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Abstract Target tracking applications of wireless sensor

networks (WSNs) may provide a high performance only

when a reliable collection of target positions from sensor

nodes is ensured. The performance of target tracking in

WSNs is affected by transmission delay, failure probability,

and nodes energy depletion. These negative factors can be

effectively mitigated by decreasing the amount of transmit-

ted data. Thus, the minimization of data transfers from sen-

sor nodes is an important research issue for the development

of WSN-based target tracking applications. In this paper, a

data suppression approach is proposed for target chasing in

WSNs. The aim of the considered target chasing task is to

catch a moving target by a mobile sink in the shortest time.

According to the introduced approach, a sensor node sends

actual target position to the mobile sink only if this informa-

tion is expected to be useful for minimizing the time in which

target will be caught by the sink. The presented method al-

lows sensor nodes to evaluate the usefulness of sensor read-

ings and select those readings that have to be reported to

the sink. Experiments were performed in a simulation envi-

ronment to compare effectiveness of the proposed approach

against state-of-the-art methods. Results of the experiments

show that the presented suppression method enables a sub-

stantial reduction in the amount of transmitted data with no

significant negative effect on target chasing time.
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1 Introduction

Wireless sensor networks (WSNs) have demonstrated a great

potential for a wide range of control applications, includ-

ing building automation, industrial control systems, electric-

utility automation, military systems, road traffic control, in-

ventory management, and target tracking [1–6]. In this kind

of applications, data registered by sensor nodes are trans-

ferred wirelessly to a sink node. The sensor readings col-

lected at sink node are then utilized for decision making. Such

applications can provide a high performance only if the WSN

ensures a reliable and timely data delivery. Transmission fail-

ures, delays and energy depletion of sensor nodes may re-

sult in non-optimal decisions. The probability of transmission

failure and transmission delay as well as the energy consump-

tion can be reduced by decreasing the amount of transmitted

data [7]. Thus, minimization of data transfers from sensor

nodes is an important research issue for the development of

WSN applications.

Data suppression is an approach to collect necessary in-

formation at a sink node, while reducing the data transfers

from sensor nodes as much as possible [8,9]. When using

suppression schemes, each sensor node collects data with a

high sampling rate but sends only those data readings that

represent a deviation from an expected behavior. Thus, the

WSN is able to quickly recognize relevant events in the mon-

itored environment. This cannot be ensured in case of adap-

tive sampling methods that reduce the data communication by

adjusting the sampling rates of sensor nodes according to pre-

viously collected readings [10,11]. When using the adaptive
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sampling methods, the sampling rate is reduced if the pre-

vious measurements show that changes in a monitored pro-

cess are slow. In such case, the information about unexpected

abrupt changes of the monitored parameters may be missed

or delivered with excessive delay. In such situation, the col-

lected information would be insufficient for the target track-

ing applications. For instance, when the target remains in the

same location for a long time and then moves rapidly to a new

location, the new location may be reported belatedly and in

result the tracking performance would be decreased.

In this paper, a decision-aware data suppression approach

is proposed for target chasing in WSNs. The aim of the con-

sidered target chasing task is to catch a moving target by a

mobile sink in the shortest time. The mobile sink has to make

decisions, i.e., select its movement direction, based on infor-

mation about target position delivered from sensor nodes.

The data suppression methods available in the literature

were designed for monitoring applications that require the

WSN to collect information on a given set of parameters

with a defined precision or to report a predetermined set of

events. These methods exploit temporal and spatial correla-

tions among sensor readings to eliminate redundant data re-

ports [12–14]. Such approaches can be effective in case when

values of some parameter (e.g., temperature) have to be de-

termined within fixed error bounds (e.g., ±1◦C). However,

there is a lack of suppression methods designed specifically

for the target chasing applications in WSNs, where the re-

quired precision of the information about target position can

vary significantly in time. It means that the admissible error

bounds of the estimated target position cannot be specified in

advance for the considered application. These error bounds

depend on current distance between the target and the mo-

bile sink as well as on location of the sink in the monitored

area [15]. For example, if the distance between target and

sink is large then it is not necessary to know the precise cur-

rent target position because the sink will need a considerable

time to reach this location and during that time the target can

change its position significantly. Thus, the new target posi-

tion will have to be reported in the future (when the distance

from sink to target will be lower), and the current position can

be roughly estimated based on a previously reported position.

