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A B S T R A C T

Crack observation is important for evaluating the structural performance and safety of reinforced concrete (RC)
structures. Most of the existing image-based crack detection methods are based on edge detection algorithms,
which detect cracks that are wide enough to present dark areas in the obtained images. Cracks initiate as thin
cracks, generally having width less than the width of a pixel in images; such cracks are generally undetectable by
edge detection-based methods.

An image analysis method is proposed to observe the development and distribution of thin cracks on RC
surfaces; it also allows estimation of crack widths. Image matching based on optical flow and subpixel is em-
ployed to analyze slight concrete surface displacements. Camera calibration is included to eliminate perspective
effects and lens distortion. Geometric transformation is adopted so that cameras do not need to be perpendicular
to the observed surface or specified positions. Formulas are proposed to estimate the width of shear crack
opening. The proposed method was then applied to a cyclic test of an RC structure. The crack widths and their
development analyzed by the image analysis were verified with human inspection in the test. In addition,
concrete surface cracks that appeared at a very early stage of the test could be observed by the proposed method
before they could be detected by the naked eye. The results thus demonstrate that the proposed image analysis
method offers an efficient way applicable not only for structural tests but also for crack-based structural-health-
monitoring applications.

1. Introduction

Crack observation is an important aspect of most reinforced con-
crete (RC) structural experiments and structural safety evaluation. The
crack patterns, angles, and distribution density may reveal the failure
modes, damage levels, and stiffness degradation for concrete models
[1,2]. The effect of cracks on structural strength or water permeability
has been discussed in many studies [3,4]. The reasonable limits of crack
widths and repair methods have been recommended by standard codes
or regulations [5,6]. In addition, for the containment vessel of a nuclear
reactor, cracks indicate the risk of radiation leak [7]; therefore, reg-
ulations have been established [8]. While many numerical models of
concrete materials adopt the concept of smeared cracks to estimate
crack-induced strength degradation (e.g., [9]), some methods involve
simulation of concrete cracks and numerical analysis of crack widths for
better prediction of crack-induced structural behaviors [10,11].

Since the advancement of digital image technology, image analysis

methods have been utilized for crack detection as they provide more
advantages and feasibility for structural health monitoring (SHM) ap-
plications. Image analysis offers a cost-effective, alternative solution to
concrete crack observation and has potential in SHM applications.
Using image analysis, we can not only record the overall visual ap-
pearance of an RC surface but also analyze vibrations [12], deformation
[13,14], and terrain models [15] as well as assess construction quality
such as welding quality [16] or loosened bolts [17]. Structural de-
formations, mode shapes, natural frequencies, and motion magnifica-
tion can also be estimated using image analysis [18]. Image analysis has
been also employed to detect cracks. Yu et al. [19] analyzed infrared
images to detect tunnel lining surface cracks. Hutchinson and Chen
[20] conducted image analysis to evaluate concrete damage of bridges
induced by cracks and spalling. Zakeri et al. [21] developed an ap-
proach to interpret and classify pavement cracks. Chen et al. [22] re-
cognized cracks through analyzing hundreds of photos in a bridge
management database. Li et al. [23] recognized bridge cracks through
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image edge detection and noise reduction. Dinh et al. [24] proposed a
method to extract concrete cracks based on the image gray-scale his-
togram. Machine-learning-based computer vision has been applied and
trained to detect concrete cracks under various environmental condi-
tions, e.g., Prasanna et al. [25] and Cha et al. [26]; it is capable of
detecting a wide variety of concrete surface defects as well as reducing
the effects of uncontrollable ambient lights, provided that sufficient
training data are available. Most of the existing crack detection
methods are based on edge detection, which extracts the dark shadow
lines or crack regions.

However, these methods are suitable for observing only wide cracks
that present dark lines in the images, but not for thin cracks that do not
present dark lines in the images or in cases where the camera is located
too far from a specimen for the dark lines to appear.

