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Abstract

Under in-service conditions, beams and slabs in reinforced concrete structures are

almost always cracked, as the tensile strength of the concrete is low. Due to the

irreversible reduction in overall stiffness resulting from cracking and the residual

deflection after unloading, the structural response is load path dependent. In this

paper, an existing average moment of inertia model and Monte Carlo simulation

(MCS) are adopted to take into account the effect of historical cracking damage on

the reliability of serviceability calculations for reinforced concrete (RC) members.

The suitability of the average moment of inertia model for reliability analysis is

verified by considering experimental tests on a total of eleven reinforced concrete

beams. The errors associated with both the effective and average moment of inertia

predicted by the model are calibrated using the experimental data. By using the

proposed approach to account for the various sources of uncertainty in reinforced

concrete beams, the quantitative loss in the short-term and long-term serviceability

reliability of a cracked reinforced concrete beam was calculated. The results confirm
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that the effect of historical cracking damage on short-term serviceability reliability

should be taken into account when the deflection induced by historical loading is

larger than the deflection limitation. Light historical damage has no influence on the

short-term serviceability reliability, although it affects the probability density distri-

bution of the deflection. However, in the long-term serviceability reliability analysis,

even when the historical damage is light, the long-term serviceability reliability index

is decreased as the cracking damage to the stiffness affects the time-dependent de-

flection. Additionally, the later a damaging load is applied to a reinforced concrete

beam, the less is the influence of cracking damage on the long-term serviceability

reliability.

Keywords: Reinforced concrete, tension stiffening, serviceability, reliability,

moment of inertia

2



ACCEPTED MANUSCRIPT

1. Introduction

Due to the random nature of the quantities affecting the structural behaviour (e.g.

actions, geometry, restraints, and strength of materials), the assessment of struc-

tural performance requires a probabilistic rather than a deterministic approach and

an assessment of the reliability of design calculations, particularly under in-service

conditions[1]. Indeed, probability-based limit-state design is accepted in codes for

reinforced concrete design throughout the world.

Structural safety and serviceability are two broad classifications of the perfor-

mance requirements for structures. Structural safety is the ability to estimate the

overall stability, ductility and ultimate bearing resistance corresponding to a set

of assumed design actions with appropriate levels of reliability. Using probabilis-

tic methods in conjunction with the finite element method (FEM), many reliability

analyses have been proposed to deal with the ultimate limit state of RC structures

[2–9]. Compared to structural safety, the serviceability problem, relating to deflec-

tion, crack width, vibration, and degree of spalling [1], are much more difficult to

define. Considerations of serviceability are based on subjective issues, such as human

perception and tolerances, the importance of the structure and the consequences of

serviceability problems and are more client-oriented [10]. Moreover, in modern times,

the introduction of high-strength materials has led to more slender structural ele-

ments and has made serviceability issues of increasing importance. Under in-service

conditions, reinforced concrete structural members are almost always cracked, as the

tensile strength of the concrete is low. Cracking affects the stiffness of a RC mem-

ber and hence its deflection. Therefore, it is important to assess RC-members after

cracking in any serviceability analysis.

Under normal service conditions, the concrete between the primary cracks in a
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beam is able to continue to carry tensile stress, due to the transfer of forces from the

tensile reinforcement to the concrete through bond. This phenomenon is known as

tension stiffening and must be accurately modeled to simulate the in-service behavior

of reinforced concrete structures, particularly under repeated loading [11].

Most of existing models for assessing the loss of stiffness due to cracking in re-

inforced concrete beams are concerned with monotonic loading. The smeared-crack

model is a popular way to simulate the tension stiffening effect. In this approach,

an average stress-strain relation is considered for the whole tension area to account

for the average deformation response after cracking [12]. A modified constitutive

relationship for the steel reinforcement [13, 14] or an updated descending branch of

the tensile stress-strain curve for concrete have been developed and implemented in

FEM analyses [13, 15–20]. In addition, the so-called microscopic models based on

the bond-slip mechanism and discrete cracking have been proposed by Floegl and

Mang [21], Gupta and Maestrini [22], and Choi and Cheung [23].

Alternatively, several empirical models have been widely accepted by engineers in

design for the control of deflections, involving determination of the effective moment

of inertia (Ie) for a cracked member under monotonic loading. Branson developed

a well-known model [24], which has been adopted by the ACI Building Code [25].

Branson’s equation gives a weighted average of the uncracked and cracked moments of

inertia of the reinforced concrete cross-section at any load level, but it has been shown

to overestimate the effective stiffness of lightly reinforced concrete beams and slabs

[26]. In comparison with Branson’s model, Bischoff suggested a weighted average

of the uncracked and cracked flexibility of reinforced concrete cross-sections [27,

28]. Experiments carried out on reinforced slabs having reinforcement ratios ranging

between 0.18% and 0.84% demonstrated that Bischoff’s model is more accurate than

Branson’s model for lightly reinforced concrete members [26]. A statistical study that
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employed data from nine experimental programs involving a total of 80 specimens

showed a similar conclusion that the Branson’s model overestimated the stiffness

significantly for reinforcement ratios ranging between 0.4% and 0.8%[29]. Based on

the local measurement and modeling of the steel reinforcement strains in the tensile

zone, Xu et al. proposed an alternative empirical model, which provides a more

conservative stiffness for lightly reinforced concrete beams[30].

