacy rights in online activity is higher
than ever on political agenda and media attention. Sharing private information can be
motivated by services or information received in exchange, for example in the case of
sharing health information with a doctor. Nevertheless, this does not need to be the case
in online social networks: A 2016 Pew Research Center survey [5] showed that more than
51% of respondents consider it not acceptable to share private information with an online
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social network that shows personalized advertisement, in fear of third parties accessing
such private data.

Social networking sites do not exist in isolation in cyberspace, they exist in the Platform
Society [6] and can integrate information from other sites and applications. For several
years, more than a billion users of the Facebook mobile applications [7] have given per-
missions to Facebook to read their phone contact lists.a This motivated the protest of
the Europe-vs-Facebook advocacy group about Facebook building shadow profiles [8, 9]:
hidden files on individuals with private information that has been inferred through the in-
dividual’s friends inside the social network. These shadow profiles can potentially be built
for non-users without an account in the social networking site and that did not agree to
its privacy policy [10]. The possibility to build shadow profiles would pose an important
concern with respect to privacy rights and informational self-determination [11].

Previous research has extensively evaluated privacy risks for users of social media, in
general by evaluating the inference of personal attributes of users from their digital traces
[12]. For example, Twitter data can be used to predict user locations [13, 14] as well as gen-
der, age, and political orientation of users [15]. Publicly available information in location-
based social networks, such as Foursquare, can also be used to predict the home location
of users [16]. Facebook has also been shown to be extremely informative of user personal
information, including sexual orientation [17], romantic partnerships [18], and a wealth of
other private attributes that can be inferred from user “likes” [19, 20]. These inferences are
possible thanks to the patterns of human interaction, such as the assortativity of personal
attributes in social networks [15]. These patterns can be so strong that personal data can
be inferred using only information given by the friends of a user and not the user itself. As
an example, a recent study shows how Twitter user attributes can be inferred using only
text produced by the social contacts of users [21].

While the above mentioned research has shed light on various properties and risks to
privacy, it has generally been limited to the analysis of actual users of social networks.
For this reason, their generalizability to the question of shadow profiles is limited. The
scarcity of research on shadow profiles is due to the difficulty to generate inferences on
attributes of non-users, but some exceptions provide a background for the topic. Horvát
et al. [22] were the first ones to empirically evaluate if information about non-users could
be inferred from online social networks. Combining samples of Facebook data with sim-
ulations of Facebook’s growth, they could verify that friendship links between people out-
side Facebook could have been predicted with data contained in Facebook. In the same
line of research, Sarigöl, Garcia, and Schweitzer [23] used the temporal sequence of users
joining a shutdown social network, Frienster, to verify that the sexual orientation of non-
users could have been predicted using data from Friendster. Furthermore, a recent article
formulates and empirically tests the shadow profile hypothesis [10], i.e. that personal in-
formation of non-users can be predicted using information given by the users of an online
service. More precisely, [10] shows that predictions of sexual orientation and marital status
in Friendster improved with the amount of data shared by the users of the social network.
That result illustrates that the decision of individuals not to share information is mediated
by the decisions of others.

While the above articles provide evidence supporting the shadow profile hypothesis,
they suffered certain limitations. First, the lack of precise data required the use of growth
simulations or other heuristics [22]. Second, observational data of users did not contain
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any information about which users share their contact lists, requiring certain assumptions
in the analysis process [23]. And third, previous evaluations are either supported on small
datasets or on data from shutdown social networks [10], leaving open the question of
whether shadow profiles can be built in a current and large online social network. This
article aims at overcoming those three limitations in a study of personal information in the
Twitter social network, through the high-quality data provided by the Twitter API. As a
result, we test shadow profile hypothesis in an active and large online social network, using
the precise time sequence of Twitter users joining the network, and identifying which
users share their contact lists as revealed in the metadata of their tweets.