Crack width is not easy to measure on the basis of the number of
dark pixels or the pixel intensity if the crack is thinner than about one
pixel in an image. Cracks appear dark because they do not reflect light.
In an image, the boundary of a crack is at a gray level between dark
(corresponding to the crack) and light (corresponding to the intact
concrete surface), indicating that only a part of the gray pixel corre-
sponds to the crack. If a crack is thinner than one pixel, it only appears
as a gray line in an image. The pixel intensity does not represent the
area occupied by the crack because it depends on not only the crack
width but also the light in the environment, exposure time and aperture
of the camera, and many other factors.

A preliminary test [27] showed that cracks that are thinner than
about one-third of a pixel in an image cannot be recognized. This
preliminary image test (Fig. 1) showed that a 0.15mm dark line printed
on a crack width ruler cannot be recognized clearly even in images
captured using a high-resolution digital camera (e.g., 22MP) at a close
object distance (< 2m). The equivalent pixel size is about 0.45mm per
pixel, i.e., the crack width corresponding to a 0.33-pixel crack is about
0.15mm. In this paper, a thin crack is defined as a crack whose width is
as small as 0.1mm and is invisible in photos taken in this study. In
possible future SHM applications, 0.1-mm cracks are still invisible in
photos, even if a 100-mega-pixel camera is used to monitor a 6-meter-
wide area.

In addition to being used in structural safety evaluation, image
analysis of crack development can be applied in structural laboratories.
In a concrete structure test, the development of surface cracks is typi-
cally observed and recorded by pausing the test and the inspectors
manually sketching lines on the crack surfaces, which is time con-
suming, labor intensive, and risky at a certain level. While the hydraulic
actuators that apply force on the specimen appear fixed and stable, they
in fact move back-and-forth within a small displacement range and are

controlled hydraulically at a high frequency, rather than being physi-
cally fixed. A long experiment pause could result in stress relaxation in
the specimen, leading to inconsistent or inaccurate experimental results
[28].

This study proposes an image analysis method that can estimate
shear crack opening fields on an RC surface. This method is based on
the surface displacement field measurement that was previously de-
veloped and has been applied to many experiments [29]. Surface dis-
placement field measurements are applied to observe horizontal flex-
ural cracks. In this paper, we present the geometric transformation
between the observed surface and the cameras and the analysis of the
crack widths according to the displacements measured using image
analysis. In addition, we compare manual estimation and image ana-
lysis of cracks.

2. Analysis procedures and formulas

The image analysis method that was employed and modified in this
work has been implemented in a program named ImPro Stereo [30,31].
This method generally consists of four major steps: stereo calibration of
two cameras, three-dimensional (3D) control point positioning, metric
image rectification, and surface displacement and deformation analysis.
Stereo calibration is carried out to estimate the intrinsic and extrinsic
parameters of cameras, including coordinate system transformation
relationships between cameras, focal lens, and distortion coefficients.
Thus, the calibration provides sufficient parameters to carry out co-
ordinate transformation between image coordinates and a 3D co-
ordinate system. Stereo calibration is performed using a self-calibration
method implemented by Bouguet [32] and OpenCV [33,34], which
only requires a planar board such as a chessboard rather than a 3D
calibration apparatus. Therefore, the ease of calibration is increased,
thereby improving the wide applications of image analysis in en-
gineering. Note that since the parameters obtained by the stereo cali-
bration are critically important in the follow-up calculation, this
method requires the focal lengths and positions of both cameras to be
fixed during the measurement.

3D control point positioning is used to determine four control points
of a part of a cylindrical surface (named the region of interest, ROI) by
using image tracking with sub-pixel accuracy and stereo triangulation
techniques, as shown in Fig. 2(a). A cylindrical coordinate is then de-
fined by determining the cylindrical surface parameters, including the
central axis, the reference origin, and the radius of the cylinder, as
shown in Fig. 2(b). Then, the ROI can be mathematically described on
the basis of the cylindrical coordinate. The mathematical procedure for
determining the parameters of a cylindrical surface is outlined in

(a) A photo of the crack ruler image test (b) Zoomed image of crack width ruler lines

Fig. 1. Minimally recognizable cracks in images taken in the test [27].
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Table 1.
Metric rectification is then applied to convert the image of the ROI

surface to a plane image through a series of resampling processes.
Metric rectification is required for mapping a curved ROI surface to a
plane image so that follow-up image analysis procedures can be pro-
cessed. Each resampling process generates a pixel, and the entire rec-
tified image normally requires millions of resampling processes.