Another example is a situation when the mobile sink is close

to borders of the monitored area. In such situation a lower

precision of the information about target position is required,

because the borders restrict possible moves of the sink.

The proposed suppression approach eliminates transfers of

sensor readings (target positions) that are not useful for the

decisions of mobile sink. The introduction of this approach

was motivated by an observation that for the target tracking

tasks large amounts of sensor readings often do not have to

be transferred to the sink node as the decisions made with

and without these data are the same. Moreover, a tracking

objective can be usually achieved by implementing different

decisions, including those that are based on incomplete infor-

mation.

According to the proposed decision-aware approach, a sen-

sor node sends actual target coordinates to the sink only if

this information is expected to be useful for reducing the time

which is necessary to catch the target. The introduced method

allows the sensor nodes to evaluate usefulness of registered

target position by taking into account the objective of tar-

get chasing task. A probabilistic approach is introduced to

be used by sensor nodes for evaluation of the data usefulness.

The paper is organized as follows. Section 2 reviews re-

lated research works and outlines the contribution of this pa-

per. In Section 3, the decision-aware data suppression method

is described in details. Section 4 presents results of simulation

experiments. Finally, in Section 5, conclusions are drawn and

some future research directions are suggested.

2 Related work and contribution

Several methods have been proposed in the related literature

for data collection tasks that aim at reducing communication

in WSNs. These methods can be categorized either as central-

ized or decentralized. In case of centralized methods, the data

collection is managed by a sink node, which sends queries

to sensor nodes in order to retrieve the needful data. When

using the decentralized methods, sensor nodes analyze data

readings and autonomously decide if they should be reported

to the sink. This category includes temporal, spatiotemporal

and cascaded data suppression methods [9,12–14,16].

Examples of the centralized methods are model-based

querying [17] and uncertainty-based information extraction

[18]. According to these methods, a predictive model is used

at the sink node to infer current values of the monitored pa-

rameters. If uncertainty associated with the inferred values

is too high then the sink node sends a query to obtain actual

data readings from the sensor nodes. In case of the centralized

data collection, abrupt changes of a monitored parameter will

remain undetected for a long time if the model fails in pre-

dicting actual value of the parameter and the sink postpones

acquisition of sensor readings. When using the decentralized

methods, each relevant sensor reading can be reported to the

sink node.



Bartłomiej PŁACZEK Decision-aware data suppression in wireless sensor networks for target tracking applications 3

Data aggregation methods reduce communication in WSN

by processing sensor readings at intermediate nodes before

transmitting them further. When an intermediate node re-

ceives data from multiple sensor nodes, instead of forwarding

all of them, it checks the contents of the incoming data and

then combines them by eliminating redundant information

under some accuracy constraints. For instance, readings from

different sensor nodes that are related to the same event can be

fused together and jointly reported to the sink [19]. The ag-

gregation approach can exploit spatial correlation of sensed

data [20]. Main disadvantage of the in-network data aggrega-

tion is a delay in transmission, which is a consequence of the

time-consuming data processing by the intermediate nodes.

Existing suppression methods [8,9,12–14] exploit the fact

that a large subset of sensor readings does not need to be

transmitted to the sink as these readings can be inferred from

the other reported data. In order to infer suppressed data, the

sink uses a predictive model of the monitored process. The

same model is used by sensor nodes to decide if particu-

lar data readings have to be transmitted. A sensor node sup-

presses transmission of a data reading only when it can be

inferred within a given error bound.

Temporal suppression is based on correlations between ac-

tual and previous data readings of a sensor node. The basic

approach uses a naive model, which assumes that actual sen-

sor reading is the same as the last reported one [21]. Accord-

ing to this method, a sensor node reports its actual reading

to sink only if deviation between the actual reading and the

previously reported reading is above a given threshold.

