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Abstract

Under in-service conditions, beams and slabs in reinforced concrete structures are
almost always cracked, as the tensile strength of the concrete is low. Due to the
irreversible reduction in overall stiffness resulting from cracking and the residual
deflection after unloading, the structural response is load path dependent. In this
paper, an existing average moment of inertia model and Monte Carlo simulation
(MCS) are adopted to take into account the effect of historical cracking damage on
the reliability of serviceability calculations for reinforced concrete (RC) members.
The suitability of the average moment of inertia model for reliability analysis is
verified by considering experimental tests on a total of eleven reinforced concrete
beams. The errors associated with both the effective and average moment of inertia
predicted by the model are calibrated using the experimental data. By using the
proposed approach to account for the various sources of uncertainty in reinforced
concrete beams, the quantitative loss in the short-term and long-term serviceability

reliability of a cracked reinforced concrete beam was calculated. The results confirm
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that the effect of historical cracking damage on short-term serviceability reliability
should be taken into account when the deflection induced by historical loading is
larger than the deflection limitation. Light historical damage has no influence on the
short-term serviceability reliability, although it affects the probability density distri-
bution of the deflection. However, in the long-term serviceability reliability analysis,
even when the historical damage is light, the long-term serviceability reliability index
is decreased as the cracking damage to the stiffness affects the time-dependent de-
flection. Additionally, the later a damaging load is applied to a reinforced concrete
beam, the less is the influence of cracking damage on the long-term serviceability
reliability.

Keywords: Reinforced concrete, tension stiffening, serviceability, reliability,

moment of inertia




1. Introduction

Due to the random nature of the quantities affecting the structural behaviour (e.g.
actions, geometry, restraints, and strength of materials), the assessment of struc-
tural performance requires a probabilistic rather than a deterministic approach and
an assessment of the reliability of design calculations, particularly under in-service
conditions[1]. Indeed, probability-based limit-state design is accepted in codes for
reinforced concrete design throughout the world.

Structural safety and serviceability are two broad classifications of the perfor-
mance requirements for structures. Structural safety is the ability to estimate the
overall stability, ductility and ultimate bearing resistance corresponding to a set
of assumed design actions with appropriate levels of reliability. Using probabilis-
tic methods in conjunction with the finite element method (FEM), many reliability
analyses have been proposed to deal with the ultimate limit state of RC structures
[2-9]. Compared to structural safety, the serviceability problem, relating to deflec-
tion, crack width, vibration, and degree of spalling [1], are much more difficult to
define. Considerations of serviceability are based on subjective issues, such as human
perception and tolerances, the importance of the structure and the consequences of
serviceability problems and are more client-oriented [10]. Moreover, in modern times,
the introduction of high-strength materials has led to more slender structural ele-
ments and has made serviceability issues of increasing importance. Under in-service
conditions, reinforced concrete structural members are almost always cracked, as the
tensile strength of the concrete is low. Cracking affects the stiffness of a RC mem-
ber and hence its deflection. Therefore, it is important to assess RC-members after
cracking in any serviceability analysis.

Under normal service conditions, the concrete between the primary cracks in a



beam is able to continue to carry tensile stress, due to the transfer of forces from the
tensile reinforcement to the concrete through bond. This phenomenon is known as
tension stiffening and must be accurately modeled to simulate the in-service behavior
of reinforced concrete structures, particularly under repeated loading [11].

Most of existing models for assessing the loss of stiffness due to cracking in re-
inforced concrete beams are concerned with monotonic loading. The smeared-crack
model is a popular way to simulate the tension stiffening effect. In this approach,
an average stress-strain relation is considered for the whole tension area to account
for the average deformation response after cracking [12]. A modified constitutive
relationship for the steel reinforcement [13, 14] or an updated descending branch of
the tensile stress-strain curve for concrete have been developed and implemented in
FEM analyses [13, 15-20]. In addition, the so-called microscopic models based on
the bond-slip mechanism and discrete cracking have been proposed by Floegl and
Mang [21], Gupta and Maestrini [22], and Choi and Cheung [23].

Alternatively, several empirical models have been widely accepted by engineers in
design for the control of deflections, involving determination of the effective moment
of inertia (1) for a cracked member under monotonic loading. Branson developed
a well-known model [24], which has been adopted by the ACI Building Code [25].
Branson’s equation gives a weighted average of the uncracked and cracked moments of
inertia of the reinforced concrete cross-section at any load level, but it has been shown
to overestimate the effective stiffness of lightly reinforced concrete beams and slabs
[26]. In comparison with Branson’s model, Bischoff suggested a weighted average
of the uncracked and cracked flexibility of reinforced concrete cross-sections [27,
28]. Experiments carried out on reinforced slabs having reinforcement ratios ranging
between 0.18% and 0.84% demonstrated that Bischoff’s model is more accurate than

Branson’s model for lightly reinforced concrete members [26]. A statistical study that
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employed data from nine experimental programs involving a total of 80 specimens
showed a similar conclusion that the Branson’s model overestimated the stiffness
significantly for reinforcement ratios ranging between 0.4% and 0.8%[29]. Based on
the local measurement and modeling of the steel reinforcement strains in the tensile
zone, Xu et al. proposed an alternative empirical model, which provides a more
conservative stiffness for lightly reinforced concrete beams[30].

Besides the effect of tension stiffening, Castel et al. [11, 31, 32] pointed out that
the degradation of the moment of inertia and the irreversible deflection of the struc-
tural member due to cracking damage have to be accounted for in the serviceability
analysis of existing cracked RC members. All the methods previously described are
dedicated to the calculation of the deflection of structural members or the curva-
tures of cross-sections under monotonic increasing load up to failure [31]. As shown
in Fig. 1, the path OABC is the monotonic load-deflection envelop obtained by per-
forming a static load test beyond the cracking load P.,. The stiffness of a reinforced
concrete beam can be described by using the effective moment of inertia (I,) model
[24, 28]. Owing to the the cracking damage, the unloading path in Fig. 1 is line
BD, and the irreversible deflection is OD. When reloaded, the loading path is DB
and the stiffness of the beam is proportional to the the average moment of inertia
labelled I, in Fig. 1 and discussed in Ref.[31]. The difference between I, and I, is
significant and leads to relatively large differences in the calculated static deflection
[11, 31, 32|, as well as dissimilar dynamic properties, such as natural frequencies
and responses to moving loads or vibrating machinery [33]. The question arises:
how much is the serviceability reliability reduced as a result of the cracking dam-
age? More recently, Murray reported that the effects of creep and shrinkage lead
to time-dependent changes in the instantaneous stiffness[34]. These effects result

in increments of both the time-dependent and instantaneous deflections, and might



Fig. 1. Typical overall response of RC-beams including a loading cycle

affect the long-term serviceability reliability of cracked reinforced concrete beams.
In this paper, serviceability issues related mainly to excessive deflection of struc-
tural elements (i.e. beams) are discussed. A quantitative analysis approach is pro-
posed in order to evaluate the loss in the serviceability reliability due to historical
cracking damage. In this approach, the effective moment of inertia is employed
to simulate the pre-cracking loading up to P, and the following loading P when
P > P,.. And, the average moment of inertia is adopted to simulate the unloading
from the pre-loading P, and the following loading” when P < P,.. In the first
part of the paper, the models of effective and average moment of inertia are intro-
duced. Secondly, combining the sources of uncertainty for reinforced concrete beams
and Monte Carlo simulation, a probability analysis approach for cracked reinforced
concrete beams is presented. In this approach, experimental measured deflections
and stochastic analysis results are compared in order to assess and compare the per-
formance of the effective moment of inertia approach and the average moment of
inertia approach. For both effective and average moment of inertia, the model error
is calibrated by using experimental data from several sources. Finally, the influence
of the historical cracking damage on both the short-term and long-term serviceability

reliability is discussed by using numerical examples.