Finally, optical flow analysis is employed to analyze the displace-
ment field of the images by comparing the rectified image at the current
state with that at the initial state. Optical flow analysis tracks move-
ments of objects in a video or a time series of images, and it can be
applied for traffic analysis [35], detection of concrete tube defects [36],
etc. Cha et al. [37] adopted optical flow and unscented Kalman filter to
reduce the measured displacement noise. In addition to the optical flow
analysis, digital image correlation methods and feature-based methods
are used for displacement of the control points. Digital image correla-
tion splits the image of an un-deformed object into a grid of sub-images
and determines the displacements and deformation parameters by

iteratively searching similar sub-images in the image of the deformed
object [38]. However, the computation of the digital image correlation
method is extremely time consuming for image searching; therefore, we
did not use it in this work. Feature-based methods generally comprise
feature detection, extraction, and matching techniques; they have been
used to estimate the deformation of objects in medical images, 3D
building scene registration [39], and many other applications. Feature-
based methods were not employed in this work because they only
match detected feature points and do not process the arbitrary points
that we require.

This study developed a procedure to estimate the crack opening
field according to the displacement field analyzed by the aforemen-
tioned metric rectification and optical flow analysis processes. As
mentioned, a crack opening can be associated with the related dis-
placement in a rotated coordinate system. The analyzed displacement
field is a discretized mesh, representing the displacement field of an
ROI. Each cell contains two numbers, Ux and Uy, representing the
horizontal and vertical displacements of a discrete cell, respectively.
Fig. 3 shows the crack opening model used in this study. A crack may
induce a crack opening co and a crack sliding cs. The crack separates a
surface into two parts, say, part A and part B. Assuming that the crack is
ideally represented by two parallel lines in a small region (approxi-
mately near the cell marked O in Fig. 3), the crack opening width is the
gap between these two lines; meanwhile, the crack sliding is the related
movement parallel to the crack between the two parts.

Assuming that the displacement fields around cell O are mainly
induced by the crack, we ignore the relatively small deformation of

(a) Four control points on a cylindrical surface (b) A cylindrical coordinate 
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Fig. 2. Control point positioning using stereo triangulation.

Table 1
Algorithm to determine cylindrical surface parameters.

INPUT: Four control points P1, P2, P3, and P4, where each point is represented by a
3-by-1 vector.
OUTPUT: Cylindrical surface parameters Origin, h, r, vx, vy, vz, and θ.
Step 1 Set vz=normalize (P1− P4) and h=norm (P1− P4)
Step 2 Set vx12=normalize (P2− P1)
Step 3 Set vy12=normalize (cross (vz, vx12))
Step 4 Set vx12P=normalize (cross (vy12, vz))
Step 5 Set vx13=normalize (P3− P1)
Step 6 Set vy13=normalize (cross (vz, vx13))
Step 7 Set vx13P=normalize (cross (vy13, vz))
Step 8 Set P2P= P1+dot (P2− P1, vx12P) vx12P
Step 9 Set P3P= P1+dot (P3− P1, vx13P) vx13P
Step 10 Set P12PMid=0.5 (P1+ P2P)
Step 11 Set P13PMid=0.5 (P1+ P3P)
Step 12 Set a 3-by-1 vector B= P12PMid− P13PMid