Processes monitored by WSNs often exhibit correlations

in both time and space [22]. Thus, spatiotemporal suppres-

sion methods were introduced that combine the temporal sup-

pression with recognition of spatially correlated sensor read-

ings from neighboring nodes [13,14,23]. When using the spa-

tiotemporal suppression, sensor nodes are clustered by taking

into account the spatial correlations. Sensor readings within

each cluster are reported to a cluster head node, which then

uses a spatiotemporal model to decide if the readings have to

be transmitted to sink.

In case of cascaded approach [12], a data suppression

method is used in transmitting sensor reading between a

source node to another node, and then the suppression is ap-

plied again in reporting the reading together with other read-

ings to a third node. The procedure is repeated until the sink

is reached. Temporal suppression is used at the first level of

the cascade, i.e., at the source sensor node. Spatiotemporal

suppression is utilized for higher cascade levels at the cluster

head nodes.

In this paper, a decision-aware data suppression method is

introduced for the target tracking applications of WSNs. Un-

like the existing approaches, the proposed method does not

assume any required precision level of the collected informa-

tion. It is based on an observation that a large part of sensor

readings does not need to be reported to the sink as these

readings are not necessary for effective target tracking. The

introduced method allows sensor nodes to evaluate the use-

fulness of sensor readings. The data usefulness is evaluated

by taking into account an expected effect of a sensor reading

on the target tracking performance. Thus, only those sensor

readings are reported to the sink that are useful for making an

optimal decision, i.e., for selection of a movement direction

which will minimize distance between sink and target.

In the proposed approach, a probabilistic model is used to

estimate possible effects of the sink decisions. Since different

possibilities are taken into account, the sensor nodes can eval-

uate a probability with which the condition of data suppres-

sion is satisfied. A threshold of this probability is used to de-

cide if sensor readings should be suppressed. This threshold

parameter allows a trade-off between the amount of transmit-

ted data and the target tracking performance to be effectively

managed.

3 Proposed method

In the considered target chasing application of WSN, sensor

nodes detect a target and determine its actual position. The

position of target pT = [xT, yT] is transmitted to a mobile

sink. This information is then utilized for selecting movement

direction. The aim is to reach the moving target in the short-

est possible time, thus the mobile sink selects a movement

direction that minimizes its distance to the target. Movement

direction of the target is random. Both the target and the sink

can move in one of the four directions: north, west, south or

east.

3.1 Target chasing by mobile sink

The selection of sink movement direction is performed pe-

riodically with a constant decision time interval τ. During

the decision time interval, the sink will move to position

p+S = [x+S , y
+
S], which is determined by solving the following

optimization problem:

minimize d(p+S , p̄T)

subject to p+S ∈ MR,
(1)

where d denotes the Euclidean distance, p̄T is the target po-
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sition which has been recently reported to the sink node. MR

is the sink movement range, i.e., a set of positions that can

be reached by the sink during time interval τ. Since the sink

can move in one of the four directions, its movement range is

determined as follows:

MR =
{
p = [x, y] : |x − xS| + |y − yS| � vmax

S · τ
}
, (2)

where pS = [xS, yS] is current sink position, and vmax
S denotes

maximum sink speed.

Details of the operations performed by the mobile sink

are described in Algorithm 1. A special attention is paid to

transmission failures that can significantly affect the perfor-

mance of target tracking. The sink node assumes that a miss-

ing sensor message was intentionally suppressed and moves

towards previously reported target position. However, if the

message was not received due to transmission failure, the se-

lected movement direction will be not optimal. According

to the proposed algorithm, automatic repeat request method

(ARQ) is applied to deal with transmission failures. It means

that successfully received target coordinates (pT) have to be

acknowledged by the mobile sink.

