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Abstract Quantum ant colony algorithm (ACA) has potential applications in quantum
information processing, such as solutions of traveling salesman problem, zero-one knapsack
problem, robot route planning problem, and so on. To shorten the search time of the ACA,
we suggest the fidelity-based ant colony algorithm (FACA) for the control of quantum sys-
tem. Motivated by structure of the Q-learning algorithm, we demonstrate the combination of
a FACA with the Q-learning algorithm and suggest the design of a fidelity-based ant colony
algorithm with the Q-learning to improve the performance of the FACA in a spin-1/2 quan-
tum system. The numeric simulation results show that the FACA with the Q-learning can
efficiently avoid trapping into local optimal policies and increase the speed of convergence
process of quantum system.

Keywords Fidelity · Ant colony algorithm · Q-learning · Quantum computation

1 Introduction

There are two kinds of control strategies for the optimum designs, i.e., the open-loop control
and the closed-loop control. Because there is a simple controller in the open-loop con-
trol, which is convenient to be implemented, the open-loop control strategy was initially
adopted for solving the optimizing problems in quantum system [1]. It must satisfy the
following constraints: i) The system Hamiltonian H0 is known to high precision. ii) The
multidimensional Schrödinger equation i�

∂ψ
∂t

= [H0 − με(t)]ψ may be reliably solved.
iii) The resultant control field design ε(t) may be faithfully reproduced. Unfortunately, it
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is difficult to practically implement such an open-loop control strategy that satisfies the
above-mentioned assumptions, leading to the quantum closed-loop control strategy in the
literature [2].

The traditional closed-loop learning control strategy was initially proposed by Rabitz [3].
It is an effective control method for the quantum control, which can optimize the system
performance through learning from experience by searching for the best control strategy.
It involves three elements, i.e., i) an input initial guess, ii) the laboratory generation of
the control applying to the sample and subsequently observed for its impact, and iii) a
learning algorithm that considers the prior experiments and suggests the form of the next
control input. Designing the appropriate quantum learning control algorithm is an important
task for the closed-loop learning control strategy, which includes the gradient algorithm,
the genetic algorithm, the linear mapping algorithm, the nonlinear mapping algorithm, the
reinforcement learning algorithm, and so on.

There is strong robustness required for the gradient algorithm [3], whereas the gradient
δJ/δε(t) must be measured with the inherent errors. The genetic algorithm was widely used
in quantum control, due to its strong optimization ability and powerful search ability [4].
However a potential difficulty with this algorithm is that it has to work with large num-
bers of control variables. The input-output relationship of controlled system can be fully
considered in the linear mapping algorithm and be simplified to the linear maps. So the lin-
ear mapping algorithm can be effectively used in the closed-loop learning control. Because
the quantum control systems may be highly nonlinear, the practical application of the lin-
ear mapping algorithm has been limited. Under such circumstances, the nonlinear mapping
algorithm has been development [5, 6]. The integration of the genetic algorithm and the
nonlinear algorithm can solve the problem of the chemical quantum system. The reinforce-
ment learning algorithm makes a good tradeoff between exploration and exploitation and
hence can speedup the learning rate. However, because of the implementing constraints of
the Grover algorithm, the reinforcement learning algorithm can’t be used for the practical
quantum system.

To strengthen the searching speed, the ACA was proposed by Marco Dorigo motivated
by the behavior that ants find the optimal path in the feeding process [7]. It is essen-
tially a complex intelligent system. The ACA is a probability algorithm, which simulates
the foraging behavior of ants to find an optimal path [8–10]. The ACA-based optimal-
ity has been deeply studied in the intelligent control and industrial applications [11, 12].
However, there exist several issues in developing the ACA-based applications, including
tradeoff between exploration and exploitation, search efficiency and search quality [13,
14]. After that, the FACA was proposed to solve the above-mentioned problems, only
focusing on the transition probability with fidelity-directed exploration strategy in quantum
systems [15, 16]. Although the FACA can optimize the traditional ACA, the parame-
ter selection process is an intolerable tedious task since it requires a large number of
experiments to compare and determine the parameter values. On one hand, the parameter
selections of ACA are sensitive and rely on the characteristics of the searching goal. On
the other hand, the parameters cannot be transferred from a problem to another. In order
to simplify the parameter selection of the ACA and reduce the human interaction with the
intelligence, the Q-learning, as a kind of reinforcement learning algorithm, is used for the
FACA [17, 18], which can fling off environmental restrictions. Through the Q-function
training, the agent can determine the optimal strategy by learning in the case of unknown
environment models [19, 20]. Because the self-learning of the agent replaces the com-
plicated parameter selection process [21], the intellectuality and stability of ACA will be
improved.
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Motivated by unique characteristics of quantum systems that make open loop strategies
competitive [22, 23], we propose an algorithm to increase the transition probability of the
ACA in the complex quantum system [24, 25]. For the given set of control fields, we
apply the FACA to control laws for solving a class of quantum control problems. In quan-
tum information processing, the closeness between two quantum states can be measured by
fidelity [26]. Higher fidelity between the two states represents that their similarity is also
higher [27], thus we can use the fidelity to replace the heuristic function between quan-
tum states [28]. The fidelity can be sent back to the transition probability, so we can use
it to speedup the solving process to avoid getting lost and getting local optimal solution.
Numerical simulations show that the FACA with the Q-learning enables the performance
improvement of quantum control systems.