Besides the effect of tension stiffening, Castel et al. [11, 31, 32] pointed out that

the degradation of the moment of inertia and the irreversible deflection of the struc-

tural member due to cracking damage have to be accounted for in the serviceability

analysis of existing cracked RC members. All the methods previously described are

dedicated to the calculation of the deflection of structural members or the curva-

tures of cross-sections under monotonic increasing load up to failure [31]. As shown

in Fig. 1, the path OABC is the monotonic load-deflection envelop obtained by per-

forming a static load test beyond the cracking load Pcr. The stiffness of a reinforced

concrete beam can be described by using the effective moment of inertia (Ie) model

[24, 28]. Owing to the the cracking damage, the unloading path in Fig. 1 is line

BD, and the irreversible deflection is OD. When reloaded, the loading path is DB

and the stiffness of the beam is proportional to the the average moment of inertia

labelled Ia in Fig. 1 and discussed in Ref.[31]. The difference between Ia and Ie is

significant and leads to relatively large differences in the calculated static deflection

[11, 31, 32], as well as dissimilar dynamic properties, such as natural frequencies

and responses to moving loads or vibrating machinery [33]. The question arises:

how much is the serviceability reliability reduced as a result of the cracking dam-

age? More recently, Murray reported that the effects of creep and shrinkage lead

to time-dependent changes in the instantaneous stiffness[34]. These effects result

in increments of both the time-dependent and instantaneous deflections, and might

5



ACCEPTED MANUSCRIPT

Fig. 1. Typical overall response of RC-beams including a loading cycle

affect the long-term serviceability reliability of cracked reinforced concrete beams.

In this paper, serviceability issues related mainly to excessive deflection of struc-

tural elements (i.e. beams) are discussed. A quantitative analysis approach is pro-

posed in order to evaluate the loss in the serviceability reliability due to historical

cracking damage. In this approach, the effective moment of inertia is employed

to simulate the pre-cracking loading up to Ppre and the following loading P when

P > Ppre. And, the average moment of inertia is adopted to simulate the unloading

from the pre-loading Ppre and the following loadingP when P < Ppre. In the first

part of the paper, the models of effective and average moment of inertia are intro-

duced. Secondly, combining the sources of uncertainty for reinforced concrete beams

and Monte Carlo simulation, a probability analysis approach for cracked reinforced

concrete beams is presented. In this approach, experimental measured deflections

and stochastic analysis results are compared in order to assess and compare the per-

formance of the effective moment of inertia approach and the average moment of

inertia approach. For both effective and average moment of inertia, the model error

is calibrated by using experimental data from several sources. Finally, the influence

of the historical cracking damage on both the short-term and long-term serviceability

reliability is discussed by using numerical examples.

2. Deflection model

The total deflection ∆G+Q of a reinforced concrete member subjected to dead

load and live loads can be expressed as

∆G+Q = ∆G +∆Q,s +∆Q,i +∆cr +∆sh (1)
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where ∆G is the instantaneous deflection due to the dead load; ∆Q,s represents the

instantaneous deflection due to the sustained live load; ∆Q,i stands for the instanta-

neous deflection due to the extraordinary live load; ∆cr is the time-dependent creep-

induced deflections including the contributions of both dead load and sustained live

load; and ∆sh is the time-dependent shrinkage-induced deflection.

To avoid the excessive deflection resulting in unintended load paths or damage

to either structural or non-structural elements attached to the member, a limit is

placed on the incremental deflection. The incremental deflection ∆ inc is the sum

of the time-dependent deflection due to the sustained loads and the instantaneous

deflection due to the live load. It can calculated as follows:

∆inc = ∆G+Q −∆G (2)

The effect of creep and shrinkage on the total deformation of a reinforced concrete

member consists of two parts. The first part is the time-dependent creep-induced

and shrinkage-induced deflection (∆cr and ∆sh), which can be calculated by using

the age-adjusted effective modulus method. The other part is the influence on the

instantaneous stiffness of cracked reinforced concrete beams resulting the increment

of short-term deflection. Due to the creep and shrinkage, the bond between concrete

and steel reinforcement is damaged leading to the reduction of tension stiffening

effect. This results in a time-dependent increase in the so-called instantaneous de-

flections due to the sustained live load Qs and the extraordinary live load Qe .

In this paper, the instantaneous deflections of the reinforced concrete beam with-

out prior cracking damage are calculated by using the effective moment of inertia Ie

and the instantaneous deflections of the cracked member are calculated using both

the effective moment of inertia and the average moment of inertia Ia.
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3. Effective moment of inertia Ie

The deflection calculation procedure suggested by both Eurocode 2 [35] and the

fib Model Code 2010[36] is considered to be an accurate and reliable model to calcu-

late the shape of the instantaneous load-deformation response, especially for lightly

reinforced members[26].