Algorithm 1 Mobile sink operations

1 while target not caught do

2 begin

3 if pT received then

4 begin

5 p̄T := pT

6 send acknowledgement to sensor node

7 end

8 if decision time interval passed then

9 if target in acting range then catch target

10 else begin

11 find p+S ∈ MR : d(p+S , p̄T) = min
p∈MR

d(p, p̄T)

12 move towards p+S
13 end

14 end

3.2 Data sensing and communication

Algorithm 2 presents the operations that are performed by

each sensor node. Position of the target is acquired with a

constant rate, which is determined by the sensing time inter-

val. A packet with actual target coordinates (pT) is transmit-

ted from a sensor node to the mobile sink only if a suppres-

sion condition is dissatisfied. The data report to sink can be

accomplished by using the geographical routing [24].

After transmitting target coordinates, the sensor node waits

for acknowledgement from the mobile sink. If the acknowl-

edgement is not received, then the coordinates are retransmit-

ted. The source sensor node executes retransmissions until

the acknowledgement is delivered or a limit of retransmis-

sions is reached.

Algorithm 2 Sensor node operations

1 if sensing time interval passed then

2 begin

3 detect target in sensing range

4 if target detected then

5 begin

6 determine pT

7 verify suppression condition

8 if suppression condition is false then

9 repeat

10 send pT to sink

11 wait until timeout or ack. received

12 until acknowledgement received or max number

of retransmissions reached

13 broadcast p̄T and pS

14 end

15 end

Each acknowledgement sent by the mobile sink includes

sink coordinates (pS). Thus, the acknowledgements allow the

sensor node to update its information about current position

of the mobile sink and to predict its future movements. The

knowledge of sink position is utilized for routing as well as

for suppressing unnecessary data transfers, as discussed later

in this section.

The known maximum velocity and the possible movement

directions of the target are used to minimize the number of

active sensor nodes. A sensor node, which has detected the

target, (so-called target node) broadcasts packets to activate

the sensor nodes in locations that can be reached by the tar-

get during the sensing time interval. The broadcasted packets

include information about location of the mobile sink and the

target position that was recently reported to the sink. One ac-

tivated sensor node, which detects the target, takes over the

role of the target node. The remaining sensor nodes deacti-

vate.

3.3 Decision-aware data suppression

The proposed decision-aware data suppression method takes

into account usefulness of sensor readings for sink decisions.

As it was already mentioned, the sink has to catch a mov-

ing target in the shortest possible time. To this end, the sink

should move towards a nearest position where the target can

be caught. Such position cannot be unambiguously deter-

mined as the future target trajectory is not known. Thus, the

sink selects a movement direction which minimizes distance
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to the recently reported target position, as defined in Eq. (1).

According to the introduced data suppression method, ac-

tual target position pT do not have to be transmitted to the

sink if the expected effect of the sink decision made on the

basis of the recently reported target position p̄T is not worse

than the effect that would be obtained based on the actual

position. The worse effect of sink decision corresponds to a

greater distance between the position into which the sink will

move during next decision interval and the nearest position

where target can be caught. Formally, the actual target po-

sition does not have to be reported to the sink node if the

following condition is satisfied:

dist(p̄∗, pC) � dist(p∗, pC), (3)

where p̄∗ and p∗ are the alternative positions that will be

reached by the mobile sink during next decision time inter-

val if the sink selects movement direction based on the last

reported target position or the actual target position, respec-

tively; pC is the nearest position where the target can be catch.

As it was mentioned above, position pC cannot be uniquely

determined. However, it is possible to determine a region that

includes nearest positions in which the sink will be able to

catch the target for all possible target trajectories. This region

is defined as follows:

RC = {pC : tT(pC) � tS(pC)} , (4)

where:

tT(pC) = (|xC − xT| + |yC − yT|)/vmax
T , (5)

tS(pC) = (|xC − xS| + |yC − yS|)/vmax
S , (6)

are the minimum times required for the target (Eq. (5)) and

the sink (Eq. (6)) to reach position pC = [xC, yC], vmax
S de-

notes maximum speed of sink, and the remaining symbols

were previously defined.