2. Deflection model

The total deflection Agiq of a reinforced concrete member subjected to dead

load and live loads can be expressed as

Acrq =Ac +Aqs + Aqi +Au + Ay (1)



where A is the instantaneous deflection due to the dead load; Aq represents the
instantaneous deflection due to the sustained live load; Aq; stands for the instanta-
neous deflection due to the extraordinary live load; A, is the time-dependent creep-
induced deflections including the contributions of both dead load and sustained live
load; and Ay, is the time-dependent shrinkage-induced deflection.

To avoid the excessive deflection resulting in unintended load paths or damage
to either structural or non-structural elements attached to the member, a limit is
placed on the incremental deflection. The incremental deflection Aj,. is the sum
of the time-dependent deflection due to the sustained loads and the instantaneous

deflection due to the live load. It can calculated as follows:

Ainc = AGr-l-Q - AGv (2)

The effect of creep and shrinkage on the total deformation of a reinforced concrete
member consists of two parts. The first part is the time-dependent creep-induced
and shrinkage-induced deflection (A, and Ag,), which can be calculated by using
the age-adjusted effective modulus method. The other part is the influence on the
instantaneous stiffness of cracked reinforced concrete beams resulting the increment
of short-term deflection. Due to the creep and shrinkage, the bond between concrete
and steel reinforcement is damaged leading to the reduction of tension stiffening
effect. This results in a time-dependent increase in the so-called instantaneous de-
flections due to the sustained live load )y and the extraordinary live load Q. .

In this paper, the instantaneous deflections of the reinforced concrete beam with-
out prior cracking damage are calculated by using the effective moment of inertia I,
and the instantaneous deflections of the cracked member are calculated using both

the effective moment of inertia and the average moment of inertia I,.



3. Effective moment of inertia I,

The deflection calculation procedure suggested by both Eurocode 2 [35] and the
fib Model Code 2010[36] is considered to be an accurate and reliable model to calcu-
late the shape of the instantaneous load-deformation response, especially for lightly
reinforced members|26].

For a pure flexural member containing deformed bars, the effective moment of

inertia proposed by Bischoff [27, 28] is determined as

ICI‘
I = (3)

- 2
Lo (1=t (3%)

where M., and M, are the cracking bending moment and the applied service bend-

ing moment respectively; and I and [, represent the moment of inertia of the
fully cracked cross-section and the uncracked cross-section respectively; 7 is a coef-
ficient accounting for both shrinkage-induced cracking and the reduction in tension

stiffening with time, which can be calculated by

1.0 short-term
n= (4)
0.5 long-term

4. Average moment of inertia I,

When the load is increased above the cracking load primary bending cracks form at
regular centres. When the steel reinforcement stress at the crack location reaches a
threshold, interfacial microcracks form in the concrete between the primary cracks[37,

38]. These interfacial microcracks are often called cover-controlled cracks. Castel et



al. [37] proposed a bond damage criterion (i.e. g > 0gccc) as follows:

- ch Atc,eff
Js,ccc(ftc) - 092(; |:’I”L + As :| ftc (5)

where 05 . is the critical axial steel stress at the crack location leading to cover-
controlled cracking; fi. is the tensile strength of concrete ;A o is the effective area
of active tensile concrete[32]; Ay is the reinforcement area; n is the modular ratio of
steel and concrete; and Z. and Z,,. are the lever-arms of the internal forces on the
cracked and uncracked cross sections respectively.

Accounting for the effects of both primary cracks and cover controlled cracks,
a model for calculating the average moment of inertia I, was developed by Castel
et al.[11, 30-32] based on two assumptions : linear steel-concrete bond distribution
assumption and constant bending moment assumption.

The linear distribution of the bond stress 7(x) proposed by [39] as:

(6)

where Tyax is the maximum shear stress close to he exact crack locations; = (0 < z <
ls.max) 1s the distance from the cracks, lsmax is the length over which slip between
concrete and steel occurs as recommends by [36]. According to the definition of I max
, for the bond damage free beams, the strains of concrete e max and tensile steel bars
Esnc are equal at @ = [ max as:

€tc,max — Esnc (7)

A scalar variable D, was introduced to evaluate the bond damage by calculating



the difference of the strain between the concrete and steel at @ = s payx in [32]:

€tc,max — (1 - Dccc)ssnc (8>

When a beam is at the stabilized cracking stage, compared to the whole span of
the beam, [smax is small allowing to assume that the bending moment at all cross

sections located along I max is constant as
M (x) = constant(0 < z < I max) 9)
According to these assumptions, the distribution of the lever-arm of the internal

forces Z(x) along s max can be calculated by|[32]

ZCZIIC

20) = Zg T 1= 9@ 7

where g(x) is a distribution function as

o =2~ () (1)

s, max

For a rectangular section, the depth to the neutral axis yo(x) along ls max can be
derived as [32]
yo(x) = 3[d — Z(x)] (12)

where d is the effective depth of the tensile reinforcement.
By using Eq. (12), the moment of inertia distribution I(z) along the [ ., can be
calculated. As recommended by [36], the average crack spacing is equal to 1.5/ max-

Considering the symmetry between half cracks spacing, the average moment of inertia

10



I, between cracks can be calculated as follows:

- 1
° 0.75l; max (13)

Restrained shrinkage can affect the stiffness of RC beams [40-42]. For cracked
RC beams, restrained shrinkage induces tensile stress in concrete and encourages the
formation and extension of microcracks at the the steel-concrete interface over time
resulting in the decay in tension stiffening. The effect of creep and shrinkage on the
steel-concrete interfacial bond damage D... should be taken into account [34].

More detail of Castel et al. model can be seen in Ref.[30, 32, 34].

5. Creep and shrinkage model

Several creep and shrinkage models, such as ACI 209 model [25], CEB-FIP
model[36], B3 model [43] , GL2000 model [44, 45] are available. In the present

study, MC90 model is selected to account for creep and shrinkage of concrete [46].

6. Uncertainty sources

The uncertainties affecting the stiffness of a beam are related to either the material

properties, the applied loadings, and the geometry of the cross-section.