In the following, we present a dataset that we produced to evaluate the shadow profile
hypothesis when predicting user location. We use that data to evaluate the shadow profile
hypothesis and analyze how the quality of location prediction depends on the tendency of
users to disclose information and on the number of friends that a non-user has in Twitter.
We continue by testing the shadow profile hypothesis for simplified features of user bio-
graphical texts. This analysis not only has the potential to robustly test the shadow profile
hypothesis in a current social network, but also explores possible inequalities in the ac-
curacy of shadow profiling and the collective aspects of privacy decisions in our current
digital society.

2 Data and methods
2.1 Ego network construction
We started our data collection by producing a set of ego users whose information will con-
stitute the ground truth to evaluate predictions. To generate an initial unbiased random
sample of users, we applied the Random Digit Search method [24, 25]: We generated ran-
dom Twitter user ids in the range between 1 and 30 Billion, looked them up through the
Twitter REST API,b and saved the basic user information of the valid sampled users. To
avoid celebrities and spammers, we filtered out users with a ratio of followers to friends
below 0.1 or above 10, as well as users with less than 50 friends or followers. To have a
homogeneous sample for biographical data analysis, we included only users that have En-
glish as the language of the Twitter account. This process generated a set of 1,017 ego
users, which are the starting point of a larger dataset including their social contacts and
their activity in Twitter.

We collect the timeline of tweets of each ego user up to 3,200 tweets.c Based on those
timelines, we identify alter users as the ones that have been mentioned at least four times
by an ego user, following this way a set of friendship links that capture communication
and not just followership or retweeting [26]. We use these links as an approximation to
the underlying social network between Twitter users that is revealed when users share
their contact lists through mobile phone apps or through importing tools. This way we
generate a set of 68,447 alter users, collecting also their timeline of tweets and biographical
information. As a result, we count with a total of 157,408,012 tweets in our dataset from
both ego and alter users.

2.2 User analysis
We identify the location of users by combining geographical data of their tweets as well
as their self-disclosed location and biographical text. Our dataset contains more than 5.6
Million geotagged tweets that contain a geographical location reference with precise coor-
dinates. We process those coordinates with the Google Maps Geocoding APId to identify
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Figure 1 User locations in the Twitter social network. The top panel shows a map with the locations of
the users in the dataset. The lower panel shows the ego network of locations including only preceding alters,
with nodes colored according to the country as a way to illustrate locations. A clear country assortativity
pattern can be observed (with a nominal assortavity coefficient for countries of 0.53), as most preceding alters
of egos are in the same country.

the municipality in which they are located, which we refer to as their city. For each user
with at least one geotagged tweet, we label their location as the most frequent city where
their tweets have been geotagged. For users without geotagged tweets, we process the lo-
cation and biographical text of users through Google’s Text Analysis API.e As a result, we
located 630 ego users and 38,936 alters, taking this data as an approximation to the bet-
ter location information that Twitter has access to. The top panel of Figure 1 shows the
locations of users in the dataset, illustrating that users come from a wide variety of coun-
tries but are generally located in countries where Twitter adoption is high [27, 28]. The
lower panel of Figure 1 shows the ego network using only preceding alters as explained
below, with nodes colored according to the user country. A clear assortativity pattern can
be observed, which is the foundation of the unsupervised predictors explained below.

We processed the biographical text provided by each user in the dataset by removing
stop words that appear in the NLTK stopword listf and stemming its tokens with Porter’s
stemming algorithm [29]. For our analysis, we consider only those users which have 3 or
more tokens in their biographical text after this step (49,576 alters and 676 ego users).
Over these texts, we applied a 100-dimensional Doc2Vec [30] model trained on a separate
corpus of 1.7 Million biographical texts generated in previous research [31]. Doc2Vec fits
a language model that represents documents (in this case bios) as vectors such that se-
mantically and linguistically similar documents are close in the representation space. We
chose a dimensionality of 100 to follow previous applications of similar models [32]. To
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Figure 2 Twitter data and the shadow profiles problem. The left panel shows a schema of the data used
in this study. We count with a set of ego users who are connected to their alters through links based on their
Twitter replies. The right panel shows the shadow profile problem. For each ego user, we count with
preceding alters that had already joined Twitter at the time when the ego joined. Out of those preceding
alters, some disclosed their contact lists in Twitter (red) and others did not (blue). The shadow profile problem
consists of the inference of personal information of the ego user based only on the information given by
disclosing preceding alters, ignoring all data from non-disclosing preceding alters and alters that joined
Twitter after the ego user.

further reduce the dimensionality of the dataset, we applied Principal Component Analy-
sis (PCA) and took the two most informative components as a quantification of the content
in biographical texts. More details about the PCA are presented in the Additional file 1.
As a result, we count with a 2-dimensional biographical vector for each user such that se-
mantically similar texts will have similar orientations of their vector representations and
dissimilar texts will be pointing in very different directions.