Verification of condition (Eq. (3)) based on region RC gives

an uncertain result, i.e., the conclusion that the suppression

condition is satisfied (or not satisfied) is uncertain. In order

to handle this uncertainty, the proposed method evaluates a

probability P with which the suppression condition is sat-

isfied. A report of target position can be suppressed if this

probability is greater or equal to a predetermined threshold:

P[dist(p̄∗, pC) � dist(p∗, pC)] � θ, (7)

The probability in Eq. (7) is estimated as follows:

P[dist(p̄∗, pC) � dist(p∗, pC)] = |R̄C|/|RC|, (8)

where |RC| denotes area of region RC and |R̄C| is area of region

R̄C which includes positions that belong to RC and satisfy the

distance condition defined in Eq. (3):

R̄C = {pC : pC ∈ RC ∧ dist(p̄∗, pC) � dist(p∗, pC)} . (9)

Thus, the final form of the suppression condition used in the

proposed method is given by the formula:

|R̄C|/|RC| � θ. (10)

Detailed implementation of the decision-aware data suppres-

sion procedure is presented in Algorithm 3.

Algorithm 3 Verification of suppression condition

1 suppression condition := true

2 if d(p̄T,pT) > ε then

3 begin

4 determine pS and MR

5 find p∗ ∈ MR : d(p∗, pT) = min
p∈MR

d(p, pT)

6 find p̄∗ ∈ MR : d(p̄∗, p̄T) = min
p∈MR

d(p, p̄T)

7 if d(p̄∗,p∗) > ε then

8 begin

9 estimate P[dist(p̄∗ ,pC) � dist(p∗, pC)]

10 if P[dist(p̄∗, pC) � dist(p∗ , pC)] < θ then

11 suppression condition := false

12 end

13 end

Figure 1 shows a verification example of the suppression

condition. In this example the actual target position is x = 6,

y = 3. The target position that has been last reported to mo-

bile sink is x = 6, y = 7. The sink is located at position x = 0,

y = 0. Maximum speed of target equals 1, and maximum

speed of sink is 2 (distance units per decision time inter-

val). If the sink receives the information about current target

Fig. 1 Verification example of suppression condition
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position, it will move to x = 2, y = 0 during the next deci-

sion time interval. In opposite situation, the sink will move

to position x = 0, y = 2. The region of trapezoidal shape

(RC) includes the nearest positions at which the target can

be caught for each of its possible movement trajectories. The

shaded triangular area corresponds to region R̄C. Area of re-

gion RC is 72 and area of R̄C amounts to 18 (square distance

units). Thus, the estimated probability (Eq. (8)) equals 0.25.

Assuming that θ = 0.5, the suppression condition (Eq. (10))

is not satisfied and the actual target position will be reported

to the sink.

4 Experiments

Simulation experiments were performed in order to deter-

mine data transmission cost and target tracking performance

for the proposed decision-aware data suppression method.

Data transmission cost is evaluated using two criteria: total

hop count and average packet rate. Target tracking perfor-

mance is evaluated by measuring time which is necessary for

the mobile sink to reach the moving target (time to catch).

The scope of the experiments includes a comparison of the

proposed method against existing data collection algorithms

that have been introduced in the literature for target chasing

applications. The comparative evaluation takes into account

also the effect of transmission failures on effectiveness of the

compared algorithms.

4.1 Simulation setup

According to the experimental setup, the monitored area is a

square of 600×600 meters. During simulation, a single tar-

get moves in random directions within the monitored area.

The simulated WSN includes 400 sensor nodes that are ar-

ranged in a square grid topology (20×20). Each sensor node

detects and localizes the target in a sensing area of 30×30

meters. Transmission range of each sensor node covers the

eight nearest neighboring nodes. The geographical routing is

used for multi-hop transmissions [24]. Detailed information

on main parameters of the simulation is included in Table 1.

The simulation environment was based on OMNET++ [25].

4.2 Compared algorithms

Performance and data transmission cost of the proposed

decision-aware data suppression algorithm for target tracking

(DADS) was compared against the results obtained for three

algorithms (SUP, DOT, and UIE) that apply state-of-the-art

approaches to reduce the data transmission in WSN.