6.1. Uncertainty of material properties

For the concrete, the parameters that possess a random nature include the com-
pressive strength (f.), the tensile strength ( fi.), and the elastic modulus (E;). It is
generally accepted that there is a strong correlation between f., fi., and E.[47, 48].
Correlation between the elastic modulus and the compressive strength of the con-

crete has been used by Keitel and Osburg[49] in uncertainty analysis relating to creep
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and shrinkage by mean of a direct correlation coefficient. An alternative approach
is adopted in the present work. According to the JCSS Probabilistic Model Code
and fib Model Code 2010, by multiplying the tensile strength and elastic modulus
by random variables, the stochastic correlation between tensile strength fi., elastic
modulus of concrete F.y and the mean compressive strength f. at age of 28 days is

defined as[36, 50]

fc = 71fcm(MPa) (14&)
fie = 120.3f2/*(MPa) (14b)
B = 7321.5 x 103({—6)1/3(1\413&) (14c)

in which, 7, 72, and -5 are treated as independent normal random variables [50].

The modulus of elasticity of concrete at age t may be estimated from

Ed(t) = Eco%exp [s (1 V/3871)] (15)

Since current creep and shrinkage models are generally based on the mean value
of experimental results, model uncertainty should be a concern [47]. The stochastic

model of time-dependent strain can be calculated by [51]

e(t) = [uJ(t, to)]a(to)+/ ad (&, 7)1 do(7) + 75 [ean(t — &) —ean(to — £)]  (16)

to

in which the time-dependent strain e(¢) consists of short-term strain caused by the
loading at age ty and the long-term strain caused by creep and shrinkage at age ¢;
and, v4 and 75 are assumed to be normal random variables, related to the uncertainty

of the creep and shrinkage models [43].
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Fig. 2. Time histories of typical live loads

For reinforcement, the probability distribution of the yield strength is a normal
distribution with the mean value of fy, + 2 x 30MPa, and standard deviation of
30MPa [50], where fy, is its nominal value. The elastic modulus is considered as

Yo Fsm, where Ej,, is the mean value of elastic modulus of the reinforcing steel bars.

6.2. Uncertainty of cross-section

In this paper, the randomness of cross-section is also considered in this paper.
The parameters of cross-section are treated as normal random variables, including
the overall depth of the cross-section (7y7hy, ), the width of the cross-section(ysby, ), the

effective depth of cross-section (9d,, ), and the area of tensile reinforcement (719 Agm)-

6.3. Uncertainty of loads

Typical loads applied to structures include dead load and live loads, that can
be simulated by using recommended statistical models. The dead load G is treated
as a normal random variable with mean of 1.05 times its nominal value G, with a
coefficient of variation of 0.10 [52, 53]. The live loads consist of the sustained live
load Q)¢ and the extraordinary live load @, as shown in Fig. 2. The sustained live load
is modeled by a Gamma distribution with mean of 0.30Q, (@, denotes a nominal
value of live load) with a coefficient of variation of 0.60[53]. The mean duration
of the sustained live loads is often assumed to be eight years, corresponding to the
average period between tenant changes in office building [54]. Extraordinary live
load is also modeled by using a Gamma distribution with an annual mean of 0.19Q),
and a coefficient of variation of 0.66 [53].

The statistical parameters of the random variables are summarized in Table 1.

13



Table 1. Statistical Properties of Random variables

Variables Distribution type = Mean COoVv Uncertainty sources
T Log-normal 1.00 0.06 fe [50]
Yo Log-normal 1.00 0.30 model of fi. [50]
3 Log-normal 1.00 0.15 model of Ey [50]
Va Normal 1.00 0.32 model of creep [45]
Vs Normal 1.00 0.37 model of shrinkage [45]
Y6 Normal 1.00 0.033 E; [53]
Y Normal 1.00 0.045 h[55]
V8 Normal 1.00 0.045 b[55]
Yo Normal 1.00 0.05 d [55]
Y10 Normal 1.00 0.02 Ag [50]
G Normal 1.05G, 0.10 dead load[53]
Qs Gamma 0.30 0.60 sustained live load[53]
Qe Gamma 0.19 0.66  extraordinary live load[53]
fy (MPa) Normal fyn +60 std =30 fy[50]

7. Experiment, stochastic analysis, and model error of average moment

of inertia

7.1. Experiment program

In order to investigate the randomness of the average moment of inertia for cracked
RC beams, results of the analyses of eleven beams tested as part of this study are
reported in this paper (named as B1 to B11). Two different concrete mixes were used,
with average compressive strengths of 38 MPa and 46 MPa after 28 days, respectively.
The mechanical characteristics of the concrete (mean compressive strength fe,, mean
tensile strength ficm, mean elastic modulus E.,,) are listed in Table 2. The main steel
reinforcement consisted of Australian Class N deformed bars of either 16 mm or 20
mm diameter. The reinforcement ratios p are shown in Table 2. The characteristic
yield strength of the reinforcement was 500 MPa. The average yield stress of the
reinforcing bars was 520.00 MPa (standard deviation was 5.43 MPa). The beams

14



Fig. 3. Layout of the reinforcement and loading arrangement (mm)

(4h)
Shont-

téerm

Fig. 4. Setup of (a) short-term and (b) long-term loading

were demolded 24h after casting and stored under various conditions until the load
tests commenced at age 28 days. B3 and B4 were moist cured for only seven days and
then stored in the laboratory, while the other beams were stored in a high moisture
environment until testing.

As shown in Fig. 3, all beams were 3500 mm long, with a 3300 mm span between
simple supports and with a uniform 400x300 mm cross-section. The cover of the
main reinforcing bars was 35 mm. The effective depth of the tensile reinforcement
d was either 355 or 357 mm. At 28 days after casting, all beams were tested in
4-point bending for the precracking load tests as shown in Fig. 4(a). Each beam was
subjected to 10 loading and unloading cycles in order to assess the instantaneous
stiffness after cracking and the permanent residual deflection after unloading. The
beams were then subjected to a sustained load for a period of six months by using
an appropriate spring loading device to ensure that the load remained constant for
the duration of the test as shown in Fig. 4(b). After six months, the beams were
subjected to the same cycles of unloading/reloading to again measure the instanta-
neous stiffness and assess any changes due to time-dependent effects. Table 3 shows
the values of maximum applied moment M, (including the self-weight) for all beams.
During the test, the deflection at the mid-span of the beam was measured by using
LVDT. For each beam, after unloading, the crack distribution of each side (i.e. south

side and north side) was recorded as shown in Fig. 5 for B1 as an example.
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Table 2. Concrete and reinforcement properties of beams

Beams fon (MPa)  fiem(MPa)  FEepn(GPa)  dp(mm)  Agy,(mm?) p

B1 46 3.5 33 3¢16 603 0.56%
B2 46 3.5 33 3¢16 603 0.56%
B3 46 3.5 33 3¢16 603 0.56%
B4 46 3.5 33 3¢16 603 0.56%
B5 38 3.8 35 3¢16 603 0.56%
B6 46 3.5 33 3¢16 603 0.56%
B7 38 3.8 35 2¢16+¢20 716 0.67%
B8 38 3.8 35 3¢16 603 0.56%
B9 38 3.8 35 3¢16 603 0.56%
B10 38 3.8 35 3¢20 942 0.88%
B11 38 3.8 35 3¢20 942 0.88%