The Twitter API provides a source field for each tweet that identifies the way the tweet
was produced. Among these sources we can find mobile phone applications for Android
and iPhone, allowing us to identify wich users installed one of this applications and shared
their contact lists with Twitter.gh We mark as disclosing alters all the alters that produced
at least one tweet with the source “Twitter for iPhone” or “Twitter for Android”. This way
we identify 54,658 disclosing users (934 ego users and 53,724 alters), which amount to
more than 78% of the users in our dataset.

2.3 The shadow profile problem
We adapt the problem formulation of shadow profiles for Facebook [22] and Friendster
[10] to the case of Twitter. The left panel of Figure 2 shows a schema of the ego-centered
data we use: we count with the connections between ego and alter users and the location
and biographical vectors for the users that shared that data on Twitter. The right panel of
Figure 2 shows the problem of constructing a shadow profile for the ego user, in which
only a historical subset of the data is used to evaluate if the information provided by users
(alters) was predictive of non-users in the past (ego users).

In the shadow profile problem, all alters that joined Twitter later are excluded in the
prediction of ego data, since the information of these alters was not available to Twitter
before the ego created an account. Out of the alters that joined Twitter before the ego user,
only a subset of them were disclosing alters, i.e. they shared their contact lists with Twitter,
for example through the mobile phone app. The shadow profile problem in Twitter is to
generate predictions of the location and biographical vectors of ego users based only on
the information of their disclosing alters who joined Twitter before. Therefore, we go over
the history of Twitter and evaluate predictions only based on data that was available before
the ego user joined.

We study the conditions that drive the quality of shadow profiles in two analysis sce-
narios. First, we perform an empirical shadow profile analysis by applying the predictors
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explained below over the set of disclosing alters found through the source of their tweets.
We evaluate the predictions against the ground truth of ego users and compare against a
Null Model to test the shadow profile hypothesis. Furthermore, we analyze the relation-
ship between the quality of predictions and the number of disclosing alters of each ego
user with the purpose to evaluate if profiles are more accurate for users with more friends
who already joined Twitter.

Second, we perform a disclosure tendency analysis to study how the tendency of users to
share their contact lists can affect the quality of shadow profiles. In this analysis scenario,
instead of using the set of disclosing alters, we randomly sample subsets of all alters that
joined Twitter before the ego user. We define the disclosure parameter ρ as the probability
that an alter shares its contact lists with Twitter, to analyze how the quality of shadow
profiles depends on disclosure tendencies. For each value of ρ between 0.1 and 0.9 in
increments of 0.1, we generate 1000 samples and generate predictions based on that subset
of the data. In addition, we record the number of alters sampled this way to evaluate if
any relationship between prediction quality and number of friends also appears in this
sampling scenario.

2.4 Unsupervised predictors and evaluation
We apply two unsupervised predictors for location and biographical vectors to evaluate
the shadow profile hypothesis on Twitter. To predict the location of ego users, we take
the locations of all disclosing alters and identify the most frequent city among alters, i.e.
the modal predictor. We use this location as the unsupervised prediction of location to be
compared against the ground truth of the location of the ego user. We evaluate the qual-
ity of the prediction by measuring the Haversine distance in Km between the predicted
point and the ground truth. We predict the biographical vector of each alter as the average
vector of its disclosing alters. We evaluate this prediction through the cosine similarity of
predicted and ground truth vectors. Therefore, a high similarity will mean a high accuracy
of the predictor.