The rest of the paper is organized as follows. In Section 2, we demonstrate the structure
of the ACA. In Section 3, the FACA is designed with the Q-learning in quantum system.
In Section 4, we illustrate the applications of the FACA with the Q-learning in the control
of a typical class of quantum systems(i.e. spin-1/2 system). In Section 5, we analyze the
performance of the proposed algorithm by illustrating the convergence of the FACA with
the Q-learning. Finally, conclusion is drawn in Section 6.

2 Ant Colony Algorithm

To illustrate the mathematical model of ant colony algorithm, the classical combination
optimization problem is suggested to determine a shortest path passing through each node
one time for n selectable nodes.

We assume dij is the distance between node i and node j , τij is the pheromone intensity
of path (i, j), and ηij is the heuristic function, which is the visibility of path and reflects
the degree of inspiration from node i to node j . In this section, the value of the heuristic
function is given by 1

dij
.

The practical ACA can acquire an optimal control strategy of pheromone which is a
response to environment or system. At the initial moment, the pheromone of each path is
equal to a constant C, i.e., τij (0) = C. For the kth ant, it selects the next node according
to the amount of pheromone. The transition probability from node i to node j is given
by

P k
ij (t) =

⎧
⎪⎨

⎪⎩

τα
ij (t)η

β
ij (t)

∑

s∈allowedk

τα
is (t)η

β
is (t)

, j ∈ allowedk

0 , otherwise,

(1)

where α is the information heuristic factor that reflects the role of the pheromone accrued by
the walking ants, β is the expected heuristic value that represents the effect of the visibility
of the heuristic information, and allowedk = {1, 2, · · · , n} represents the possible nodes
that the kth ant can select.

Different from the real ants, the artificial ant system owns memory function. In order to
satisfy the constraint, each ant cannot pass a node twice in one loop, where the table tabuk

is designed to record the node that the ant has passed in current time. In this loop the ant is
not allowed to go through the node again. In the next loop, the table tabuk is cleared and
the ant chooses the next node again. Namely, allowedk − tabuk shows the remaining nodes
can be selected by the ants in the next step.
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After repeating the above-mentioned processing n times, and the amount of pheromone
for each path is updated according to the constraints

τij (t + n) = ρτij (t)+ � τij (t, t + n), (2)

� τij (t, t + n) =
m∑

k=1

� τ k
ij (t, t + n), (3)

where ρ is the persistence coefficient of pheromone, � τij (t, t + n) is the increment of
pheromone on the path (i, j), � τ k

ij (t, t + n) is the amount of pheromone left by ant k on
the path (i, j) given by

� τ k
ij (t, t + n) =

{
Q , if pass path (i, j)
0 , otherwise,

(4)

where Q denotes the intensity of pheromone that affects the converging rate of algorithm.
The procedure of a classical ant colony algorithm is shown as Algorithm 1.

3 The Improved Ant Colony Algorithm

3.1 The Fidelity-based Ant Colony Algorithm

In the traditional ACA, mostly, the reciprocal of the distance between two points is used as
the heuristic function. Although the traditional ACA can make the system converge to a cer-
tain degree, it needs longer searching time than others and tends to be precocial and stagnant
in some station. Thus, if we can extract more information from the system structure or sys-
tem behavior, the system will converge more easily. Since the concept of fidelity is widely
used in quantum and it reflects the internal connection between the input signal and the out-
put signal. Moreover, it could potentially handle the complex quantum problems. Here, we
develop a FACA method for control of quantum systems, which can also be applied to some
other complex problems and can accelerate the convergence speed of control system.
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The state transition updating rule of fidelity-based ACA for P k
ij (t) can be expressed as

P k
ij (t) =

⎧
⎪⎨

⎪⎩

τk
ij (t) F

β

(i,target)
(t)

∑

s∈allowedk

τ k
is (t) F

β

(i,target)
(t)

, j ∈ allowedk

0 , otherwise.