Step 13 Set a 3-by-2 matrix A=[vy12− vy13]
Step 14 Solve F=(ATA)−1 (ATB)
Step 15 Set f1 and f2 as the first and second elements of vector F, respectively.
Step 16 Set H=0.5 (P12PMid+ f1 vy12)+ 0.5 (P13PMid+ f2 vy13)
Step 17 Set vx=normalize (P1−H)
Step 18 Set r=norm (P1−H)
Step 19 Set vy=normalize (cross (vz, vx))
Step 20 Set θ=cos−1 (dot (vx, normalize (P3P−H)))
Step 21 Set Origin=H – norm (P1− P4) vz

Fig. 3. The crack opening model used in this study.
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parts A and B. In Fig. 3, U, D, L, and R refer to the up, down, left, and
right cells relative to cell O, respectively. The displacements of parts A
and B can be estimated by a weighted average of cells U and L and R
and D, respectively. The following equations are estimated for
0°≤ θ < 90°:

≅ +
+

U U θ U θ
θ θ

cos sin
cos sinA

U L
(1)

≅ +
+

U U θ U θ
θ θ

cos sin
cos sinB

D R
(2)

For 90°≤ θ < 180°, the equations become

≅ − +
+

U U θ U θ
θ θ

cos sin
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D L
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≅ − +
+

U U θ U θ
θ θ

cos sin
cos sinB

U R
(4)

The relationship between the crack opening, sliding, and displace-
ments of parts A and B can be expressed by Eq. (5), where the subscripts
x and y denote the x and y components, respectively.
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The crack opening co of cell O shown in Fig. 4 can be obtained by
solving the 2-by-2 linear equations. The crack opening field of the en-
tire ROI can be estimated by calculating the crack openings of all the
cells in the mesh.

The image analysis procedure has been implemented into the soft-
ware named ImPro Stereo (Fig. 4), developed in the MATLAB en-
vironment. The camera calibration and stereo triangulation im-
plemented in ImPro Stereo are based on Bouguet's toolbox [32]. The
optical flow analysis and many other image manipulations (e.g., image
resizing, remapping, and template matching) are based on OpenCV
through the MATLAB executable technique.

3. Experimental setup

In the structural experiment conducted in this study, a reduced-scale
RC containment vessel was subjected to a cyclic loading at the top. The
height, outer diameter, and thickness of the cylindrical tube RC struc-
ture were 2.25m, 2.5 m, and 0.15m, respectively. The tube was fixed
with rigid RC blocks at its top and bottom. Fig. 5 shows the basic di-
mensions of the specimen. A vertical downward load was applied by

four vertical actuators to simulate the gravity load on the tube imparted
by the upper structure. The displacement of top RC block was simply
controlled using eight hydraulic actuators with a cyclic displacement
history along a horizontal degree of freedom (say X) and controlled
with zero rotations and torsion. Fig. 6(a) presents the schematic re-
presentation of the specimen clamped by actuators, the steel clampers
(red), and the location of the cameras. Fig. 6(b) shows an actual photo
of the specimen, protection frame, clampers, actuators, data loggers,
controllers, and cameras. Unrelated background has been cropped from
the photo. The measurement equipment and sensors include 176 strain
gauges attached on the reinforcing bars, 120 3D optical tracking points,
and two sets of stereo imaging systems. This study focuses on the stereo
imaging system that is located at the north side of the specimen.

Two Canon EOS 5D Mark III digital cameras featuring a 22-mega-
pixel sensor were setup as a stereo imaging system on the north lateral
side of the specimen; these cameras measured the deformation and
observed the crack distributions of the ROI during the experiment.
Fig. 6(a) shows the location of the ROI relative to the specimen.

The ROI occupied one eighth of the perimeter and about half of the
height (Fig. 7(a)). It was approximately 0.97m wide and 1.4 m high
(Fig. 7(b)). A randomly featured pattern was painted in red on the ROI
for image analysis (see Fig. 7(c)) so that each cell in the rectified images
has its unique image pattern and can be correctly identified in the
image analysis. Four control point marks (Fig. 7(d)) were attached
along the boundary of the ROI. These control points were then posi-
tioned by stereo triangulation. Their coordinates were required for
metric rectification.