For a pure flexural member containing deformed bars, the effective moment of

inertia proposed by Bischoff [27, 28] is determined as

Ie =
Icr

1− η
(

1− Icr
Iuncr

)(

Mcr

Ma

)2
(3)

where Mcr and Ma are the cracking bending moment and the applied service bend-

ing moment respectively; and Icr and Iuncr represent the moment of inertia of the

fully cracked cross-section and the uncracked cross-section respectively; η is a coef-

ficient accounting for both shrinkage-induced cracking and the reduction in tension

stiffening with time, which can be calculated by

η =











1.0 short-term

0.5 long-term

(4)

4. Average moment of inertia Ia

When the load is increased above the cracking load primary bending cracks form at

regular centres. When the steel reinforcement stress at the crack location reaches a

threshold, interfacial microcracks form in the concrete between the primary cracks[37,

38]. These interfacial microcracks are often called cover-controlled cracks. Castel et
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al. [37] proposed a bond damage criterion (i.e. σs0 > σs,ccc) as follows:

σs,ccc(ftc) =
Znc

0.9Zc

[

n+
Atc,eff

As

]

ftc (5)

where σs,ccc is the critical axial steel stress at the crack location leading to cover-

controlled cracking; ftc is the tensile strength of concrete ;Atc,eff is the effective area

of active tensile concrete[32]; As is the reinforcement area; n is the modular ratio of

steel and concrete; and Zc and Znc are the lever-arms of the internal forces on the

cracked and uncracked cross sections respectively.

Accounting for the effects of both primary cracks and cover controlled cracks,

a model for calculating the average moment of inertia Ia was developed by Castel

et al.[11, 30–32] based on two assumptions : linear steel-concrete bond distribution

assumption and constant bending moment assumption.

The linear distribution of the bond stress τ(x) proposed by [39] as:

τ(x) = τmax
x

ls,max
(6)

where τmax is the maximum shear stress close to he exact crack locations; x (0 < x <

ls,max) is the distance from the cracks, ls,max is the length over which slip between

concrete and steel occurs as recommends by [36]. According to the definition of ls,max

, for the bond damage free beams, the strains of concrete εtc,max and tensile steel bars

εsnc are equal at x = ls,max as:

εtc,max = εsnc (7)

A scalar variable Dccc was introduced to evaluate the bond damage by calculating
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the difference of the strain between the concrete and steel at x = ls,max in [32]:

εtc,max = (1−Dccc)εsnc (8)

When a beam is at the stabilized cracking stage, compared to the whole span of

the beam, ls,max is small allowing to assume that the bending moment at all cross

sections located along ls,max is constant as

M(x) = constant(0 ≤ x ≤ ls,max) (9)

According to these assumptions, the distribution of the lever-arm of the internal

forces Z(x) along ls,max can be calculated by[32]

Z(x) =
ZcZnc

Zcg(x) + [1− g(x)]Znc

(10)

where g(x) is a distribution function as

g(x) = 2
x

ls,max
−

(

x

ls,max

)2

(11)

For a rectangular section, the depth to the neutral axis y0(x) along ls,max can be

derived as [32]

y0(x) = 3 [d− Z(x)] (12)

where d is the effective depth of the tensile reinforcement.

By using Eq. (12), the moment of inertia distribution I(x) along the ls,max can be

calculated. As recommended by [36], the average crack spacing is equal to 1.5 ls,max.

Considering the symmetry between half cracks spacing, the average moment of inertia
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Ia between cracks can be calculated as follows:

Ia =

∫ 0.75ls,max

0
I(x)dx

0.75ls,max
(13)

Restrained shrinkage can affect the stiffness of RC beams [40–42]. For cracked

RC beams, restrained shrinkage induces tensile stress in concrete and encourages the

formation and extension of microcracks at the the steel-concrete interface over time

resulting in the decay in tension stiffening. The effect of creep and shrinkage on the

steel-concrete interfacial bond damage Dccc should be taken into account [34].

More detail of Castel et al. model can be seen in Ref.[30, 32, 34].

5. Creep and shrinkage model

Several creep and shrinkage models, such as ACI 209 model [25], CEB-FIP

model[36], B3 model [43] , GL2000 model [44, 45] are available. In the present

study, MC90 model is selected to account for creep and shrinkage of concrete [46].

6. Uncertainty sources

The uncertainties affecting the stiffness of a beam are related to either the material

properties, the applied loadings, and the geometry of the cross-section.

6.1. Uncertainty of material properties

For the concrete, the parameters that possess a random nature include the com-

pressive strength (fc), the tensile strength (ftc), and the elastic modulus (Ec). It is

generally accepted that there is a strong correlation between fc, ftc, and Ec[47, 48].

Correlation between the elastic modulus and the compressive strength of the con-

crete has been used by Keitel and Osburg[49] in uncertainty analysis relating to creep
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and shrinkage by mean of a direct correlation coefficient. An alternative approach

is adopted in the present work. According to the JCSS Probabilistic Model Code

and fib Model Code 2010, by multiplying the tensile strength and elastic modulus

by random variables, the stochastic correlation between tensile strength ftc, elastic

modulus of concrete Ec0 and the mean compressive strength fc at age of 28 days is

defined as[36, 50]

fc = γ1fcm(MPa) (14a)

ftc = γ20.3f
2/3
c (MPa) (14b)

Ec0 = γ321.5× 103(
fc
10
)1/3(MPa) (14c)

in which, γ1, γ2, and γ3 are treated as independent normal random variables [50].