(5)

The specification of the fidelity F(i,target) is defined regarding the objective of the learn-
ing control task. In this paper, a fidelity of quantum pure states is adopted for the control
of quantum systems. The pheromone updating rule is the same as formulas (2), (3) and (4).
The procedure of the fidelity-based ACA algorithm is shown as Algorithm 2.

3.2 The Fidelity-based Ant Colony Algorithm with Q-learning

Although the FACA can optimize the traditional ACA, the parameter selection process is
complex and often needs a large number of experiments to determine the value of parame-
ter. On the one hand, the parameters of ACA are sensitive and rely on the characteristics of
the research question. On the other hand, parameters cannot be transferred from a problem
to another. In order to simplify the selection problem of ACA parameters, reduce human
interaction and improve the intelligence of the algorithm, we apply the Q-learning into the
ACA and propose the fidelity-based ACAwith Q-learning. Q-learning is a kind of reinforce-
ment learning algorithm that can fling off environmental restrictions. Through Q function
training, the Agent can determine the optimal strategy by learning in the case of unknown
environment model. The self-learning of agent enhances the intellectuality and stability of
ACA, since it replaces the parameter selection process which is tedious and needs human
intervention.

The updating rule of fidelity-based ACA with Q-learning for P k
ij is the same as formula

(5). After the ant complete a cycle, the pheromone is updated as follows:

τij (t + n) = (1 − δ)τij (t) + δ(� τij (t, t + n) + γ max
s∈allowed

τis(t)), (6)

where δ is the learning rate in Q-learning, γ is a discount factor and the � τij (t, t +n) is the
same as formula (3). The procedure of the fidelity-based ACA with Q-learning algorithm is
shown as Algorithm 3.
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4 The Improved Ant Colony Algorithms for Control of Quantum System
Control

4.1 Learning Control of Quantum System

Learning control is an efficient way for the control of quantum system. In learning control,
a control rule can be learned from the experience and an optimal control strategy can be
gained by iteration. Here, we concentrate on the control problem of quantum pure state
transition of N -level. The eigenstates of the free Hamiltonian H0 of an N -level quantum
system can be denoted as D = |φi〉Ni=1. The state |ψ(t)〉 can be expanded into a set of
eigenstates in the set D, we have

|ψ(t)〉 =
N∑

i=1

ci(t)|φi〉, (7)

where ci(t) are complex numbers which satisfy
∑N

i=1 |ci(t)|2 = 1.

Definition 1 (Fidelity of Quantum Pure States): The fidelity between two pure states
|ψa〉 = ∑N

i=1 ca
i |φi〉 and |ψb〉 = ∑N

i=1 cb
i |φi〉 is define as

F(|ψa〉, |ψb〉) = |〈ψa |ψb〉| = |
N∑

i=1

(ca
i )∗cb

i |, (8)

where (ca
i )∗ is the complex conjugate of ca

i .
Assuming that a quantum system including the internal Hamiltonian is H0, the initial

state is ψ0(x) and the external effects which coupled into a operator H1. The Schrödinger
equation then can be expressed as follows

{
i� ∂

∂t
ψ(x, t) = H0ψ(x, t) + ε(t)H1ψ(x, t)

ψ(x, t = 0) = ψ0(x),
(9)
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where [H0, H1] = H0H1 − H1H0 �= 0. The ψ(x, t) are limited in a finite dimensional
space. H0 and H1 correspond to matrices A and B respectively. C is the coefficient matrix
of ψ(x, t) expanded. Formula (9) can be expressed as follows:

{
i�Ċ(t) = [A + ε(t)B]C(t)

C(t = 0) = C0,
(10)

where i = √−1, C(t) = (ci(t))
N
i=1, C0 = (c0i )

N
i=1, c0i = 〈φi |ψ0〉, ∑N

i=1 |c0i | = 1, � is the
reduced Planck constant. Here, we assume that matrix A is diagonal, matrix B is Hermitian
and [A, B] = AB − BA �= 0. The task of learning control is to find a control sequence to
drive the quantum system from an initial state |ψ0〉 to a target state |ψf 〉. When an operator
U is applied to the system at time t = t2, the state transforms from state |ψ(t1)〉 to state
|ψ(t2)〉 with the initial condition |ψ(t1)〉 at time t = t1.