This method requires random paintings, stains, spalls, or image
features distributed over the measured surface. For future SHM appli-
cations, in the set-up phase, a pre-painted pattern needs to be applied
on the surfaces of walls, beams, columns, joints, or other regions to be
monitored. Geometric measurement based on structured light projec-
tion is a popular approach for 3D scanning without painting a pattern
on the surface and it has been applied to a wide variety of applications,
such as entertainment and reverse engineering. Nonis et al. [40] em-
ployed a similar process for concrete spalling examination. However,
this approach does not measure a minor displacement of a flat surface
in the in-plane directions, because in-plane movement does not change
the reflection of structured light. Cracks are typically discontinuous in-
plane displacements and cannot be detected with a structured-light-
projection approach.

The parameters of the cameras were calibrated with a chessboard-
like grid, as shown in Fig. 8(a). Each square in the grid was

Fig. 4. The user interface of ImPro Stereo.
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99.9 mm×99.9 mm. The size of the square in the calibration board
was the only aspect that was physically measured via the conventional
method (using a ruler), while all other data were all measured by image

analysis. The calibration was conducted using the Bouguet's camera
calibration toolbox [32]. Calibration results include the intrinsic para-
meters of each camera, such as the focal length, principal point, and

Fig. 5. Specimen and the ROI dimensions.

Fig. 6. Specimen and measurement setup. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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distortion coefficient, and the extrinsic parameters between the two
cameras, which give the coordinate transformation between them. A
mathematical model was formed using the intrinsic parameters to de-
scribe how objects in the real world would be projected in the image.
The extrinsic parameters were required for stereo triangulation and
metric rectification. Fig. 8(b) shows some basic geometric information
calculated by the calibrated parameters. The distance between the two
cameras was 351.8mm. The angles of view of both cameras were 26.3°
horizontally and 36.6° vertically. The distance between the cameras and
the specimen was approximately 1740mm.

4. Experimental results

In the experiment, a cyclic displacement history was applied
through 720 hydraulic actuator control steps, as denoted by the blue
solid line in Fig. 9. The stereo imaging systems were triggered to cap-
ture photos every three to five steps and at each peak of the displace-
ment history (denoted by the green dots in Fig. 9). The reason that the
cameras were not triggered every single step was that they need a few
seconds to get ready for the next trigger, which was longer than the
time of each hydraulic actuator control step. A total of 163 images were
captured. The experiment was paused for crack marking at a drift ratio
of 0.25%, −0.25%, 0.375%, −0.375%, 0.5%, −0.5%, and 0.75%, as
denoted by the red squares in Fig. 9. The crack marking was carried out
for regions outside the ROI of image analysis. No further crack marking
was done beyond 0.75% drift ratio owing to safety issues, as the applied
forces were close to the estimated ultimate strength of the specimen.

Stereo triangulation of control points and metric rectification of the
ROI were carried out in the crack analysis. The image positions of the
four control points were obtained using a multilevel template matching
method [30], which achieves sub-pixel precision (Fig. 10(a) and (b)).
The 3D positions were calculated using stereo triangulation. The shape
of the cylindrical surface was determined according to the control point
positioning (Fig. 10(c)). The metric rectified image was generated by
performing image re-sampling of the photos taken by the left camera
(e.g., Fig. 10(d)). Each pixel in the rectified image represents a
0.4636mm×0.4636mm area on the ROI surface. The intrinsic and
extrinsic parameters that were obtained during camera calibration were
used for stereo triangulation and metric rectification.