The modulus of elasticity of concrete at age t may be estimated from

Ec(t) = Ec0

√

exp
[

s
(

1−
√

28/t
)]

(15)

Since current creep and shrinkage models are generally based on the mean value

of experimental results, model uncertainty should be a concern [47]. The stochastic

model of time-dependent strain can be calculated by [51]

ε(t) = [γ4J(t, t0)] σ(t0) +

∫ t

t0

[γ4J(t, τ )] dσ(τ) + γ5 [εsh(t− ts)− εsh(t0 − ts)] (16)

in which the time-dependent strain ε(t) consists of short-term strain caused by the

loading at age t0 and the long-term strain caused by creep and shrinkage at age t;

and, γ4 and γ5 are assumed to be normal random variables, related to the uncertainty

of the creep and shrinkage models [43].
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Fig. 2. Time histories of typical live loads

For reinforcement, the probability distribution of the yield strength is a normal

distribution with the mean value of fyn + 2 × 30MPa, and standard deviation of

30MPa [50], where fyn is its nominal value. The elastic modulus is considered as

γ6Esm, where Esm is the mean value of elastic modulus of the reinforcing steel bars.

6.2. Uncertainty of cross-section

In this paper, the randomness of cross-section is also considered in this paper.

The parameters of cross-section are treated as normal random variables, including

the overall depth of the cross-section (γ7hm), the width of the cross-section(γ8bm), the

effective depth of cross-section (γ9dm), and the area of tensile reinforcement (γ10Asm).

6.3. Uncertainty of loads

Typical loads applied to structures include dead load and live loads, that can

be simulated by using recommended statistical models. The dead load G is treated

as a normal random variable with mean of 1.05 times its nominal value Gn with a

coefficient of variation of 0.10 [52, 53]. The live loads consist of the sustained live

load Qs and the extraordinary live load Qe as shown in Fig. 2. The sustained live load

is modeled by a Gamma distribution with mean of 0.30Qn (Qn denotes a nominal

value of live load) with a coefficient of variation of 0.60[53]. The mean duration

of the sustained live loads is often assumed to be eight years, corresponding to the

average period between tenant changes in office building [54]. Extraordinary live

load is also modeled by using a Gamma distribution with an annual mean of 0.19Qn

and a coefficient of variation of 0.66 [53].

The statistical parameters of the random variables are summarized in Table 1.

13



ACCEPTED MANUSCRIPT

Table 1. Statistical Properties of Random variables
Variables Distribution type Mean COV Uncertainty sources

γ1 Log-normal 1.00 0.06 fc [50]
γ2 Log-normal 1.00 0.30 model of ftc [50]
γ3 Log-normal 1.00 0.15 model of Ec0 [50]
γ4 Normal 1.00 0.32 model of creep [45]
γ5 Normal 1.00 0.37 model of shrinkage [45]
γ6 Normal 1.00 0.033 Es [53]
γ7 Normal 1.00 0.045 h[55]
γ8 Normal 1.00 0.045 b[55]
γ9 Normal 1.00 0.05 d [55]
γ10 Normal 1.00 0.02 As [50]
G Normal 1.05Gn 0.10 dead load[53]
Qs Gamma 0.30 0.60 sustained live load[53]
Qe Gamma 0.19 0.66 extraordinary live load[53]

fy (MPa) Normal fyn + 60 std = 30 fy[50]

7. Experiment, stochastic analysis, and model error of average moment

of inertia

7.1. Experiment program

In order to investigate the randomness of the average moment of inertia for cracked

RC beams, results of the analyses of eleven beams tested as part of this study are

reported in this paper (named as B1 to B11). Two different concrete mixes were used,

with average compressive strengths of 38 MPa and 46 MPa after 28 days, respectively.

The mechanical characteristics of the concrete (mean compressive strength fcm, mean

tensile strength ftcm, mean elastic modulus Ecm) are listed in Table 2. The main steel

reinforcement consisted of Australian Class N deformed bars of either 16 mm or 20

mm diameter. The reinforcement ratios ρ are shown in Table 2. The characteristic

yield strength of the reinforcement was 500 MPa. The average yield stress of the

reinforcing bars was 520.00 MPa (standard deviation was 5.43 MPa). The beams

14
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Fig. 3. Layout of the reinforcement and loading arrangement (mm)

(a)
Short-
term

(b)
Long-
term

Fig. 4. Setup of (a) short-term and (b) long-term loading

were demolded 24h after casting and stored under various conditions until the load

tests commenced at age 28 days. B3 and B4 were moist cured for only seven days and

then stored in the laboratory, while the other beams were stored in a high moisture

environment until testing.