Fig. 5. Actual crack distribution of beam B1

Table 3. Maximum applied moment, steel stress and the damage criteria
Beams M,(kN - m) oy (MPa) Decee 0gcec (MPa)

B1 40.2 201 0.00 230
B2 39.3 197 0.00 230
B3 35.6 179 0.00 230
B4 39.6 199 0.00 230
B5 44.2 222 0.00 250
B6 51.4 258 0.97 230
B7 57.8 246 0.92 215
B8 57.8 290 0.98 250
B9 69.9 351 0.98 250
B10 60.2 197 0.80 168
B11 45.0 147 0.00 168

16



(4biL)
18557

Fig. 6. Experimental load-deflection responses(B1 to B4)

Fig. 7. Probability distribution of average moment of inertia (I, = 6.16 x 10~*m?*,
COvV=17%)

7.2. Stochastic analysis of short-term average moment inertia of Bl to B4

As shown in Table 2 and 3, Beam B1 to B4 were cast with the same cross-section,
material, and loading arrangement. These beams were loaded without exceeding
the steel stress threshold (Eq. 5) leading to interfacial microcracks (i.e. steel-
concrete bond damage between the primary cracks). The differences between these
four beams are the storage environments and the applied loading. The experimental
load-deflection responses of B1 to B4 are shown in Fig. 6. Finally, all beams were
loaded up to failure. The failure loads P, are also plotted in Fig. 6. According to the
load-deflection response, the unloading/reloading experimental stiffness and residual
deflection after unloading of the cracked beam can be obtained. In the uncracked
zone of the beam span near the supports, the gross moment of inertia (/;) can be
used, whereas the average moment of inertia (/,) is assembled to the cracked zone.
In this way, the residual deflection of the beam can be calculated by taking the ap-
plied preloading P, into account. The experimental average moment of inertia can
be assessed by minimizing the difference between measured and calculated residual
deflection. The results are presented in Fig. 7.

The steel stresses at the cracked section oy and the values of D as well as o ¢cc
of each beam are shown in Table 3. According to the cover-control cracking criteria
(Eq. 5), B1 to B4 should not present any concrete damage at the interface with the

steel bars and hence I, is expected to be the same for each of the beams B1 to B4.
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However, due to the natural uncertainties of RC structures, the experimental I, of
each beam is different as shown in Fig. 7. Using Monte Carlo Simulation (MCS),
the probability characteristics of I, can be calculated, and are plotted in Fig. 7. The
results show that the probability density function is similar to a normal distribution,
the mean value I, is 6.16x10™* m? with the COV of 17%, and the lower and upper
fractiles (2.28% and 97.72%) are 4.10x10™* m* and 8.1x10™* m? respectively. All
the experimental values of I, fall in the probability interval (2.28% to 97.72%) in
the high probability density zone. The comparison between experimental results and

stochastic analysis shows the precision of the average moment of inertia model.

7.8. Calibration of model error of moment of inertia 11

The short-term experimental data from the tests carried out on eleven beams at
UNSW Australia as well as test results from two additional sources from the literatures[56—
58] are used to calibrate a probabilistic distribution for the model error of the average
moment of inertia I,. The actual material properties (e.g. the mean value of elastic
modulus of concrete and steel E., and Eg,), section dimensions, ratios of tensile re-
inforcement and the loading arrangement can be measured in the laboratory. Using
cyclic load-deflection tests results, the experimental value of I, for each beam was
assessed as mentioned in Section 7.2. Fig. 8(a) illustrates the relationship between
the predicted and test values of the normalized average moment of inertia I,/I,.
Results presented in Fig. 8(a) show that the Castel et al. model is reasonably able
to predict the average moment of inertia for cracked reinforced concrete beams. It is
assumed that in the collected experimental data, the mechanical properties as well as
cross-section dimensions were accurately measured. Hence, the only uncertainty is
that associated with the analytical model[59]. The mean value of short-term model

error 71 is 1.02 with the COV of 9.6 %. Similarly, the model uncertainty of the

18



Fig. 8. Scatter of experimental and analytical values for normalized average moment
of inertia

time-dependent effects of creep and shrinkage on the average moment of inertia is
calibrated by using the tested data reported by Murray [34] . The mean value of
long-term model error 7, is 1.00 with the COV of 12.1 % (Fig. 8(b)). Due to the
lack of experimental data, the probabilistic distribution of the model error is assumed
to be a normal distribution. In further, more experiments are required in order to
improve the calibration of the model error of the average moment of inertia and to
cover a wider range of material strengths, reinforcement ratios, and specimen sizes.
In order to cover more area of the applications of effective moment of inertia, a
total of 505 observations of Gilbert[60] and Gribniak [29, 61] are adopted to calibrate
the model error of the effective moment of inertia. In Ref.[60], Gilbert reported
experimental results obtained on a total of eleven lightly reinforced concrete beams
(slabs). The deflections of the beams (slabs) were measured for different loading
values after cracking: 1.1M,,, 1.2 M., and 1.3M,,. In Ref.[29, 61], a total of eight
lightly reinforced concrete beams were tested under a four-point loading scheme. The
measured curvatures in each load step were reported. Similar to the model error of

the average moment of inertia, the ratio between experimental and predicted results
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Fig. 9. Histogram and probability density of the model error of the effective moment
of inertia

calculated by using the effective moment of inertia is defined as the model error ;.
The histogram and probability density of the model error +q; are plotted in Fig. 9.
It can be seen that the model error for effective moment of inertia can be treated
as a lognormal random variable with the mean value of 0.96, and with the COV of
0.20.

It is noted that the calibration of model errors of the moment of inertia is based on
the short-term experiments. The uncertainty relating to creep and shrinkage effects

is taken into account by using 74, 75, and Eq. (16) as mentioned in Section 6.1.

8. Serviceability reliability analysis

8.1. Determined deflection analysis for cracked concrete beams

For the in-service response, the stress-strain relationship for concrete in compression
is taken to be linear elastic. For pure bending problems, assembling the appropriate
moment of inertia for cracked reinforced concrete beams, a static analysis can be
performed via the finite element method to calculate the deflections of the beams.
As shown in Fig. 10, for the case of four points loading, the length of the cracked
zone of the beam depends on the relative values of the cracking moment M., and the
maximum applied moment M,. The moments of inertia adopted for the uncracked
zone near the supports is the gross moment of inertia I,. In the cracked zone, either
the effective moment of inertia I, or the average moment of inertia [, is used in
order to compare the performance of both approaches in the serviceability reliability

analysis.
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Fig. 10. Assembling the moment of inertia for the overall beam response calculation

8.2. Serviceability requirement

The serviceability requirements can include the beam deflection, the crack width,
the level of vibration, the degree of spalling, etc. In this paper, the serviceability
issues relating to excessive deflection are discussed.

Allowable deflection limits for use in structural design are specified in most stan-
dards or codes of practice and depend on the function of the beam or slab. As shown
in Table 4, allowable deflection limits obtained from ACI 318-14[25] for elements
in buildings are approximately equivalent to those from fib Model Code 2010 and
Eurocode 2[35, 36], whereas the requirements for bridges from AASHTO (2002)[62]

are much stricter.