Table 1 Parameters of simulation

Parameter Value

Monitored area 600m×600m

Transmission range of sensor node 50m

Sensing area of sensor node 30m×30m

Transmission range of sink 50m

Acting range of sink 2m

Maximum speed of sink 6m/s

Maximum speed of target 3m/s

Bandwidth 250kbit/s

Packet size 56bytes

Sensing time interval 1s

Decision time interval 1s

The SUP and DOT algorithms are based on decentralized

methods that allow the sensor node to decide if current target

position has to be reported to the sink.

Spatiotemporal data suppression method [14] is applied in

the SUP algorithm. According to this algorithm, current po-

sition of the target is reported by a sensor node to the sink

only if Euclidean distance between current and previously

reported target position (d(p̄T, pT)) is above a predetermined

threshold ε.

DOT algorithm is based on the dynamical object tracking

approach, which was proposed in Ref. [26]. When using this

algorithm, the sensor node communicates current target po-

sition to the sink only if the sink has reached previously re-

ported target position, i.e., the distance between sink position

and last reported target position (d(p̄T, pS)) is shorter than the

sink acting range.

In the UIE algorithm, a centralized method is used by the

sink to decide when sensor nodes should be queried to re-

trieve the actual target position. This algorithm is based on the

uncertainty-based information extraction approach [18]. Ac-

cording to UIE algorithm, the sink decides when data trans-

fers from sensor nodes are necessary. At each decision time

interval, the information about current location of the tar-

get is delivered from sensor node to so-called beacon node,

which is located at previously reported target position. Sink

determines possible locations of the target and predicts time

needed to catch the target for each movement direction. If

at a given time such prediction is insufficient to provide ac-

ceptable level of the decision uncertainty or the sink is close

to the possible target locations, then the sink sends request

to the beacon node and gets the actual target location. More

detailed information about this method can be found in Ref.

[18], where the above mentioned algorithm was introduced

as Algorithm 5.
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4.3 Experimental results

4.3.1 Tracking performance and communication cost

Simulation experiments were carried out in order to deter-

mine time to catch, hop count, and packet count for the com-

pared algorithms. Time to catch is defined as the time in

which the sink reaches the moving target. Packet rate was

calculated as quotient of packet count and time to catch.

The results presented in this section are averaged for 50

random tracks of the target. Each test starts with the same

location of both the sink (x = 15, y = 15) and the target

(x = 300, y = 300). The simulation stops when target is

caught by the sink.

The following parameter settings were used for particular

algorithms: ε = 6m for SUP, α = 0.15 and β = 2 for UIE,

θ = 0.55 and ε = 0.5m for DADS. Values of the UIE pa-

rameters were suggested in Ref. [18]. The selection of the

remaining parameters is based on results that are presented

later in Section 4.3.2.

Charts in Fig. 2 compare the results of the examined algo-

rithms. It was experimentally verified that the minimum av-

erage time to catch, which can be obtained when the mobile

sink receives the information about current target position at

each time step, is equal to 106.2 seconds. This minimum time

to catch was achieved by using three algorithms: DADS, UIE,

and SUP. DOT algorithm did not allow the mobile sink to

catch the target in the shortest possible time. For DOT the

time to catch was longer by 53%. These results show that

DOT does not fulfill the requirements of the considered target

chasing application. Among the three remaining algorithms,

the lowest communication costs (hop count and packet rate)

were obtained for DADS. When comparing with DADS, UIE

algorithm increases the hop count by 10% and the packet rate

by 21%. It means that UIE generates relatively high data traf-

fic in WSN during entire period of target tracking. For SUP

the hop count is higher by 46% as compared to DADS. The

increased hop count results in faster depletion of the energy

resources in sensor nodes. The above results show that DADS

enables target catching in the minimum time with reduced

communication costs. DADS achieves better results than the

compared algorithms as it takes into account the uncertainty

associated with expected effects of sink decisions, by using

the proposed approach.