As shown in Fig. 3, all beams were 3500 mm long, with a 3300 mm span between

simple supports and with a uniform 400×300 mm cross-section. The cover of the

main reinforcing bars was 35 mm. The effective depth of the tensile reinforcement

d was either 355 or 357 mm. At 28 days after casting, all beams were tested in

4-point bending for the precracking load tests as shown in Fig. 4(a). Each beam was

subjected to 10 loading and unloading cycles in order to assess the instantaneous

stiffness after cracking and the permanent residual deflection after unloading. The

beams were then subjected to a sustained load for a period of six months by using

an appropriate spring loading device to ensure that the load remained constant for

the duration of the test as shown in Fig. 4(b). After six months, the beams were

subjected to the same cycles of unloading/reloading to again measure the instanta-

neous stiffness and assess any changes due to time-dependent effects. Table 3 shows

the values of maximum applied moment Ma (including the self-weight) for all beams.

During the test, the deflection at the mid-span of the beam was measured by using

LVDT. For each beam, after unloading, the crack distribution of each side (i.e. south

side and north side) was recorded as shown in Fig. 5 for B1 as an example.
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Table 2. Concrete and reinforcement properties of beams

Beams fcm (MPa) ftcm(MPa) Ecm(GPa) db(mm) Asm(mm2) ρ

B1 46 3.5 33 3φ16 603 0.56%

B2 46 3.5 33 3φ16 603 0.56%

B3 46 3.5 33 3φ16 603 0.56%

B4 46 3.5 33 3φ16 603 0.56%

B5 38 3.8 35 3φ16 603 0.56%

B6 46 3.5 33 3φ16 603 0.56%

B7 38 3.8 35 2φ16+φ20 716 0.67%

B8 38 3.8 35 3φ16 603 0.56%

B9 38 3.8 35 3φ16 603 0.56%

B10 38 3.8 35 3φ20 942 0.88%

B11 38 3.8 35 3φ20 942 0.88%

Fig. 5. Actual crack distribution of beam B1

Table 3. Maximum applied moment, steel stress and the damage criteria

Beams Ma(kN · m) σs0 (MPa) Dccc σs,ccc (MPa)

B1 40.2 201 0.00 230

B2 39.3 197 0.00 230

B3 35.6 179 0.00 230

B4 39.6 199 0.00 230

B5 44.2 222 0.00 250

B6 51.4 258 0.97 230

B7 57.8 246 0.92 215

B8 57.8 290 0.98 250

B9 69.9 351 0.98 250

B10 60.2 197 0.80 168

B11 45.0 147 0.00 168

16
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(a)
B1
(b)
B2
(c)
B3
(d)
B4

Fig. 6. Experimental load-deflection responses(B1 to B4)

Fig. 7. Probability distribution of average moment of inertia ( Īa = 6.16 × 10−4m4,
COV=17%)

7.2. Stochastic analysis of short-term average moment inertia of B1 to B4

As shown in Table 2 and 3, Beam B1 to B4 were cast with the same cross-section,

material, and loading arrangement. These beams were loaded without exceeding

the steel stress threshold (Eq. 5) leading to interfacial microcracks (i.e. steel-

concrete bond damage between the primary cracks). The differences between these

four beams are the storage environments and the applied loading. The experimental

load-deflection responses of B1 to B4 are shown in Fig. 6. Finally, all beams were

loaded up to failure. The failure loads Pu are also plotted in Fig. 6. According to the

load-deflection response, the unloading/reloading experimental stiffness and residual

deflection after unloading of the cracked beam can be obtained. In the uncracked

zone of the beam span near the supports, the gross moment of inertia (Ig) can be

used, whereas the average moment of inertia (Ia) is assembled to the cracked zone.

In this way, the residual deflection of the beam can be calculated by taking the ap-

plied preloading Ppre into account. The experimental average moment of inertia can

be assessed by minimizing the difference between measured and calculated residual

deflection. The results are presented in Fig. 7.

The steel stresses at the cracked section σs0 and the values of Dccc as well as σs,ccc

of each beam are shown in Table 3. According to the cover-control cracking criteria

(Eq. 5), B1 to B4 should not present any concrete damage at the interface with the

steel bars and hence Ia is expected to be the same for each of the beams B1 to B4.

17
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However, due to the natural uncertainties of RC structures, the experimental Ia of

each beam is different as shown in Fig. 7. Using Monte Carlo Simulation (MCS),

the probability characteristics of Ia can be calculated, and are plotted in Fig. 7. The

results show that the probability density function is similar to a normal distribution,

the mean value Īa is 6.16×10
−4 m4 with the COV of 17%, and the lower and upper

fractiles (2.28% and 97.72%) are 4.10×10−4 m4 and 8.1×10−4 m4 respectively. All

the experimental values of Ia fall in the probability interval (2.28% to 97.72%) in

the high probability density zone. The comparison between experimental results and

stochastic analysis shows the precision of the average moment of inertia model.

7.3. Calibration of model error of moment of inertia γ11

The short-term experimental data from the tests carried out on eleven beams at

UNSWAustralia as well as test results from two additional sources from the literatures[56–

58] are used to calibrate a probabilistic distribution for the model error of the average

moment of inertia Ia. The actual material properties (e.g. the mean value of elastic

modulus of concrete and steel Ecm and Esm), section dimensions, ratios of tensile re-

inforcement and the loading arrangement can be measured in the laboratory. Using

cyclic load-deflection tests results, the experimental value of Ia for each beam was

assessed as mentioned in Section 7.2. Fig. 8(a) illustrates the relationship between

the predicted and test values of the normalized average moment of inertia Ia/Ig.