Table 4. Suggested Deflection Limits for Structural Elements

Code Limitation Condition
ACT 31814 1/240 Supporting or attached to non structural elements
which are not likely to be damaged by large deflection
Supporting or attached to non structural elements
L /480

which are likely to be damaged by large deflection

fib Model Code 2010 1250 quasi-permanent loads could impair
odel Code

the appearance and general utility

quasi-permanent loads could damage

/ Eurocode 2 L/500
adjacent parts of the structure
AASHTO LRFD Bridge L/800 General vehicular load
Design Specifications L/1000 Vehicular and/or pedestrian load

In this paper, the ACI 318-14 requirements are selected as an example to show the
effects of cracking damage of existing reinforced concrete beams on the serviceability

reliability. According to ACI 318-14, two different deflection limits must be satisfied
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for slabs and beams supporting (or attached to) nonstructural elements. For the at-
tached non-structural elements which are not likely be damaged by large incremental
deflections Ay, , the sum of the time-dependent deflection due to sustained loads
and the immediate deflection due to live load should not exceed L/240 (A;), where
L is the span of the slab or beam. The corresponding probability of serviceability
failure Py, is given by

Ppy = Pu(Ay — Ape < 0) (17)

where P,(.) is the probability of the even (e.g. Ay — Ay < 0in Eq. (17) ).
For the attached nonstructural elements which are likely be damaged by large
deflection, Aj,. should not exceed L/480 (As). The corresponding probability of

serviceability failure Py, is given by

Pf2 = Pr(AQ — Ainc < 0) (18)

8.3. Serviceability reliability analysis methodology

Monte Carlo simulation (MCS) is adopted here to calculate the serviceability relia-
bility of cracked reinforced concrete beams. The accuracy of MCS depends on the
sample sizes and the value of the probability of failure (the smaller the probability
of failure, the larger the sample size required to ensure the same accuracy)[53|. Con-
sidering that the target reliability index (3 for existing structures are 3.0 (reference
period 1 year) and 1.5 (reference period 50 years) for serviceability limited states
verification in fib Model Code [36], a total of M = 10° samplings is large enough to
satisfy the sampling requirements.

For an intact reinforced concrete beam, the serviceability reliability can be cal-

culated by using the effective moment of inertia, and the calculation steps are as
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follows:
e 1: Sampling the random variables of structure and dead load to model a beam;
e 2: Sampling the sustained and extraordinary live loads in the reference period;

e 3: Calculating the deflection by using monotonic loading stiffness (Eq. (3))

dependent on the maximum live loads combination;
e 4: Increasing by one for failure counter (m), if the deflection is larger than the
limit.

For an cracked reinforced concrete beam damaged by a historical load ( Pyye), the
deduction of stiffness and the historical irreversible deflection have to be taken into
account by using the average moment of inertia. For every sampling in MCS, the

analysis is carried out as follows:

e 1: Sampling the random variables of structure and dead load to model a beam;

2: Calculating the instantaneous deflection caused by a historical loading re-

sulting in cracking of the beam by Eq. (3);

3: Calculating the irreversible deflection and average stiffness by Eq. (13)

4: Sampling the sustained and extraordinary live loads in the reference period;

5: if the maximum combined live load is less than the historical loading, go to

7

6: Calculating the deflection by using the monotonic loading stiffness (Eq. (3))

dependent on the maximum combined live load; go to 9;
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e 7: Calculating the deflection caused by sampling live load with reloading stiff-
ness using by Eq. (13);

e 8: Calculating the total deflection by summing the irreversible and reloading

deflections;

e 9: Increasing by one for failure counter (m), if the total deflection is larger

than the deflection limit.

The failure probability for the serviceability limit state of cracked reinforced con-

crete beams incorporating cracking damage can be obtained by

Py =

SE

The reliability index is
B=—o7\(Py) (20)

9. Numerical examples

The reinforced concrete beam Bl is selected as a study case. Both dead load and live
loads are assumed to be uniform loading. The nominal value of the dead load G, is
assumed to be 24kN /m, incorporating other dead loads from the attached elements
(e.g. the self-weight of the concrete floor with thickness of 0.14 m and with influence
width of 6 m). Three levels of historical damaging loads (P, = 20kN, P, = 60kN,
and P; = 100kN) inducing cracking are applied to the beam. The sum of applied
bending moment due to the dead load and the damaging load are about 40%, 60%,

and 80% of the yielding bending moment in each level, respectively.
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9.1. Short-term deflection

Using the MCS, the probability density distributions of the short-term deflection
at mid-span with the increment of the nominal value of live load was calculated for
each level of historical load. The corresponding short-term serviceability reliability
index was analyzed as well. The results with and without considering historical
cracking damage are plotted in Fig. 11 and Fig. 12 respectively. The influence of
the historical damaging load on the probability density distribution of the deflection
significantly due to the irreversible deflection and the deduction of the stiffness,
when @,/G, = 1 and Q,/G, = 2, is shown in Fig. 11(a) and 11(b). However,
as the increment of the nominal value of the live load, the difference decreases as
shown in Fig. 11(d). The reliability index is affected by the historical damage as
well. However, it is interesting that the reliability index of the beam subjected
to the first load level (P;) is the same with the undamaged beam, although the
probability density distribution is different, as shown in Fig. 11. These phenomena
can be explained by using Fig. 13.

In Fig. 13(a), when the applied live load P is larger than the historical damag-
ing load P, the loading path returns to the monotonic path (OBC) as shown in

Fig. 13(a). In this scenario, there is no influence of the historical damage on the live
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Fig. 13. Typical overall response of RC-beams vs deflection limitation

load deflection. However, if the applied live load P is less than the historical load
P, (Fig. 13(b)), the loading path is ODE, and the deflection response (A) due to
the applied live load should be calculated by

A= Aperm,cr + Ainst (21)

where Ay, is the instantaneous deflection of the cracked beam under loading and
unloading cycles. For the light damage induced by the first loading level P, the
live load P is always larger than the historical load and less influence is observed
on the short-term serviceability reliability as shown in Fig. 12. For heavier damage
(e.g. Pye = P, or P3), with increases in the nominal value of live load, the influence
of the historical damage loading on both the probability density distribution of the
deflection and the serviceability reliability index of the damaged beam decreases as
shown in Fig. 11 and 12.

