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ABSTRACT 
Computer integrated manufacturing (CIM) has enormous 
benefits as it increases the rate of production, reduces errors 
and production waste, and streamlines manufacturing 
sub-systems. However, there are some new challenges related 
to CIM operating in the Internet of Things/Internet of Data (IoT/ 
IoD) scenarios associated with Industry 4.0 and cyber-physical 
systems. The main challenge is to deal with the massive volume 
of data flowing between various CIM components functioning 
in virtual settings of IoT. This paper proposes decisional DNA- 
based knowledge representation framework to manage the 
storage, analysis, and processing of data, information, and 
knowledge of a typical CIM. The framework utilizes the concept 
of virtual engineering object and virtual engineering process for 
developing knowledge models of various CIM components such 
as automatic storage and retrieval systems, automatic guided 
vehicles, robots, and numerically controlled machines. The 
proposed model is capable of capturing in real time the 
manufacturing data, information and knowledge at every stage 
of production, that is, at the object level, the process level, and 
at the factory level. The significance of this study is that it will 
support decision-making by reusing the experience, which will 
not only help in effective real-time data monitoring and 
processing, but also make CIM system intelligent and ready to 
function in the virtual Industry 4.0 environment. 

KEYWORDS  
Decisional DNA; Internet of 
data; Internet of things; 
knowledge representation; 
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Introduction 

In the modern industrial environment, companies are adopting a higher level 
of automation and computerization for their production systems to achieve 
higher efficiency and superior performance. Computer integrated manufac-
turing (CIM) is one example of such approaches. CIM is defined as the 
manufacturing approach of using computers to control the entire production 
process. This integration allows individual processes to exchange data, 
information, and knowledge with each other and initiate actions. Although 
manufacturing can be faster and less error-prone by the integration of 
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computers, the main advantage is the ability to create automated manufacturing 
processes. However, there is a substantial challenge for CIM system to have 
collaborating computational entities, which are in intensive connection with 
the surrounding world and its ongoing processes, providing and using 
data-accessing and data processing services available in real time (Nguyen 
2005; Baxter et al. 2007). Moreover, there is a need for a mechanism to enhance 
overall smartness of CIM by extracting knowledge from its raw data and 
information (Verhagen et al. 2012). 

This paper proposes a framework, in which previous knowledge of the CIM 
along with information communication technology features is utilized to 
induce intelligence to the CIM system operating in data-intensive environ-
ments of Internet of Things (IoT). The proposed model enables micro-level 
integration of various CIM components, which in turn will not only facilitate 
the real-time control and monitoring capabilities, but also enhance effective 
decision-making. 

Knowledge Base Concepts for Intelligent Computer Integrated 
Manufacturing 

Computer integrated manufacturing systems do not have any standard 
knowledge representation yet and like most manufacturing systems lack the 
capability for data, information and knowledge sharing and exchange 
(Danilowicz and Nguyen 1988, 2000; Qiu, Chui, and Helander 2008; Duong 
et al. 2010). In this section, decisional DNA-based techniques of virtual 
engineering object (VEO) and virtual engineering process (VEP) that are used 
for developing the knowledge models for CIM are discussed. For the sake of 
completeness, we briefly introduce our bio-inspired concept of decisional 
deoxyribonucleic acid (DDNA) first. 

Bio-Inspired Decisional DNA 

Artificial bio-inspired intelligent techniques and systems play an important 
role in our effort to bridge the gap between our current society and the one 
embedded in semantic networks and IoT/IoD. Two of the main challenges 
of the Semantic Web society are big data handling (Bello-Orgaz, Jung, and 
Camacho 2016; Nguyen and Jung 2017) and smart storage of information 
and knowledge in artificial systems, so it can be unified, enhanced, reused, 
shared, communicated, and distributed between artificial systems (Shadbolt, 
Hall, and Berners-Lee 2006). Our DDNA concept introduces one of the key 
components of addressing the above challenge. This concept stems from 
the role of deoxyribonucleic acid (DNA) in storing and sharing information 
and knowledge. In nature, DNA contains ” … the genetic instructions used 
in the development and functioning of all known living organisms. The main 
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role of DNA molecules is the long-term storage of information. DNA is often 
compared to a set of blueprints and the DNA segments that carry this genetic 
information are called genes” (Sinden 1994). The idea behind our approach 
was to develop an artificial system, an architecture that would support 
discovering, adding, storing, improving, and sharing information and 
knowledge among machines and organizations through experience. We 
proposed a novel knowledge representation (KR) approach in which experi-
ential knowledge is represented by set of experience (SOE; Figure 1) and is 
carried into the future by DDNA (Figure 2; Sanín et al. 2009, 2012). 