4.3.2 Impact of algorithm parameters

Impact of the algorithm parameters on hop count and time

to catch for SUP and DADS is presented in Figs. 3 and 4. A

general observation is that for both algorithms hop count can

be reduced by increasing the value of algorithm parameter.

Minimum time to catch is achieved for SUP if ε � 6m and

for DADS if θ � 0.55. These findings motivate the selection

of parameter settings for the compared algorithms.

Fig. 2 Comparison of target tracking performance and communication cost
for all examined algorithms

Fig. 3 Impact of parameter settings on hop count and time to catch for SUP
algorithm

Fig. 4 Impact of parameter settings on hop count and time to catch for
DADS algorithm

Figure 5 shows detailed comparison of the results achieved

by SUP, UIE, and DADS. The dependencies between time to

catch and hop count are illustrated for different parameter set-
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tings. An interesting remark is that DADS with 0.55 < θ �
0.70 enables considerable reduction of the hop count at the

expense of a small increase in time to catch. The trade-off be-

tween target tracking performance and communication cost

observed for SUP is clearly less advantageous.

Fig. 5 Dependencies between time to catch and hop count for the examined
algorithms

4.3.3 Target tracking example

One of the target tracks used during experiments is illustrated

in Figs. 6 and 7. The charts in Figs. 6 and 7 show the target

trajectory as well as sink trajectories that were achieved by

using the five examined algorithms. The x- and y-coordinates

are expressed in meters. The arrows indicate movement di-

rection of both the sink and the target. When DOT algorithm

is used, the sink reaches target after 186 seconds in position

x = 432, y = 510. For the remaining algorithms the target is

caught after 163 seconds in position x = 501, y = 510.

Fig. 6 Target and sink trajectories for DOT and SUP

Figures 8 and 9 show the course of changes in hop count as

well as in number of packets sent to sink that was observed

during target tracking for the example from Figs. 6 and 7.

These results confirm advantages of the proposed DADS al-

gorithm, which, in comparison with the state-of-the-art algo-

rithms, effectively reduces the communication cost. A signif-

icantly slower increase in hop count and number of packets

sent was achieved by DADS at the beginning of the exper-

iment (seconds 0–100), when the sink is far from the tar-

get. The lowest communication cost was obtained by using

DOT, however time to catch for this algorithm is consider-

ably longer (increased by 12%).

Fig. 7 Target and sink trajectories for DADS and UIE

Fig. 8 Changes in hop count during target tracking

Fig. 9 Changes in number of packets sent to sink during target tracking
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The high effectiveness of DADS in this example is re-

lated to the fact that target position is reported to sink only

when the suppression would result in making inefficient de-

cision (selection of non-optimal movement direction). This

approach utilizes the fact that for the target tracking problem

different sink decisions, made at particular time steps, can

lead to the same optimal solution.

4.3.4 Impact of sink velocity

Additional experiments were performed in order to examine

the influence of sink velocity on the target tracking perfor-

mance and the data transmission in WSN. To this end, the

sink velocity was changed from 6 to 15 m/s with steps of

3 m/s. The velocity of target was equal to 3 m/s for all sim-

ulations. Results of these experiments are presented in Figs.

10 and 11. If the mobile sink moves faster, the target tracking

task is accomplished in a shorter time. As a consequence, the

number of time steps at which the target position data are ac-

quired, and can be suppressed, is lower. Therefore, the differ-

ences between the hop count and time to catch values for the

compared algorithms decrease with increasing sink velocity.

Fig. 10 Impact of sink velocity on time to catch

Figure 10 shows the dependency between sink velocity and

time to catch. For all considered velocities of sink, the min-

imum time to catch was obtained by using DADS, UIE and

SUP algorithms. In case of DOT, the minimum time to catch

was not achieved. When taking into account the three algo-

rithms that allows the sink to reach target in the minimum

time, the lowest hop count was required by DOT for all ve-

locities (Fig. 11). These results confirm the advantages of the

proposed approach.