The effect of cracking on the serviceability reliability index also depends on the
deflection limit selected. P, is the critical load related to the deflection limit for the
serviceability limit state in the monotonic load-deflection envelop curve as shown
in Fig. 13(a) for one of the random samplings. When the historical loading Pp,. is
lower than P,, all of the applied live loads P causing serviceability failure are larger
than the historical damaging load P,.. Hence, although historical damage affects
the probability density distribution of the deflection as shown in Fig. 11 ( Py = P1),

no influence is observed on the serviceability reliability. When the historical loading
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is larger than P,, the deflection due to an applied load P, lower than FP,, should be
calculated using Eq. (21).The failure criterion should be modified as

P> Pb (22)

in which P, is the critical load related to the deflection limit for the serviceability
limit state in the cycle loading path (DE). Obviously, the risk of failure will increase
when P, < P,. In the stochastic analysis, both P, and P, are random variables and,
even when the mean value of deflection induced by historical loading is less than the
deflection limitation, there is still a remarkable influence of the cracked damage on

the serviceability reliability. The criterion can be defined as follows:

P.(Pye > P,) >0 (23)

9.2. Long-term deflection

As shown in Fig. 14, the beam considered here was loaded 28 days after concrete
placement with the dead load, and was then occupied by the tenants and subjected
to the sustained live load 180 days after concrete placement. The beam is assumed
to have eight different tenants. And, the average tenancy duration is assumed to
be eight yeas[54, 63]. Thus, the expected design life of the beam is 64.5 years.
Under the dead load and the sustained live load, the long-term effects of creep and
shrinkage were calculated. During the tenant period, the extraordinary live load was
also applied to the beam. This type of load is transient in nature, and is not taken
into account in the creep analysis.

In this paper, two damaged scenarios have been considered: the historical dam-

aging load was applied 180 days (case C1) and 3000 days (case C2) after concrete
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Fig. 14. The development of the total deflection of the beam including the time-
dependent effects

(609)
Hizs

Fig. 15. Long-term serviceability reliability index vs. Q,/Gy

placement, respectively. The long-term serviceability reliability index [, relating to
the deflection limitation Ay was calculated. The results are plotted in Fig. 15. Sim-
ilar to the short-term serviceability reliability analysis, the historical damage leads
to a decrement in the long-term serviceability reliability. However, the results are
different from those of the short-term analysis in that the reliability index in the
damaged beam is lower than that of the undamaged beam, even when the historical
load Py is only 20kN. The reduction of the overall stiffness due to the historical
cracking damage influences both the immediate deflection caused by the extraordi-
nary live load and the time-dependent deflection due to the dead load and sustained
live load. Although the extraordinary live load is larger than the historical load P,
with the result that the instantaneous loading path returns to the monotonic loading
as show in Fig. 13(a), the damage to the stiffness affects the time-dependent deflec-
tion leading to the reduction of the long-term serviceability reliability. The age of
concrete when the historical damage load was applied influences the long-term ser-
viceability reliability. In this example, the long-term serviceability reliability index
for the case C1 was considerable lower than the reliability index for the case C2, as
shown in Fig. 15. According to MC 90 model, the mean value of creep coefficients at
the age of 180 and 3000 days are 63% and 95% of the mean value of the final creep
coefficient, respectively. Thus, the cracking damage applied at the age of 3000 days

of concrete has little influence on the creep effect.
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10. Conclusion

In this paper, an existing model allowing calculation of the average moment of
inertia of RC beams during cycles of loading and unloading is modified to take into
account the effect of historical cracking damage on the serviceability reliability of
RC members. The suitability of the average moment of inertia model for reliability
analysis is verified by considering experimental tests on a total of eleven reinforced
concrete beams. The model errors associated with both the effective and the average
moment of inertia are calibrated using the experimental data. Combining the sources
of uncertainty of RC-members and MCS, an quantitative analysis approach is pre-
sented to evaluate the loss in serviceability reliability due to the historical cracking
damage for the reinforced concrete beam.

By using the proposed approach, both short-term and long-term serviceability
reliability of a cracked reinforced concrete beam was analyzed. The results confirm
that the effect of historical cracking damage on short-term serviceability reliability
should be taken into account, when the deflection induced by historical loading is
larger than the deflection limitation. In such a scenario, neglecting the historical
cracking damage leads to overestimation of the serviceability reliability of cracked
RC-members. Light historical damage (e.g. P, = Py, in this case) has no influence
on the short-term serviceability reliability, although it affects the probability density
distribution of the deflection of the beam. However, even when the historical damage
is light, the long-term serviceability reliability index is decreased as the cracking
damage affects the time-dependent deflection. Additionally, the later the damaging
load is applied to the reinforced concrete beam, the less influence the cracking damage
has on the long-term serviceability reliability.

The proposed method can be used to quantitatively evaluate the residual service-
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ability reliability of existing cracked damage reinforced concrete beams.

11. Acknowledgement

Authors are very grateful for the funding from National Key Research and Devel-
opment Program of China with Grant No.2016YFB1200401 and 2016 YFC0802205,
the projects 51308468 and 51378432 supported by National Natural Science Foun-
dation of China, the projects DP110103028 and DP140100529 supported by the
Australian Research Council, and Research and Development Project (2014-02-015)
supported by Department of Communications of Guangdong Province. The first
author wishes to thank the Key Laboratory of High-speed Railway Engineering,
Ministry of Education, Southwest Jiaotong University, People’s Republic of China,

for its support.

12. References

[1] B. V. Vliet, I. T. Vrouwenvelder, Reliability in the performance-based concept
of fib model code 2010, Structural Concrete 14 (4) (2013) 309-3019.

[2] D. M. Frangopol, Y. Ide, E. Spacone, I. Iwaki, A new look at reliability of
reinforced concrete columns, Structural Safety 18 (2) (1996) 123-150.

[3] D. Val, F. Bljuger, D. Yankelevsky, Reliability evaluation in nonlinear analysis
of reinforced concrete structures, Structural Safety 19 (2) (1997) 203-217.

[4] R. E. Melchers, Structural reliability analysis and prediction, John Wiley & Son
Ltd, 1999.

30



[5]

[9]

[10]

[11]

[12]

R. Soares, A. Mohamed, W. S. Venturini, M. Lemaire, Reliability analysis of
non-linear reinforced concrete frames using the response surface method, Relia-

bility Engineering & System Safety 75 (1) (2002) 1-16.

R. A. Neves, A. Chateauneuf, W. S. Venturini, M. Lemaire, Reliability anal-
ysis of reinforced concrete grids with nonlinear material behavior, Reliability

Engineering & System Safety 91 (6) (2006) 735-744.

T. Xiang, R. Zhao, Reliability evaluation of chloride diffusion in fatigue damaged
concrete, Engineering structures 29 (7) (2007) 1539-1547.

T. Xu, T. Xiang, Y. Zhan, R. Zhao, Reliability analysis of circular concrete-
filled steel tube with material and geometrical nonlinearity, Journal of Modern

Transportation 20 (3) (2012) 138-147.

Y. Jiang, G. Sun, Y. He, M. Beer, J. Zhang, A nonlinear model of failure function
for reliability analysis of rc frame columns with tension failure, Engineering

Structures 98 (2015) 74-80.

N. B. Hossain, M. G. Stewart, Probabilistic models of damaging deflections for
floor elements, Journal of performance of constructed facilities 15 (4) (2001)

135-140.

A. Castel, T. Vidal, R. Francois, Finite-element modeling to calculate the overall
stiffness of cracked reinforced concrete beams, Journal of Structural Engineering

138 (7) (2012) 889-898.

V. Gribniak, H. A. Mang, R. Kupliauskas, G. Kaklauskas, Stochastic tension-

stiffening approach for the solution of serviceability problems in reinforced con-

31



[17]

[18]

crete: Constitutive modeling, Computer-Aided Civil and Infrastructure Engi-

neering 30 (9) (2015) 684-702.