Results presented in Fig. 8(a) show that the Castel et al. model is reasonably able

to predict the average moment of inertia for cracked reinforced concrete beams. It is

assumed that in the collected experimental data, the mechanical properties as well as

cross-section dimensions were accurately measured. Hence, the only uncertainty is

that associated with the analytical model[59]. The mean value of short-term model

error γ̄11 is 1.02 with the COV of 9.6 %. Similarly, the model uncertainty of the
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Fig. 8. Scatter of experimental and analytical values for normalized average moment
of inertia

time-dependent effects of creep and shrinkage on the average moment of inertia is

calibrated by using the tested data reported by Murray [34] . The mean value of

long-term model error γ̄11 is 1.00 with the COV of 12.1 % (Fig. 8(b)). Due to the

lack of experimental data, the probabilistic distribution of the model error is assumed

to be a normal distribution. In further, more experiments are required in order to

improve the calibration of the model error of the average moment of inertia and to

cover a wider range of material strengths, reinforcement ratios, and specimen sizes.

In order to cover more area of the applications of effective moment of inertia, a

total of 505 observations of Gilbert[60] and Gribniak [29, 61] are adopted to calibrate

the model error of the effective moment of inertia. In Ref.[60], Gilbert reported

experimental results obtained on a total of eleven lightly reinforced concrete beams

(slabs). The deflections of the beams (slabs) were measured for different loading

values after cracking: 1.1Mcr, 1.2 Mcr and 1.3Mcr. In Ref.[29, 61], a total of eight

lightly reinforced concrete beams were tested under a four-point loading scheme. The

measured curvatures in each load step were reported. Similar to the model error of

the average moment of inertia, the ratio between experimental and predicted results
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Fig. 9. Histogram and probability density of the model error of the effective moment
of inertia

calculated by using the effective moment of inertia is defined as the model error γ11.

The histogram and probability density of the model error γ11 are plotted in Fig. 9.

It can be seen that the model error for effective moment of inertia can be treated

as a lognormal random variable with the mean value of 0.96, and with the COV of

0.20.

It is noted that the calibration of model errors of the moment of inertia is based on

the short-term experiments. The uncertainty relating to creep and shrinkage effects

is taken into account by using γ4, γ5, and Eq. (16) as mentioned in Section 6.1.

8. Serviceability reliability analysis

8.1. Determined deflection analysis for cracked concrete beams

For the in-service response, the stress-strain relationship for concrete in compression

is taken to be linear elastic. For pure bending problems, assembling the appropriate

moment of inertia for cracked reinforced concrete beams, a static analysis can be

performed via the finite element method to calculate the deflections of the beams.

As shown in Fig. 10, for the case of four points loading, the length of the cracked

zone of the beam depends on the relative values of the cracking moment Mcr and the

maximum applied moment Ma. The moments of inertia adopted for the uncracked

zone near the supports is the gross moment of inertia Ig. In the cracked zone, either

the effective moment of inertia Ie or the average moment of inertia Ia is used in

order to compare the performance of both approaches in the serviceability reliability

analysis.
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Fig. 10. Assembling the moment of inertia for the overall beam response calculation

8.2. Serviceability requirement

The serviceability requirements can include the beam deflection, the crack width,

the level of vibration, the degree of spalling, etc. In this paper, the serviceability

issues relating to excessive deflection are discussed.

Allowable deflection limits for use in structural design are specified in most stan-

dards or codes of practice and depend on the function of the beam or slab. As shown

in Table 4, allowable deflection limits obtained from ACI 318-14[25] for elements

in buildings are approximately equivalent to those from fib Model Code 2010 and

Eurocode 2[35, 36], whereas the requirements for bridges from AASHTO (2002)[62]

are much stricter.

Table 4. Suggested Deflection Limits for Structural Elements

Code Limitation Condition

ACI 318-14 L/240
Supporting or attached to non structural elements

which are not likely to be damaged by large deflection

L/480
Supporting or attached to non structural elements

which are likely to be damaged by large deflection

fib Model Code 2010 L/250
quasi-permanent loads could impair

the appearance and general utility

/ Eurocode 2 L/500
quasi-permanent loads could damage

adjacent parts of the structure

AASHTO LRFD Bridge L/800 General vehicular load

Design Specifications L/1000 Vehicular and/or pedestrian load

In this paper, the ACI 318-14 requirements are selected as an example to show the

effects of cracking damage of existing reinforced concrete beams on the serviceability

reliability. According to ACI 318-14, two different deflection limits must be satisfied
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for slabs and beams supporting (or attached to) nonstructural elements. For the at-

tached non-structural elements which are not likely be damaged by large incremental

deflections ∆inc , the sum of the time-dependent deflection due to sustained loads

and the immediate deflection due to live load should not exceed L/240 (∆1), where

L is the span of the slab or beam. The corresponding probability of serviceability

failure Pf1 is given by

Pf1 = Pr(∆1 −∆inc < 0) (17)

where Pr(.) is the probability of the even (e.g. ∆1 −∆inc < 0 in Eq. (17) ).