Figure 1. SOE is the combination of four components that characterize decision-making actions 
(variables V, functions F, constraints C, and rules R) and it comprises a series of mathematical 
concepts (logical element), together with a set of rules (ruled-based element), and it is built upon 
a specific event of decision-making (frame element). Note: SOE, set of experience.   

Figure 2. Sets of experience (decisional genes SOEKS) are grouped according to their 
phenotype, creating decisional chromosomes (dChromosomes), and groups of chromosomes 
create the decisional DNA (DDNA).  
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Set of experience and DDNA can be implemented on various platforms (e.g., 
ontology, reflexive ontology, software-based, fuzzy logic, etc.) in multi-domains, 
which makes it a universal approach (Zhang, Sanin, and Szczerbicki 2016). 

We initially developed the concept and coined the expressions of SOE and 
DDNA in Sanin and Szczerbicki (2008), Sanín et al. (2009), and Zhang, Sanin, 
and Szczerbicki (2016). Since then, our research efforts resulted in widespread 
recognition of this innovative KR technique based on DNA metaphor that is 
presented as multi-technology shareable knowledge structure for decisional 
experience with proven security and trust in Sanín et al. (2012), Sanin et al. 
(2012), Sanchez et al. (2014), and Shafiq, Sanin, et al. (2014b). 

Virtual Engineering Object 

A VEO is knowledge representation of an engineering artifact. It has three 
distinct features (Shafiq, Sanin, et al. 2014b; Shafiq, Sanin, et al. 2014a; Shafiq, 
Sanin, Toro, and Szczerbicki 2015b):  

i. the embedding of the decisional model expressed by the SOE,  
ii. a geometric representation, and  

iii. the necessary means to relate virtualization with the physical object being 
represented. 

A VEO is a living representation of an object capable of capturing, adding, 
storing, improving, sharing and reusing data, information, and knowledge 
through experience, in a way similar to an expert in that object. A VEO 
can encapsulate knowledge and experience of all important features related 
to an engineering object. This is achieved by gathering data and information 
from six different aspects (chromosomes) of an object viz. characteristics, 
functionality, requirements, connections, present state, and experience as 
illustrated in Figure 3. 

Virtual engineering object of an engineering object implies that all 
knowledge and experience related to that object is stored in a structured 
manner in a repository. This information not only can be used for decision- 
making regarding its better operational performance, but also can be utilized 
in areas such as maintainability, serviceability, and reliability of the object. 
The VEO concept involves the interlinking of the body of knowledge of 
connected objects, with the aim of constructing subclasses consistent enough 
for the purposes of the classification scheme. 

Virtual engineering object is developed on the notion of cradle-to-grave 
approach, which means that the contextual information and decision-making 
regarding an engineering object from its inception until the end of its useful 
life is stored or linked to it. The knowledge representation technique of set of 
experience knowledge structure (SOEKS)–DDNA introduced in “Bio-Inspired 
Decisional DNA” section is used for developing VEO as it provides dynami-
city to overcome issues of representing complex data and discrete objects. 
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The changing machining conditions such as, for example, spindle thermal 
deformation, tool failure, chatter, and work piece deformation induced by clamp-
ing force, cutting force, and material inner stress have significant impacts on 
machining quality and efficiency. Figure 4 in the following section illustrates at 
the conceptual level of how VEO caters for decision-making problems, which 
may emerge during the machining process due to complex conditions at this level. 

Virtual Engineering Process 

In a manufacturing environment, the collection of components/tools/objects 
constitutes a process. Furthermore, a combination of processes constitutes a 
system as depicted in Figure 4. 

Figure 3. VEO structure (Shafiq, Sanin, Toro, and Szczerbicki 2015b). Note: VEO, virtual 
engineering object.   