4.3.5 Impact of transmission failures

Impact of transmission failures on time to catch and hop

count for algorithms SUP, UIE, and DADS was investigated

in two scenarios. The first scenario implies that only one

transmission attempt can be made during decision time in-

terval. If the transmission fails (sensor node do not receive

acknowledgement), it is repeated at the next decision time

interval. In the second scenario it was assumed that four re-

transmissions can be carried out by a sensor node during one

decision time interval. Figures 12 and 13 show the results for

the first scenario, and Figs. 14 and 15 for the second scenario.

In case of scenario 1 (Figs. 12 and 13), the minimum time

to catch can be achieved by the state-of-the-art algorithms,

Fig. 11 Impact of sink velocity on hop count

Fig. 12 Impact of transmission failures on time to catch for scenario 1

Fig. 13 Impact of transmission failures on hop count for scenario 1
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provided that the failure rate equals 0%. For DADS the hop

count does not increase if the failure rate is below or equal to

10%.

In scenario 2 (Figs. 14 and 15), transmission failures do

not influence the time to catch if the failure rate is below

30% for state-of-the-art algorithms or below 60% for DADS.

These results confirm the higher robustness of the proposed

approach to transmission failures.

Fig. 14 Impact of transmission failures on time to catch for scenario 2

Fig. 15 Impact of transmission failures on hop count for scenario 2

When comparing the results for the two analyzed scenar-

ios, it can be observed that the possibility of multiple retrans-

missions allows the data collection algorithm to significantly

mitigate the negative effect of communication failures on the

target tracking performance. This improvement is obtained at

the cost of an increased hop count and higher packet rate.

5 Conclusions and future work

State-of-the-art data suppression methods aim at obtaining a

predetermined accuracy level of the collected information for

an entire period, when a monitoring task is executed. In tar-

get tracking applications, the required accuracy of collected

target position information varies significantly in time. A re-

duced accuracy is often sufficient for making optimal sink

decisions. The proposed suppression approach exploits the

above insight to decrease the amount of data transmitted in

WSN. Instead of suppressing transmissions of sensor read-

ings that are not necessary to accurately estimate target posi-

tion, the introduced method suppresses those sensor readings

that are not useful for selecting optimal movement direction

by the mobile sink.

According to the proposed approach, at each time step of

the tracking procedure the mobile sink has to minimize its

distance to a location in which the target can be caught. The

data describing actual target position are useless and should

be suppressed, if there is a high probability that the above

mentioned distance will be minimized when the sink will

move towards a recently reported target position instead of

the actual target position.

Results of the simulation experiments clearly show advan-

tages of the proposed approach. When comparing with state-

of-the-art algorithms, the decision-aware suppression allows

the data communication costs (packet rate and hop count)

to be significantly reduced without decreasing performance

of target tracking. Furthermore, the decision-aware suppres-

sion enables a beneficial trade-off between the tracking per-

formance (time to catch) and the data communication cost.

The negative effect of communication failures on the tracking

performance can be effectively mitigated for this approach by

using the ARQ method.

An extra cost introduced by the data suppression in WSN

is related to the computations that are necessary to verify the

suppression condition. In the proposed approach, the algo-

rithm used for verification of the suppression condition (Al-

gorithm 3) has low computational complexity. This algorithm

is executed only by the sensor node, which detects the target.

It should be noted that in sensor nodes the energy consump-

tion of computations is significantly lower than this of data

transmission. Moreover, data are usually transmitted through

many nodes before reaching the mobile sink and additional

computations are also necessary to find an appropriate trans-

mission route. Thus, the extra cost of the suppression-related

computations is negligible when compared to the benefits of

reduced data transmission in WSN.

The decision-aware data suppression was introduced in

this paper for target tracking applications of WSNs where a

single sink collects data and chases the target. An interesting

topic for further research is related to possible extensions of

this approach to wireless sensor and actor networks with mul-
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tiple actors that are capable of making decisions and perform-

ing appropriate actions based on the delivered senor readings.

Another area for further research covers hybrid data collec-

tion approaches, which can be designed by combining the

decision-aware suppression with other schemes, such as the

centralized data collection methods and the in-network data

aggregation.
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