For the attached nonstructural elements which are likely be damaged by large

deflection, ∆inc should not exceed L/480 (∆2). The corresponding probability of

serviceability failure Pf2 is given by

Pf2 = Pr(∆2 −∆inc < 0) (18)

8.3. Serviceability reliability analysis methodology

Monte Carlo simulation (MCS) is adopted here to calculate the serviceability relia-

bility of cracked reinforced concrete beams. The accuracy of MCS depends on the

sample sizes and the value of the probability of failure (the smaller the probability

of failure, the larger the sample size required to ensure the same accuracy)[53]. Con-

sidering that the target reliability index β for existing structures are 3.0 (reference

period 1 year) and 1.5 (reference period 50 years) for serviceability limited states

verification in fib Model Code [36], a total of M = 106 samplings is large enough to

satisfy the sampling requirements.

For an intact reinforced concrete beam, the serviceability reliability can be cal-

culated by using the effective moment of inertia, and the calculation steps are as
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follows:

• 1: Sampling the random variables of structure and dead load to model a beam;

• 2: Sampling the sustained and extraordinary live loads in the reference period;

• 3: Calculating the deflection by using monotonic loading stiffness (Eq. (3))

dependent on the maximum live loads combination;

• 4: Increasing by one for failure counter (m), if the deflection is larger than the

limit.

For an cracked reinforced concrete beam damaged by a historical load (Ppre), the

deduction of stiffness and the historical irreversible deflection have to be taken into

account by using the average moment of inertia. For every sampling in MCS, the

analysis is carried out as follows:

• 1: Sampling the random variables of structure and dead load to model a beam;

• 2: Calculating the instantaneous deflection caused by a historical loading re-

sulting in cracking of the beam by Eq. (3);

• 3: Calculating the irreversible deflection and average stiffness by Eq. (13)

• 4: Sampling the sustained and extraordinary live loads in the reference period;

• 5: if the maximum combined live load is less than the historical loading, go to

7;

• 6: Calculating the deflection by using the monotonic loading stiffness (Eq. (3))

dependent on the maximum combined live load; go to 9;
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• 7: Calculating the deflection caused by sampling live load with reloading stiff-

ness using by Eq. (13);

• 8: Calculating the total deflection by summing the irreversible and reloading

deflections;

• 9: Increasing by one for failure counter (m), if the total deflection is larger

than the deflection limit.

The failure probability for the serviceability limit state of cracked reinforced con-

crete beams incorporating cracking damage can be obtained by

Pf =
m

M
(19)

The reliability index is

β = −Φ−1(Pf ) (20)

9. Numerical examples

The reinforced concrete beam B1 is selected as a study case. Both dead load and live

loads are assumed to be uniform loading. The nominal value of the dead load Gn is

assumed to be 24kN/m, incorporating other dead loads from the attached elements

(e.g. the self-weight of the concrete floor with thickness of 0.14 m and with influence

width of 6 m). Three levels of historical damaging loads (P1 = 20kN, P2 = 60kN,

and P3 = 100kN) inducing cracking are applied to the beam. The sum of applied

bending moment due to the dead load and the damaging load are about 40%, 60%,

and 80% of the yielding bending moment in each level, respectively.
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Fig. 11. Probability density function of the short-term deflections at the mid-span

(a)
β1

(b)
β2

Fig. 12. Short-term serviceability reliability index vs. Qn/Gn (β1 and β2 are the
reliabilities related to deflection limitation ∆1 and ∆2 respectively)

9.1. Short-term deflection

Using the MCS, the probability density distributions of the short-term deflection

at mid-span with the increment of the nominal value of live load was calculated for

each level of historical load. The corresponding short-term serviceability reliability

index was analyzed as well. The results with and without considering historical

cracking damage are plotted in Fig. 11 and Fig. 12 respectively. The influence of

the historical damaging load on the probability density distribution of the deflection

significantly due to the irreversible deflection and the deduction of the stiffness,

when Qn/Gn = 1 and Qn/Gn = 2, is shown in Fig. 11(a) and 11(b). However,

as the increment of the nominal value of the live load, the difference decreases as

shown in Fig. 11(d). The reliability index is affected by the historical damage as

well. However, it is interesting that the reliability index of the beam subjected

to the first load level (P1) is the same with the undamaged beam, although the

probability density distribution is different, as shown in Fig. 11. These phenomena

can be explained by using Fig. 13.

In Fig. 13(a), when the applied live load P is larger than the historical damag-

ing load Ppre, the loading path returns to the monotonic path (OBC) as shown in

Fig. 13(a). In this scenario, there is no influence of the historical damage on the live
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Fig. 13. Typical overall response of RC-beams vs deflection limitation

load deflection. However, if the applied live load P is less than the historical load

Ppre (Fig. 13(b)), the loading path is ODE, and the deflection response (∆) due to

the applied live load should be calculated by

∆ = ∆perm,cr +∆inst (21)

where ∆inst is the instantaneous deflection of the cracked beam under loading and

unloading cycles. For the light damage induced by the first loading level P1, the

live load P is always larger than the historical load and less influence is observed

on the short-term serviceability reliability as shown in Fig. 12. For heavier damage

(e.g. Ppre = P2 or P3), with increases in the nominal value of live load, the influence

of the historical damage loading on both the probability density distribution of the

deflection and the serviceability reliability index of the damaged beam decreases as

shown in Fig. 11 and 12.