4.2 Quantum Controlled Transition Landscapes

The aim of learning control of quantum systems is to find an optimal control strategy, which
can manipulate the dynamics of physical processes on the atomic and molecular scales.
Quantum control landscapes lay a theoretical foundation for analyzing learning control of
quantum systems in recent year. A control landscape is defined as the mao between the time-
dependent control Hamiltonian and associated values of the control performance functional.
Most quantum control problems can be formulated as the maximization of an objective
performance function.

Although quantum control applications may contain a variety of objectives, most of them
correspond to maximizing the probability of transition from an initial state |ψ0〉 to a desired
final state |ψf 〉. For the state transition problem with t ∈ [0, T ], we define the quantum
controlled transition landscape [27] as

J (ε) = tr(U(ε,T )|ψ0〉〈ψ0|U†
(ε,T )|ψf 〉〈ψf |), (11)

where tr(·) is the trace operator and U† is the adjoint of U . The objective of the learning
control system is to find a global optimal control strategy ε∗, which satisfies

ε∗ = argmaxεJ (ε). (12)

If the dependence of U(T ) on ε is suppressed, (11) can be re-written as

J (U) = tr(U(T )|ψ0〉〈ψ0|U†
(T )|ψf 〉〈ψf |). (13)

Equations (11) and (13) are called the dynamic control landscape (denoted as JD(ε)

instead) and the kinematic landscape (denoted as JK(U) instead) respectively.
The characteristic of the existence or absence of traps is most important for exploring the

quantum control landscape with a learning control algorithm, which can be studied using
critical points. A dynamic critical point is defined by

� JD(ε) = δJD(ε)/δε = 0 (14)

and a kinematic critical point is defined as

� JK(U) = δJK(U)/δU = 0, (15)
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where � denotes gradient. By the chain rule, we have

� JD(ε) = δJK(U)

δU(ε,T )

δU(ε,T )

δε

= �JK(U)
δU(ε,T )

δε

. (16)

According to the results in Refs. [28], we can summarize the properties of quantum
controlled transition landscape as Theorem 1.

Theorem 1 For the quantum control problem defined with the dynamic control landscape
(11) and the kinematic control landscape (13) respectively, the properties of the solution
sets of the quantum controlled transition landscape are listed as follows.

1) The kinematic control landscape is free of traps (i.e., all critical points of JK(U) are
either global maxima or saddles) if the operator U can be any unitary operator (i.e.,
the system is completely controllable).

2) The dynamic control landscape is free of traps if the operator U can be any unitary
operator and the Jacobian δU(ε,T )/δε has full rank at any ε.

For detailed proof and discussion about Theorem 1, please refer to Refs. [27, 28].

Fig. 1 Demonstration of a spin-(1/2) system with a Bloch sphere in a 3-D Cartesian coordinates and the
state transitions for an initial quantum state |ψ〉initial using different one-step controls(U1, U2, U3)
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4.3 Example: Controlling of a Spin-(1/2) Quantum System

The spin-(1/2) system is a typical 2-level quantum system, which has important theoretical
implications and practical applications. Its Bloch vector can be visualized on a 3-D Bloch
sphere as shown in Fig. 1. The state of the spin-(1/2) quantum system |ψ〉 is represented as

|ψ〉 = cos
θ

2
|0〉 + eiϕsin

θ

2
|1〉, (17)

where θ ∈ [0, 2π ] and ϕ ∈ [0, 2π ] are polar angle and azimuthal angle respectively, which
specify a point 	a = (x, y, z) = (sinθcosϕ, sinθsinϕ, cosθ) on the unit sphere in R3.

At each control step, the permitted controls for every point are U1 (no control input), U2
(a positive pulse control), and U3 (a negative pulse control). Figure 1 shows a sketch map
of one step control effects on the evolution of the quantum system.