R. I. Gilbert, R. F. Warner, Tension stiffening in reinforced concrete slabs,

Journal of the structural division 104 (12) (1978) 1885-1900.

C.-K. Choi, S.-H. Cheung, A simplified model for predicting the shear response

of reinforced concrete membranes, Thin-walled structures 19 (1) (1994) 37-60.

A. Scanlon, D. W. Murray, Time-dependent reinforced concrete slab deflections,

Journal of the Structural Division 100 (9) (1974) 1911-1924.

F. J. Vecchio, M. P. Collins, The modified compression-field theory for reinforced
concrete elements subjected to shear, in: ACI Journal Proceedings, Vol. 83, ACI,

1986, pp. 219-231.

B. Massicotte, A. E. Elwi, J. G. MacGregor, Tension-stiffening model for planar
reinforced concrete members, Journal of Structural Engineering 116 (11) (1990)

3039-3058.

R. S. Stramandinoli, H. L. La Rovere, An efficient tension-stiffening model for

nonlinear analysis of reinforced concrete members, Engineering Structures 30 (7)

(2008) 2069-2080.

G. Kaklauskas, J. Ghaboussi, Stress-strain relations for cracked tensile concrete

from rc beam tests, Journal of Structural Engineering 127 (1) (2001) 64-73.

L. Torres, F. Lpez-Almansa, L. M. Bozzo, Tension-stiffening model for cracked
flexural concrete members, Journal of Structural Engineering 130 (8) (2004)

1242-1251.

32



[21]

[22]

[23]

[24]

H. Floegl, H. A. Mang, Tension stiffening concept based on bond slip, Journal
of the Structural Division 108 (12) (1982) 2681-2701.

A. K. Gupta, S. R. Maestrini, Tension-stiffness model for reinforced concrete

bars, Journal of Structural Engineering 116 (3) (1990) 769-790.

C.-K. Choi, S.-H. Cheung, Tension stiffening model for planar reinforced con-

crete members, Computers & structures 59 (1) (1996) 179-190.

D. E. Branson, Instantaneous and time-dependent deflections of simple and
continuous reinforced concrete beams, HPR Report No.7, Alabama Highway

Dept., Bureau of Public Roads (1963).

ACI-318, Building code requirements for structural concrete (aci 318-14) and
commentary on building code requirement for structural concrete (aci318r-14),

American Concrete Institute, 2014.

R. I. Gilbert, Tension stiffening in lightly reinforced concrete slabs, Journal of

structural engineering 133 (6) (2007) 899-903.

P. H. Bischoff, Reevaluation of deflection prediction for concrete beams rein-
forced with steel and fiber reinforced polymer bars, Journal of Structural Engi-

neering 131 (5) (2005) 752-767.

P. H. Bischoff, Rational model for calculating deflection of reinforced concrete

beams and slabs, Canadian Journal of Civil Engineering 34 (8) (2007) 992-1002.

V. Gribniak, V. Cervenka, G. Kaklauskas, Deflection prediction of reinforced
concrete beams by design codes and computer simulation, Engineering Struc-

tures 56 (6) (2013) 2175-2186.

33



[30]

[34]

[35]

T. Xu, A. Castel, R. I. Gilbert, A. Murray, Modeling the tensile steel reinforce-
ment strain in rc-beams subjected to cycles of loading and unloading 126 (2016)

92-105.

A. Castel, R. Francois, Calculation of the overall stiffness and irreversible deflec-
tion of cracked reinforced concrete beams, Advances in Structural Engineering

16 (12) (2013) 2035-2042.

A. Castel, R. I. Gilbert, G. Ranzi, Instantaneous stiffness of cracked reinforced
concrete including steel-concrete interface damage and long-term effects, Journal

of Structural Engineering 140 (6) (2014) 1299-1328.

T. Xu, A. Castel, Modeling the dynamic stiffness of cracked reinforced concrete
beams under low-amplitude vibration loads, Journal of Sound and Vibration

368 (2016) 135-147.

A. Murray, A. Castel, R. I. Gilbert, C. Zhen-Tian, Time-dependent changes in
the instantaneous stiffness of reinforced concrete beams, Engineering Structures

126 (2016) 641-651.

European Committee for Standardization (CEN), Eurocode 2: Design of Con-
crete Structures: Part 1-1: General Rules and Rules for Buildings, prEN 1992-
1-1:2003, European Prestandard, Brussels, Belgium, 2003.

CEB-FIB Model, CEB-FIB Model Code 2010-Final draft, 2010.

A. Castel, R. Francois, Modeling of steel and concrete strains between primary
cracks for the prediction of cover-controlled cracking in rc-beams, Engineering

Structures 33 (12) (2011) 3668-3675.

34



[38]

[44]

[45]

[46]

H. Wu, R. Gilbert, Modeling short-term tension stiffening in reinforced concrete
prisms using a continuum-based finite element model, Engineering Structures

31 (10) (2009) 2380-2391.

D. Z. Yankelevsky, M. Jabareen, A. D. Abutbul, One-dimensional analysis of
tension stiffening in reinforced concrete with discrete cracks, Engineering Struc-

tures 30 (1) (2008) 206-217.

P. H. Bischoff, Effects of shrinkage on tension stiffening and cracking in rein-

forced concrete, Canadian Journal of Civil Engineering 28 (3) (2001) 363-374.

G. Kaklauskas, V. Gribniak, D. Bacinskas, P. Vainiunas, Shrinkage influence
on tension stiffening in concrete members, Engineering Structures 31 (6) (2009)

13051312.

R. I. Gilbert, G. Ranzi, Time-Dependent Behaviour of Concrete Structures,
London: Spon Press, 2010.

Z. P. Bazant, S. Baweja, Justification and refinements of model b3 for concrete
creep and shrinkage 1. statistics and sensitivity, Materials and Structures 28 (7)

(1995) 415-430.

N. Gardner, M. Lockman, Design provisions for drying shrinkage and creep of

normal-strength concrete, ACI Materials Journal 98 (2) (2001) 159-167.

N. Gardner, Comparison of prediction provisions for drying shrinkage and creep
of normal-strength concretes, Canadian Journal of Civil Engineering 31 (5)

(2004) 767-775.

C. euro-international du béton, CEB-FIP model code 1990: design code, no.
213-214, Telford, 1993.

35



[47]

[53]

[54]

T. Xiang, C. Yang, G. Zhao, Stochastic creep and shrinkage effect of steel-
concrete composite beam, Advances in Structural Engineering 18 (8) (2015)

1129-1140.

T. Xu, T. Xiang, R. Zhao, G. Yang, C. Yang, Stochastic analysis on flexural be-
havior of reinforced concrete beams based on piecewise response surface scheme,

Engineering Failure Analysis 59 (2016) 211-222.

H. Keitel, A. Dimmig-Osburg, Uncertainty and sensitivity analysis of creep mod-
els for uncorrelated and correlated input parameters, Engineering Structures

32 (11) (2010) 3758-3767.