As mentioned in Eqs. (1)–(5), crack analysis is performed based on
displacement fields. The displacement fields of the ROI (Fig. 10(c))
were obtained by comparing the rectified image obtained at a certain
step (Fig. 11(b)) with that obtained at the first (initial) step (Fig. 11(a))
by using pyramid optical flow analysis, whose implementation is pro-
vided by the OpenCV library. The pyramid optical flow analysis is a
well-optimized implementation that can efficiently capture the differ-
ence between two images and estimate the movements of multiple
points. Fig. 11 shows the progress of this method in processing rectified
images generated using the aforementioned procedure. Crack opening
fields were obtained (Fig. 11(d)) by analyzing the displacement fields. It
is difficult to recognize any cracks clearly on the displacement fields
(Fig. 11(c)) without using the calculations given in Eqs. (1)–(5).
Fig. 11(d) clearly shows that the crack opening field can be obtained
after the crack opening calculation is completed. We can further project

(a) Calibration board (b) Basic calibrated geometric information of cameras

Fig. 8. Camera calibration. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 9. Cyclic displacement history applied to the top of the specimen. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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it back to the image for visualization (Fig. 11(e)).
The analysis of crack opening fields by ImPro Stereo based on Eqs.

(1)–(5) was carried out through 163 image-capturing steps (excluding
the first step, set as the initial condition). Theta was set to either 45°
(0.25 π radians) or 135° (0.75 π radians) according to the top dis-
placement. In the crack opening fields, concentration lines of the de-
formation of the ROI are actually shown. However, the authors believe
that for a brittle material such as concrete, the concentration lines of
deformation are actually cracks. The crack opening fields provided
continuous crack development during the experiment.

In this study, crack opening widths of the ROI were estimated from
both manual crack marking and image analysis at seven crack marking
pause steps. During manual marking, crack opening widths were esti-
mated using a crack width ruler. Although the cracks in the ROI were
also marked manually, they were marked on paper rather than directly
on the ROI surface in order to avoid disturbance due to the pen strokes
on the image pattern on the ROI. Fig. 12(a) shows the ROI crack
markings made at the first suspension (i.e., the red square at step 261
shown in Fig. 9). Compared with the crack opening field (Fig. 12(b))
that was analyzed from images, all 18 manually marked cracks could be
found in the image analysis result. The crack opening field revealed
more cracks, ranging from 19 to 23, that were not recorded in the
manual crack marking. The image-analyzed fields, as shown in
Fig. 12(b), were discretized to a mesh having 120×80 cells. Since the
ROI was about 140 cm×97 cm, each cell had approximate dimensions
of 11.7mm×12.1 mm.

Fig. 13 shows the crack distribution of the second suspension (i.e.,
the second red square in Fig. 9 or step 301). Although the cracks
numbered 19–22 in image analysis (Fig. 13(b)) were not recorded

during manual crack marking (Fig. 13(a)), this does not imply that they
were invisible to the naked eye. According to the image analysis in this
case, the crack opening width ranged 0.07–0.1mm; such cracks may be
visible with careful inspection. However, these cracks were not marked
likely because they were situated at an inaccessible position for the
inspector to locate them. As mentioned above, the space was limited
due to experimental clampers and sensor wires.

The opening width of a crack does not remain constant over the
entire crack but may vary at different parts of a crack. Each crack in the
manual crack marking had a single value of recorded opening width
measured by the inspector. However, the width was measured sub-
jectively; that is, the location for measuring the crack opening width
was subjectively determined. An inspector was requested to record only
a single value of a crack width because of time limitations. For example,
crack number 6 shown in Fig. 14, which represents the crack dis-
tribution at step 341 (the third red square in Fig. 9), was longer than
1m. Image analysis (Fig. 14(b)) revealed that the crack opening width
varies from 0.08 to 0.18mm at different locations. Manual markings
only recorded it a single crack opening width of 0.15mm. It should be
noted that in the manual crack marking shown in Fig. 14(a), the in-
spector took about 40min to examine, mark, and measure a single
value of crack opening width for each crack in the ROI. Hence, the time
would be impractically longer if the inspector was requested to measure
crack opening widths at different locations of a crack. The variations of
crack opening widths can only be observed by image analysis results.

Table 2 lists the crack opening records observed manually and by
image analysis of the crack distribution at step 381 (the fourth sus-
pension in the test, as indicated by the fourth red square in Fig. 9). The
crack distribution result is presented in Fig. 15. The crack opening

Fig. 10. Control point positioning and metric rectification.