The propagators Ui, i = 1, 2, 3 are listed as follows:

U1 = e−iIz
π
15 , (18)

U1 = e−i(Iz+0.5Ix) π
15 , (19)

U1 = e−i(Iz−0.5Ix) π
15 , (20)

where

Iz = 1

2

(
1 0
0 −1

)

, (21)

Ix = 1

2

(
0 1
1 0

)

. (22)

Now the objective of control is to control the spin-(1/2) system from the initial state
(θ = (π/60), ϕ = (π/30)) to the target state (θ = (41π/60), ϕ = (29π/30)) with

Fig. 2 Demonstration of all control processes
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minimized control steps. Figures 2 shows the crawl path of each ant, namely the con-
trol process. We apply the fidelity-based ACA with Q-learning and fidelity-based ACA to
this control problem respectively. Now we reformulate the problem of controlling a quan-
tum system from an initial state |ψinitial〉 to a desired target state |ψtarget 〉 as follows:
S = i = |ψi〉, (i = 1, 2, ..., n), and this state can be obtained through some operation. The
parameter settings for these algorithms are ρ = 1 − δ = 0.7, α = 1, β = 10 and γ = 0.99.

Figures 3 and 4 show the control performance of FACA and fidelity-based ACA with
Q-learning respectively. There are many paths from the initial state to the target state, but
there is only one shortest path in each experiment. Hundreds of times of the process finding
the optimal path and it maintains similar performance. We provide the shortest path of
the experiment. The experimental results show that fidelity-based ACA with Q-learning
outperforms fidelity-based ACA. It is clear that the FACA can accelerate the convergence
of the system. The control result of the fidelity-based ACA with Q-learning is better than
FACA.

Figures 5 and 6 show the convergence of the FACA and fidelity-based ACA with Q-
learning respectively. From the picture, we can know that the FACA and fidelity-based ACA
with Q-learning can converge to an particular value. That is the FACA and fidelity-based
ACA with Q-learning can obtain a certain control sequence to the spin-(1/2) system and the
control sequence needs less than 50 steps. The fidelity-based ACA with Q-learning can find
the optimal control sequence after about 65 generations, but the fidelity-based ACA needs
about 115 generations.

The Fig. 7 shows the average mobile steps of the FACA and fidelity-based ACA with
Q-learning. Although the fidelity-based ACA and fidelity-based ACA with Q-learning all
can get a optimal control sequence, the average mobile steps of fidelity-based ACA is about
200 steps and the fidelity-based ACA with Q-learning is about 50 steps. As a result, the

Fig. 3 The control result with an optimal control sequence of fidelity-based ACA
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Fig. 4 The control result with an optimal control sequence of fidelity-based ACA with Q-learning

fidelity-based ACA with Q-learning has better performance and it can accelerate the speed
of convergence.

5 The Convergence of the Improved ant Colony Algorithms

Assuming that there are m lines between state A and state B, for instance, AC1B,

AC2B, ..., ACMB. The fidelity of corresponding lines are F1, F2, ..., Fm respectively and

Fig. 5 The convergence of fidelity-based ACA



Int J Theor Phys (2018) 57:862–876 873

Fig. 6 The convergence of fidelity-based ACA with Q-learning

they meet the condition: F1 ≥ F2 ≥ ... ≥ Fm. n ants crawl back and forth betweenA and B.
According to FACA, if most of ants select the path AC1B, then the path AC1B is regarded
as the optimal path. The FACA algorithm is convergent when the optimal path AC1B is
selected with close to 1.

Suppose that qik is the rest of average pheromone after the ant run k times. pik is the
average probability of the path ACiB selected after the ant runs k times. At the initial
moment, the pheromone is C(C is a constant) on each path. We can define a theorem as
follows:

Theorem 2 If α ≥ 0, β ≥ 0 and F1 ≥ F2 ≥ ... ≥ Fm, then q1k ≥ q2k ≥ ... ≥ qmk and
p1k ≥ p2k ≥ ... ≥ pmk .

Fig. 7 The average mobile steps of fidelity-based ACA with Q-learning (the lower curve) and fidelity-based
ACA (the higher curve)
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Proof If α ≥ 0, β ≥ 0, and F1 ≥ F2 ≥ ... ≥ Fm, according to the formula (5), the

pi0 = CαF
β
i

m∑

j=1
(CαF

β
j )

can be obtained, and p10 ≥ p20 ≥ ... ≥ pm0 can be deduced. Thus

q11 ≥ q21 ≥ ... ≥ qm1 according to qi1 = ρC + npi0Q. Similarly, the basis of pi1 =
qα
i1F

β
i

m∑

j=1
(qα

j1F
β
j )

, p11 ≥ p21 ≥ ... ≥ pm1 can be deduced. We have, qik = ρqi(k−1) + npi(k−1)Q

and pik = qα
ikF

β
i

m∑

j=1
(qα

jkF
β
j )

.