We compare both predictors against a Null Model that takes a uniformly random sample
of all users to construct a prediction. For each prediction of the model, we generate 100
Null Model predictions by sampling the same number of users from the whole dataset.
By comparing the Null Model with the shadow profile predictions we ensure that our re-
sults are not an artefact of limited data samples or uneven distribution of locations and
biographical data.

3 Results
3.1 Predicting locations
We first evaluate the predictive power of the data shared by disclosing alters in the empiri-
cal shadow profile analysis exercise explained above. Disclosing alters are friends of an ego
user who joined Twitter before that user and who shared their contact lists with Twitter
through a mobile app. Given this sample of users, we construct a historical shadow profile
for the location of each ego user based only on the data provided by its disclosing alters,
as explained in the Data and Methods section.

The left panel of Figure 3 shows the Cumulative Density Functions (CDF) of the error
in Km of the shadow profile predictor and of the Null Model. The shadow profile model
clearly outperforms the Null Model: the median error of the shadow profile predictor is



Garcia et al. EPJ Data Science  (2018) 7:3 Page 7 of 13

Figure 3 Location prediction quality using only disclosing alters. The left panel shows the Cumulative
Density Function (CDF) of the prediction error of user locations when using only the data of disclosing alters.
Black lines shows empirical errors and the blue line errors in the Null Model, revealing that empirical errors
(median = 68.7 Km) are much lower than the Null Model errors (median = 6308.9 Km). The right panels shows
the regression profile of the empirical error versus the number of disclosing alters in Twitter. The line shows
the model estimate and the shaded area its standard error. Prediction error decreases with the number of
disclosing alters in Twitter.

68.7 Km while the median error of the Null Model is several orders of magnitude larger
(6308.9 Km). Furthermore, when comparing the names of cities as a binary prediction, we
find an accuracy of 32%, while the Null Model has an accuracy near zero. These results
lend support to the shadow profile hypothesis for location in Twitter, as the information
of users is predictive of the location of non-users.

We analyze how this predictive power varies across users, testing a relationship be-
tween the shadow profile error and the number of disclosing alters in Twitter. The right
panel of Figure 3 shows a regression profile of the logarithm of prediction error versus
the logarithm of the number of disclosing alters of each user. There is a significant neg-
ative association between both variables (β = –0.486, p < 0.05, more details in the SI Ta-
ble 1), which is also confirmed in when computing Spearman correlation (σ = –0.155,
95%CI = [–0.232, –0.076]). This confirms that the error of the shadow profile predictor
for location in Twitter decreases monotonically with the number of friends of a user who
already are in Twitter and share their contact lists.

3.2 Disclosure tendency analysis of locations
We analyze the dependence of the quality of shadow profiles for location as a function of
the disclosure of contact lists, sampling alters as disclosing users for increasing values of
the disclosure parameter ρ . The left panel of Figure 4 shows the median prediction error
averaged over 1000 user samples for each value of ρ , with an inset showing the equivalent
for the Null Model. It is clear that the same observation as above holds here: the error of
the shadow profile prediction is much lower than the error of the Null Model, even for
low values of ρ . Median errors decrease monotonically with ρ , which is confirmed by the
Spearman correlation coefficient (σ = –0.06, 95%CI = [–0.086, –0.037]). This supports
the hypothesis that, as more users share information in the social network, the predictor
accuracy increases.

We analyzed the relationship between prediction error and the number of alters in Twit-
ter in this analysis scenario. A linear regression model of log-transformed variables over
all samples shows a negative association (β = –0.48, p < 0.001, more details in SI Table 2),
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Figure 4 Location prediction quality as a function of disclosure tendency and number of friends. The
left panel shows the median error of location prediction in 1000 samples for each value of ρ ∈ [0.1, 0.9], with
bars showing 95% bootstrapping confidence intervals (not visible). The median error approaches the value of
the error when ρ = 1, using all alters, which is 72 Km. The inset shows the error of the Null Model, which is
several orders of magnitude larger that the error of shadow profiles. The right panel shows stratified
regression lines of median error as a function of the number of alters in the samples, revealing that error
decreases with number of alters for the different values of ρ .

consistent with the results using only disclosing alters of the previous section. Further-
more, this result holds across different levels of disclosure tendencies, as captured by the
values of ρ . The right panel of Figure 4 shows regression profiles of the median error of
the predictor versus the logarithm of the number of alters in Twitter for the nine values of
ρ . All profiles have a negative trend, i.e. more alters are associated with lower error, being
consistent with a model that includes an interaction term between ρ and the logarithm of
the number of alters (β = –0.35, p < 0.001, more details in SI Table 2). In particular, the
interaction term is negative and significant (–0.24, p < 0.01), showing that the negative
association between prediction error and number of friends becomes stronger for larger
values of ρ .