JCSS Probabilistic Model Code, Joint committee on structural safety, URL:

www. jcss. ethz. ch.

7. P. Bazant, K. L. Liu, Random creep and shrinkage in structures: Sampling,

Journal of Structural Engineering 111 (5) (1985) 1113-1134.

B. R. Ellingwood, T. V. Galambos, J. G. MacGregor, C. A. Cornell, Develop-
ment of a probability based load criterion for American national standard A58,
U.S. Dept. of Commerce, National Bureau of Standards , U.S. Govt. Print. Off,
Washington, D.C., 1980.

D. V. Val, L. Chernin, Serviceability reliability of reinforced concrete beams
with corroded reinforcement, Journal of Structural Engineering 135 (8) (2009)
896-905.

B. R. Ellingwood, C. G. Culver, Analysis of live loads in office buildings, Amer-
ican Society of Civil Engineers 103 (8) (1977) 1551-1560.

36



[55]

[56]

[57]

[58]

[62]

[63]

B.-S. Choi, A. Scanlon, P. A. Johnson, Monte carlo simulation of immediate
and time-dependent deflections of reinforced concrete beams and slabs, ACI

Structural Journal 101 (5) (2004) 633-641.

C. M. Tan, Nonlinear vibrations of cracked reinforced concrete beams, Ph.D.

thesis, University of Nottingham (2003).

S. Law, X. Zhu, Nonlinear characteristics of damaged concrete structures under

vehicular load, Journal of Structural Engineering 131 (8) (2005) 1277-1285.

S. Law, X. Zhu, Dynamic behavior of damaged concrete bridge structures under

moving vehicular loads, Engineering Structures 26 (9) (2004) 1279-1293.

H. Baji, H. R. Ronagh, Reliability-based study on ductility measures of rein-
forced concrete beams in aci 318, ACI Structural Journal 113 (2) (2016) 373-382.

R. I. Gilbert, Tension stiffening in lightly reinforced concrete slabs, Journal of

Structural Engineering 133 (6) (2007) 899-903.

V. Gribniak, Shrinkage influence on tension-stiffening of concrete structures,

Ph.D. thesis, Vilniaus Gedimino technikos universitetas (2009).

AASHTO, AASHTO LRFD bridge design specifications, Washington DC:
American Association of State Highway Transportation Officials, 2002.

M. G. Stewart, Serviceability reliability analysis of reinforced concrete struc-

tures, Journal of Structural Engineering 122 (7) (1996) 794-803.

37



Fp]'e

]
P..

e

Deflection

Fig. 1

Load @ (sustained)

—|_|__|—|_l_

Load Q.(extraordinary)

Load @ (total)

Fig. 2




d h=400
.
¥
300 -
- 1100 -
¥ ¥
i) N
| 3300 -
[ &
M 3500 =
Fig. 3

Fig. 4

_ =
T T



Loading (KN}

Loading (KN}

South Side

16-14 -12 .10 08 06 04 02 0 02 04 06 08 10 12 14 16
-16-14-12 10 08 06 04 02 ¢ 02 04 06 08 10 12 14 16
- o |
| 1100mm ' 1100mm 1100mm
Morth Side
-16-14 .12 .10 08 06 04 02 0 02 04 06 08 10 12 14 16
-16-14 12 .10 08 06 04 02 0 02 04 06 08 10 12 14 16
I: :If. :I-ﬂ .l
| 1100mm ' 1100mm ' 1100mm
Fig. 5
a0 T T T T a0 T r T T
80+ 80
70t p A _ 70+ Py A
60r .. & Z 60 X
50} e = 50 A
40t 2 Bl £ 40 {;‘-' B2
30r v 3 R TELN g 30 & 3 18 O0N
anl j!}f B ¥ u—_t..._l’-.l](_\ =l 20 ;l‘:r F u =208 00N
1) A 10 &
0 1 2 3 4 5 1 2 3 4
Deflection | mm) Dieflection (mm)
(a) Bl (b) B2
90 a0
a0t 80
70t . _ 70 A
60 Fir '\ < 60 Fe T-:\
Efils R 5 B Y
a0r g B3 = 40 o B4
| s P,=203.00kN g 30 S P, =204 25kN
20t & ik T 20 o' R
101 o 10 Fril
0 : : : - 0 £ : :
1 2 3 4 5 1 2 3 4
Deflection(mm) Deflection (mm)
(c) B3 (d) B4

Fig.




I/, (Model)

=
o

2 0.4t
T
2 03f
= 0.2f
£ 01}
0 . . . e .
] 2 4 6 8 10 12
I (=10 I
Fig. 7
1 1
T =102 T =1.00
08 0.8
COV=4.6% COV=12.1%
. —_
0.6 | < 08
o =S
04 r :‘; 0.4 O
8 O UNSW (present)
0.2 ® Tan  (2003) 0.2
¥ Law (2004)
0 0
0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8

(a) Short-term average moment of inertia

I./1; {Test)

(b) Long-term

I, /I, {Test)

average moment of inertia

Fig. 8
a0 . .
_ 711 = 0.96
60 7
COV=0.20
40 7
20r 7
0 —— -
0.5 1 2.5



Uncracked |Unu:rau:ked
Zone Cracked Zone | Zone
1 LIL, L

Fig.

15
:E" 1.2 —— No damage
g
2 08 5t
gy
£ 03 » - P
oL e ST
0 2 4 6 8 10
Deflection | mm)
td] (;:)n,-"rcn =1
0.5

16

4 6 8

Dieflection mm)

(('} Qn)"lcn =3

i0 12 14

Reliability index

No damage

—_— ol
....... FE
——P
1 1.5 2 25 3 35 4
Qu.-';c"rn

(a) &

Fig.

10

—— Mo damage

B
- P
— I '}rl

4 6 8 10 12 14 16

4]
Dieflection | mm)
[b} Qn)f{-;'u =2
0.2
‘f 015t —— No damage |
=2 A = ]
2 041f : 1
= ) =
E 0.05 i P 1
0
0 8 12 16 20 24 28 a2

Reliability index

12

[}

"3

—

=

Deflection rm)

(d) Qu/Gn =4

" No d;:lnm,l__{{?

s

15 2

3 3.5

4



A Load ‘ -

Deflection Limitation Deflection Linatation

\
\ n

= ‘
/ Paore - - .

T
S s e Ainst Deflection
a} a = Pre : .
(a) Fa > F W
Fig. 13
E
e Tenant period |
5 E?maordjnm1 live load |
D
| ] il
1 Sustamed live load
{ | | Deadload
o Time (days)

Fig. 14



Reiability indesx

Fig. 15

- ; ; 4 . ; ;
+  No damage +  No damage
il
— O < * —
. -I- A | 3
T SRR B e B ey
- z It
-~ % = g
o =k
L L 1 0 L L L
05 1 15 2 0 05 1 15
Q:l /G Qu /G
(a) A1 (b) P
4 . : :
+  No damage
9 3% :
B i s + =
By ¥ --0
2 ~ *
E ~ ¥
3
0 n L L
0 0.5 1 1.5
an rq
(e) Ps