Through mathematical induction, we can know that when α ≥ 0, β ≥ 0, then q1k ≥
q2k ≥ · · · ≥ qmk and p1k ≥ p2k ≥ · · · ≥ pmk .

Theorem 3 shows that the average pheromone of path AC1B is the greatest after the ants
run one time, so the probability of path AC1B selected is the optimal.

Theorem 4 If α ≥ 1, β ≥ 0, then p1k > p1k−1.

Proof Because p1k = qα
1kF

β
1

m∑

j=1
qα
jkF

β
j

= 1

1+(
F2
F1

)β (
q2k
q1k

)α+(
F3
F1

)β (
q3k
q1k

)α+···+(
Fm
F1

)β (
qmk
q1k

)α
.

so 1
p1,k

− 1
p1,k−1

= (
F2
F1

)β [( q2,k
q1,k

)α − (
q2,k−1
q1,k−1

)α] + (
F3
F1

)β [( q3,k
q1,k

)α − (
q3,k−1
q1,k−1

)α] + · · · +
(Fm

F1
)β [( qm,k

q1,k
)α − (

qm,k−1
q1,k−1

)α].
And (

qj,k

q1,k
) − (

qj,k−1
q1,k−1

) = ρqj,k−1+npj,k−1Q

ρq1,k−1+np1,k−1Q
− qj,k−1

q1,k−1
= nQ(pj,k−1q1,k−1−p1,k−1qj,k−1)

(ρq1,k−1+nQp1,k−1)q1,k−1
.

Requesting
qj,k

q1,k
− qj,k−1

q1,k−1
< 0, that is to say pj,k−1q1,k−1 < p1,k−1qj,k−1.

The following formula can be calculated by substituting the expressions of pj,k−1 and
p1,k−1:

qα
j,k−1q1,k−1F

β
j < qα

1,k−1qj,k−1F
β

1 .

The above formula can be simplified as follows

qα−1
j,k−1F

β
j < qα−1

1,k−1F
β

1 .

Owing to qj,k−1 < q1,k−1 and F1 > Fj , so if α ≥ 1, β ≥ 0, then qα−1
j,k−1F

β
j < qα−1

1,k−1F
β

1 .

Thus 1
p1,k

− 1
p1,k−1

, that is p1,k > p1,k−1.

Theorem 5 shows that the average probability of the path AC1B selected is larger and
larger as time goes on.

Theorem 6 when α ≥ 1, β ≥ 0, then lim
k→∞ p1k = 1

Proof According to
qj,k

q1,k
<

qj,k−1
q1,k−1

, we know that the value of
qj,k

q1,k
gets smaller and smaller,

thus we have
qj,k

q1,k
→ ∞, when k → ∞.

lim
k→∞ p1k = lim

k→∞

[

1 + (
F2

F1
)β(

q2k

q1k
)α + (

F3

d1
)β(

q3k

q1k
)α + · · · + (

Fm

F1
)β(

qmk

q1k
)α

]−1

= 1.

It is worth noticing that, α ≥ 1, β ≥ 0 is the sufficient condition but not the neces-
sary condition. Theorem 4 shows that as time goes on, the average probability of the path
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AC1B selected is close to 1. Thus, the convergence of the fidelity-based ACA is proved. The
convergence of fidelity-based ACA with Q-learning is the same as that of fidelity-based
ACA, because the difference only lies in the update mode of pheromone which does not
effect the convergence of the algorithm.

6 Conclusion

In this paper, a fidelity-based ACA is presented for the control design of quantum system.
To improve the performance of fidelity-based ACA, a fidelity-based ACA with Q-learning
is introduced. In this improved algorithm, the fidelity information can be extracted from the
system structure or the system behavior. The aim is to design a good exploration strategy for
a better tradeoff between exploration and exploitation, and to speed up the convergence as
well. Experimental results show that fidelity-based ACA with Q-learning is superior to the
fidelity-based ACA. The control problems of a spin-(1/2) system is adopted to demonstrate
the performance of the fidelity-based ACA with Q-learning. In the future, our work will
focus on improving the fidelity-based ACA by combining with other algorithms.
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