3.3 Biographic vector prediction
We study the quality of unsupervised predictions of biographical vectors in the empirical
shadow profile analysis, i.e using only information from disclosing alters. In this scenario,
the cosine similarity between the predicted vector and the ground truth is not higher than
the Null Model when compared over the whole set of ego users (Wilcoxon test p-value =
0.92, difference between medians = 0.005). On the contrary, when analyzing only ego users
with an number of alters above the average, the cosine similarity of the prediction is sig-
nificantly higher than the Null Model by a sizeable amount (Wilcoxon test p-value < 0.05,
difference between medians = 0.20). This indicates that the data of users in Twitter is pre-
dictive of the biographical features of users outside Twitter, but only for egos with enough
friends who already joined Twitter and shared their contact lists. This conclusion is fur-
ther supported by the Spearman correlation coefficient between the cosine similarity of
the prediction and the number of disclosing alters (σ = 0.08, 95%CI = [0.001, 0.15]).

We performed the disclosure tendency analysis over the predictions of biographical vec-
tors to understand how their performance depends on the values of ρ . The left panel of Fig-
ure 5 shows the median cosine similarity of the predictor over 1000 samples for each value
of ρ , comparing the result against the Null Model. Cosine similarities outperform the Null
Model from relatively low values of ρ and increase with it. This observation is confirmed
when calculating the Spearman correlation coefficient (σ = 0.028, 95%CI = [0.003, 0.052]),
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Figure 5 Biography cosine similarity in predictions as a function of disclosure tendency and number
of friends. The left panel shows the median cosine similarity of predictions and of the Null Model in 1000
samples for each value of ρ with bars showing 95% bootstrapping confidence intervals. The cosine similarity
of predictions outperforms the Null Model for ρ > 0.2 and increases with ρ . The right panel shows the
regression analysis of cosine similarity versus number of friends in Twitter, revealing a trend of increasing
similarity with number of friends for the different values of ρ .

indicating that higher disclosure tendencies lead to higher accuracy in the estimation of
non-user biographies.

The positive relationship between cosine similarity and disclosing alters is present for
changing values of ρ . The right panel of Figure 5 shows regression profiles for the nine
values of ρ , displaying a positive trend in all of them. The Spearman correlation coeffi-
cient between cosine similarity and the number of disclosing alters significant and pos-
itive (σ = 0.04, 95%CI = [0.017, 0.068]). Furthermore, it is consistent with the fit of a re-
gression model of cosine similarity as a function of the logarithm of the number of alters
(β = 0.028, p < 0.001, more details in SI Table 3), and is robust to the addition of a inter-
action term with ρ (β = 0.021, p < 0.05, more details in SI Table 3). It is worth noting that
the interaction term is not significant, i.e. we do not have evidence that the relationship
between cosine similarity and the number of friends becomes stronger for higher values
of ρ . Overall, these results support the shadow profile hypothesis for biographical data
in Twitter, evidencing that features of the description of non-users can be predicted with
data from users, but once that data is abundant enough.