Fig. 11. Crack opening field analysis.
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width was measured by the inspector by subjectively determining the
measurement location. The crack opening widths obtained by image
analysis listed in Table 2 represent the maximal value of a crack
opening on a crack. To avoid measurement noise, the maximal value
that did not have at least two equal or larger neighboring values was
ignored. That is, the image-analyzed values listed in Table 2 have at
least two equal or higher neighboring values. Thus, the crack opening
widths obtained by image analysis are mostly slightly larger than the
manually measured values, possibly because image analysis is less
likely to miss the largest crack opening part of a crack.

While the image analysis method is capable of providing more in-
formation about crack development and their opening widths, it is
sensitive to light noise. All the images analyzed in this study captured a

noise signal at some parts of an ROI. Fig. 16(a) shows the crack dis-
tribution at step 421 (i.e., the fifth suspension of the test). The red
rectangles in Fig. 16(b) indicate the noise obtained by image analysis.
This noise was induced by the wires of the conventional sensors. Even a
small movement of the wires induced a large amount of noise in the
image analysis. The image analysis used in this study is sensitive to
slight movement of things, but cannot differentiate between concrete
movement and wire movement. Meanwhile, a human inspector is
capable of understanding the actual situation, and would not be af-
fected by the wires attached on the surface.

In addition to the seven suspension points, image analysis could
analyze the crack development from photos captured at the 163 pho-
tographic steps of the entire experiment. The image analysis of a crack

Fig. 12. Crack distribution: manual crack marking vs. image analysis (drift ratio: +0.25%).

Fig. 13. Crack distribution: manual crack marking vs. image analysis (drift ratio: −0.25%).
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opening field (left plot of Fig. 17) shows that a thin crack with an
opening width of only 0.03mm as well as cracks with an opening width
of 0.02mm could be observed clearly. These cracks were observed
when the drift ratio was 0.05%. The middle and right plots in Fig. 17
show the cracks at the beginning phase of the experiment, when no
significant cracks were expected at this small drift ratio; these cracks
that were as thin as 0.02mm were invisible to naked eye. Neither the
naked eye nor normal digital cameras could directly observe the dark
lines of these thin cracks easily.

Fig. 18 shows the observed cracks when the drift ratio reached
0.1%. The thin cracks that were observed in Fig. 18 (at a drift ratio of
0.05%) widened as the drift ratio reached 0.1%. More than ten cracks
with openings ranging 0.02–0.05mm were presented clearly.

If a conventional shear strain measurement method is used, which is
also implemented in ImPro Stereo, the cracks can be presented by ob-
serving high shear strain lines, but the crack widths cannot be easily

converted from the shear strain values. Fig. 19 shows a demonstration
of measured shear strain field at drift ratio of 0.1%. Comparing Figs. 18
and 19, crack widths are calculated and seem more apparently to be
observed using the proposed method (Fig. 18).

As 163 photographic steps were involved in the experiment, the
progress of crack development could be observed and visualized by
generating a video showing the 162 steps (excluding the first step that
was considered as the initial state). Fig. 20 presents variations of the
crack opening widths of five selected cracks (i.e., crack numbers 2–6 in
Fig. 12(b)). The cracks opened when the actuator was pushing (i.e., at
positive displacement) and closed when the actuator was pulling (i.e.,
at negative displacement). As these 45° cracks closed, other 135° cracks
began to open. The cracks opened and closed in smooth manner until
about controller step 550, from where on they became less smooth. This
was mainly due to the commencement of severe slipping failure. The
continuous crack development video generated in this study is provided
at https://youtu.be/8ahXyU5DxOg.