The effect of cracking on the serviceability reliability index also depends on the

deflection limit selected. Pa is the critical load related to the deflection limit for the

serviceability limit state in the monotonic load-deflection envelop curve as shown

in Fig. 13(a) for one of the random samplings. When the historical loading PPre is

lower than Pa, all of the applied live loads P causing serviceability failure are larger

than the historical damaging load Ppre. Hence, although historical damage affects

the probability density distribution of the deflection as shown in Fig. 11 (Ppre = P1),

no influence is observed on the serviceability reliability. When the historical loading
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is larger than Pa, the deflection due to an applied load P , lower than Pa, should be

calculated using Eq. (21).The failure criterion should be modified as

P > Pb (22)

in which Pb is the critical load related to the deflection limit for the serviceability

limit state in the cycle loading path (DE). Obviously, the risk of failure will increase

when Pb < Pa. In the stochastic analysis, both Pa and Pb are random variables and,

even when the mean value of deflection induced by historical loading is less than the

deflection limitation, there is still a remarkable influence of the cracked damage on

the serviceability reliability. The criterion can be defined as follows:

Pr(Ppre > Pa) > 0 (23)

9.2. Long-term deflection

As shown in Fig. 14, the beam considered here was loaded 28 days after concrete

placement with the dead load, and was then occupied by the tenants and subjected

to the sustained live load 180 days after concrete placement. The beam is assumed

to have eight different tenants. And, the average tenancy duration is assumed to

be eight yeas[54, 63]. Thus, the expected design life of the beam is 64.5 years.

Under the dead load and the sustained live load, the long-term effects of creep and

shrinkage were calculated. During the tenant period, the extraordinary live load was

also applied to the beam. This type of load is transient in nature, and is not taken

into account in the creep analysis.

In this paper, two damaged scenarios have been considered: the historical dam-

aging load was applied 180 days (case C1) and 3000 days (case C2) after concrete
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Fig. 14. The development of the total deflection of the beam including the time-
dependent effects

(a)
P1

(b)
P2

(c)
P3

Fig. 15. Long-term serviceability reliability index vs. Qn/Gn

placement, respectively. The long-term serviceability reliability index β2 relating to

the deflection limitation ∆2 was calculated. The results are plotted in Fig. 15. Sim-

ilar to the short-term serviceability reliability analysis, the historical damage leads

to a decrement in the long-term serviceability reliability. However, the results are

different from those of the short-term analysis in that the reliability index in the

damaged beam is lower than that of the undamaged beam, even when the historical

load Ppre is only 20kN. The reduction of the overall stiffness due to the historical

cracking damage influences both the immediate deflection caused by the extraordi-

nary live load and the time-dependent deflection due to the dead load and sustained

live load. Although the extraordinary live load is larger than the historical load P1,

with the result that the instantaneous loading path returns to the monotonic loading

as show in Fig. 13(a), the damage to the stiffness affects the time-dependent deflec-

tion leading to the reduction of the long-term serviceability reliability. The age of

concrete when the historical damage load was applied influences the long-term ser-

viceability reliability. In this example, the long-term serviceability reliability index

for the case C1 was considerable lower than the reliability index for the case C2, as

shown in Fig. 15. According to MC 90 model, the mean value of creep coefficients at

the age of 180 and 3000 days are 63% and 95% of the mean value of the final creep

coefficient, respectively. Thus, the cracking damage applied at the age of 3000 days

of concrete has little influence on the creep effect.
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10. Conclusion

In this paper, an existing model allowing calculation of the average moment of

inertia of RC beams during cycles of loading and unloading is modified to take into

account the effect of historical cracking damage on the serviceability reliability of

RC members. The suitability of the average moment of inertia model for reliability

analysis is verified by considering experimental tests on a total of eleven reinforced

concrete beams. The model errors associated with both the effective and the average

moment of inertia are calibrated using the experimental data. Combining the sources

of uncertainty of RC-members and MCS, an quantitative analysis approach is pre-

sented to evaluate the loss in serviceability reliability due to the historical cracking

damage for the reinforced concrete beam.

By using the proposed approach, both short-term and long-term serviceability

reliability of a cracked reinforced concrete beam was analyzed. The results confirm

that the effect of historical cracking damage on short-term serviceability reliability

should be taken into account, when the deflection induced by historical loading is

larger than the deflection limitation. In such a scenario, neglecting the historical

cracking damage leads to overestimation of the serviceability reliability of cracked

RC-members. Light historical damage (e.g. Ppre = P1, in this case) has no influence

on the short-term serviceability reliability, although it affects the probability density

distribution of the deflection of the beam. However, even when the historical damage

is light, the long-term serviceability reliability index is decreased as the cracking

damage affects the time-dependent deflection. Additionally, the later the damaging

load is applied to the reinforced concrete beam, the less influence the cracking damage

has on the long-term serviceability reliability.

The proposed method can be used to quantitatively evaluate the residual service-
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ability reliability of existing cracked damage reinforced concrete beams.
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