4 Discussion
Our work shows that the data shared by Twitter users is predictive of personal informa-
tion of individuals that are not users. We produced a dataset of the ego network of more
than 1000 users, retrieving their timelines and timelines of their alters for a total of more
than 150 Million tweets. Detecting users that use a mobile phone app, we could identify
which users share their contact lists, and thus we provide the first empirical test of the
shadow profile hypothesis on a dataset of a current social network. We found that the
data shared by those users is informative in the prediction of location and approximates
the biographical text of individuals that had not joined Twitter. This served as a histori-
cal audit to evaluate the shadow profile hypothesis, as Twitter had enough data to infer
personal attributes of people that did not have an account at that time. Studying various
disclosure tendencies in random samples of users, we found that the quality of those infer-
ences improves with the tendency to disclose information of Twitter users. Furthermore,
we analyzed the heterogeneity in the quality of these inferences and found that users with
more friends with a Twitter account are subject to have more accurate shadow profiles.
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While our results show that shadow profiles are a possibility, we must note that we have
not found empirical evidence of their existence. Our results only show that they can be
constructed, which is sufficient to put in question the control that individuals have on
their personal information online. Testing if these kind of profiles are actually being built
is an open question that does not subtract importance from the fact that, without oversight
or collective control mechanisms, individuals have little power to ensure that they are not
being profiled without their knowledge or consent.

The prediction methods we applied in our study are simple, unsupervised strategies that
take straightforward averages as predictors. The error level for shadow profiles of location
(68.7 Km) is comparable to error levels using full information, which are typically between
57.2 Km and 28.3 Km [14]. More advanced supervised methods are likely to improve pre-
dictions, but developing techniques to infer data of non-users carries important ethical
issues that need to be addressed before such research is performed. We tested the shadow
profile hypothesis by showing that inferences are informative, and for the case of location
these inferences greatly outperform the Null Model. Further research can examine if it is
desirable to develop more accurate methods, and whether that needs to be done with user
consent.

Our work suffers a series of limitations that need to be taken into account when gener-
alizing. First, we performed a historical audit using future data as ground truth. While this
can test the shadow profile hypothesis, we can only fully understand the risks it conveys
when producing predictions of people that have never been users of an online service.
This could be done combining user contact information, which is often proprietary, with
factual data from non-users, which needs to be voluntarily provided by non-users for re-
search purposes. Second, we have relied on a heuristic to infer friendships based on the
intensity of interaction in Twitter. While social network arguments support this assump-
tion [26, 33], future research should aim at accessing friendship lists or name generators
that do not depend on online interaction. Third, we used a model for user biographical
texts that does not allow a straightforward interpretation of what biographical qualities
are being predicted. While this allows us to address the shadow profile hypothesis, larger
user samples can quantify individual demographic markers in user biographical texts [21].
And finally, our analysis is based on a sample of users that might not be demographically
representative. This means that, while we cannot conclude everyone can have a shadow
profile, our results show that someone can have it. The evidence of this possibility is al-
ready a challenge to the current guarantees of the right to privacy, but generalizing these
results to larger populations has the potential to reveal larger issues and risks for whole
societies.

This article adds two new dimensions to the shadow profile question: location and bi-
ographical data. This adds up to the analysis of friendship links [22], sexual orientation
[23], and marital status [10], but still there are many more private attributes that could be
subject to inclusion in a shadow profile. For example political views, religious beliefs, and
use of substances are private attributes that can pose important issues if inferred and that
can be subject of future research. Furthermore, we have added Twitter as another case to
previous research on samples form Facebook [22] and Friendster [10, 23]. Further research
should try with other current social networks to avoid the Twitter model organism bias
[34] and to ensure that our knowledge applies to the online society and not only a handful
of social networking sites.
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The implications of our results are clear: individuals do not have full control over their
privacy and the decision not to share information with an online service is mediated by the
decisions of other people. This means that we cannot conceive online privacy as a purely
individual phenomenon that can be reduced to the decisions of a person. To ensure the
right to privacy and of informational self-determination as democratic values, we need
new legal and data management frameworks that empower users beyond their individual
agency, taking into account the evidence of collective aspects of online privacy.

While Terms of Service and privacy policies are exclusive contracts between a user and
the owners of an online service or social network, our results show that there are clear data
externalities that affect other people. When creating an account and sharing information,
we inadvertently share information about others [35], effectively affecting their privacy.
The analogy that data is the new oil and not the new gold fits well this situation [36]: data
does not have just intrinsic value, but also can generate costs and harm to people that do
not directly benefit from it.

Additional material

Additional file 1: Additional information about statistical analyses. (pdf )
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