The image analysis was performed offline after the experiment was
completed, as a long computing time was required (about 3 h in this
case). Although a trained user of ImPro Stereo only took a few minutes
for operating this software, the remaining time was taken by the
computer for computing the image analysis. Nearly 80% of the com-
puting time was spent on metric rectification, which converts images of
cylindrical surfaces in distorted photos to undistorted planes. Each pixel
of a rectified image was generated by projecting from a 3D point to a 2D
image point, followed by remapping the image point to interpolated
color intensities. Table 3 lists the computing time that ImPro Stereo
used to run each phase. Manual operation is carried out once and does
not scale up with number of photos and their image resolution. Com-
puting time for 163 photographic steps of measurement was approxi-
mately 3.5 h, that is, about 95 s per step of measurement (using one set
of 22-mega-pixel stereo camera). The computing time roughly grows
linearly with the resolution of images and number of cameras to be
used. Compared to the total time of 7.1 h that was required by the seven
suspensions dedicated for crack marking in the experiment, the image
analysis time was relatively small. In addition, because image analysis
can be conducted after the experiment, the execution of the experiment
would not be affected. Time statistics were measured on a laptop

Fig. 14. Crack distribution: manual crack marking vs. image analysis (drift ratio: +0.375%).

Table 2
Crack opening: manual crack marking vs. image analysis (drift ratio: −0.375%).

Crack number Crack opening by manual
measurements (mm)a

Crack opening by image
analysis (mm)

1 0.1 0.11
2 0.15 0.19
3 0.15 0.18
4 0.15 0.14
5 0.15 0.17
6 0.15 0.19
7 0.15 0.20
8 0.15 0.17
9 0.15 0.20
10 0.15 0.17
11 0.15 0.12
12 0.1 0.12
13 0.15 0.09
14 0.15 0.13
15 0.1 0.16
16 Not recorded 0.10

a A crack opening width measured manually must be a multiple of 0.05 because only
dark lines of these widths are printed on the crack ruler.
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equipped with a 2.4 GHz Intel i7 processor, 16 GB main memory,
Windows 7, and MATLAB 2009a. If a larger ROI is chosen, more stereo
camera systems with higher resolution cameras could be used and the
computing time would grow linearly with the number of pixels to
process. For example, measuring a 6-meter-by-4-meter ROI using 8 sets
of 50-mega-pixel stereo cameras, the computing time could be about 18
times longer of this experiment, i.e., half an hour of computing time per
measurement step. Future efforts would address the employment the
parallel computing technique, for example, to reduce the computing
time of image analysis.

5. Summary

This study proposed an image analysis method to estimate crack
opening development in a reinforced concrete (RC) tubular structure
subjected to a cyclic displacement at its top. The image analysis results
of one of the stereo imaging systems in the experiment (i.e., the north
one) were presented in this paper. The crack opening fields were esti-
mated by analyzing the displacement fields using the crack analysis
method proposed in this paper.

Cracks as thin as 0.02–0.03mm were difficult to detect to the naked

Fig. 15. Crack distribution: manual crack marking vs. image analysis (drift ratio: −0.375%).

Fig. 16. Crack distribution: manual crack marking vs. image analysis (drift ratio: +0.5%). (For interpretation of the references to color in this figure, the reader is referred to the web
version of this article.)
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Fig. 17. Thin cracks observed by image analysis (drift ratio: 0.05%).

Fig. 18. Thin cracks observed by image analysis (drift ratio: 0.1%).

Fig. 19. Shear strain measurement by image analysis (drift ratio: 0.1%).
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eye, but could be clearly observed by image analysis. Crack opening
width comparison between manual pen marks and image analysis
showed that the differences were generally less than or equal to
0.03mm. While manually marked cracks were available at only a few
pause steps (seven steps in this study), image analysis provided dozens
of steps of a continuous crack distribution and generated a video of
crack changes. It also provided sufficient information to obtain crack
opening width data of any part of any selected crack at a selected ex-
perimental time point.

This method is only applicable when cameras are firmly fixed and
observed region is pre-painted with random patterns. To address these
limitations, in follow-up studies, image analysis algorithms and
methods can be further studied. Future algorithms can be developed to
estimate camera movement by tracking predefined unmoving points or
the background. Edge-detection- or machine-learning-based methods
can be incorporated with the proposed method in cases where pre-
painted patterns on the observed surfaces are insufficient.
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