Figure 4. Correlation between physical and virtual world.  
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Virtual engineering process is a knowledge representation of manufactur-
ing process/process planning of artifact having all shop floor level data and 
information regarding operations required, their sequence and resources 
needed to manufacture it as shown in Figure 5. VEP deals with the selection 
of necessary manufacturing operations and determination of their sequences, 
as well as the selection of manufacturing resources to “transform” a design 
model into a physical component economically and competitively (Shafiq, 
Sanin, Szczerbicki, and Toro 2015a; Shafiq, Sanin, Toro, and Szczerbicki 
2015a; Shafiq et al. 2015a). 

Process planning is the combination of data and information regarding the 
operation required, manufacturing sequence, and machines required. In 
addition to this, for any given VEP information of all the VEOs of the 
resource associated with the process is also required. Therefore, to encapsulate 
knowledge of the above-mentioned areas, the VEP is designed (Figure 5) 
having the following three main elements or modules: 

Operations 
In this module of VEP, all data and information related to the operations that 
are required to manufacture an engineering object are stored. This includes 
knowledge in the form of SOEKS related to operation process and scheduling. 
Furthermore, functional dependencies between operations are also part of 
operations. These are subcategorized and their interaction planning functions 
are given below: 
.� Scheduling route-based on global and local geometry. 
.� Processes—process capabilities, process cost. 

Figure 5. VEP architecture (Shafiq, Sanin, Toro, and Szczerbicki 2015a). Note: VEP, virtual 
engineering process.   
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.� Process parameters—tolerance, surface finish, size, material type, quantity, 
urgency 

Resources 
Information based on the past experience about resources used to manufac-
ture a component mentioned in operations module of VEP is stored here. 
The knowledge of the machine level stored in this section is as follows: 
.� Machine and tool selections—machine availability, cost machine capability, 

size, length, cut length, shank length, holder, materials, geometry, 
roughing, and finishing 

.� Fixture selection—fixture element function, locating, supporting, clamping 
surfaces, stability 
Furthermore, as discussed in “Virtual Engineering Object” section, the infor-

mation of VEO categorized under characteristics, requirements, functionality, 
present state, connections, and experience is also linked with this section. 

Experience 
In the experience module, links to the SOEKS of VEOs along with VEP having 
past formal decisions to manufacture engineering components are stored. They 
represent the links to SOEs based on past experience on that particular machine 
to perform given operation along with operational and routing parameter. 

Salient Features of VEO/VEP 

As discussed in the previous section, VEO/VEP works on the knowledge 
representation technique of SOEKS and decisional DNA. Experimental case 
studies (Shafiq, Sanin, et al. 2015a) have proven that DDNA-based VEO/ 
VEP knowledge system will have following features: 
.� Versatility and dynamicity of the knowledge structure, which provides 

flexibility to change according to the situation. 
.� Storage of day-to-day explicit experience in a single structure, which makes 

it ever evolving. 
.� Transportability, adaptability, and shareability of manufacturing data, 

information, and knowledge. 
.� Predicting and decision-making capabilities based on the collected past 

experience. 
.� Achieving decisional efficiency, having the right quality and quantity of 

knowledge at the right time. 

Methodology for Developing a Framework for Intelligent CIM 

Computer integrated manufacturing system is the computerized control and 
monitoring of production operation, using manufacturing automation. It 
incorporates several operations such as manufacturing (machining process), 
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inspection, quality control, assembly, raw material and finished good storage, 
material handling and transfer systems, radio-frequency identification (RFID) 
technology for real-time data management and CIMSIM control system for 
remote monitoring and adjustment. 

The CIM system under study has the following components: 
.� Automatic storage and retrieval system (ASRS) 
.� Automatic guided vehicle (AGV) 
.� Transfer conveyer 
.� RFID tracking system 
.� Machining operation (CNC-Lathe, CNC-Mill) 

A typical CIM process would be as follows: the AGV retrieves the pallet 
from the ASRS. The pallet can be programmed for specific operation using 
RFID. The AGV then carries the pallet to specific operations such as 
machining, assembly, inspection, or storage. 

The present study is conducted in four stages as presented in Figure 6. In 
stage 1 of the study, detailed working, architecture, input and output para-
meters of CIM components were analyzed. This stage was necessary for stage 

Figure 6. Framework for the intelligent CIM in IoT setting. Note: CIM, computer integrated 
manufacturing; IoT, Internet of Things.   
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2 where knowledge models of physical components of CIM are developed. 
These models are interconnected via the Internet and are capable of 
sending and receiving data and hence forms IoT (Hermann, Pentek, and 
Otto 2015). In stage 3, real-time semantic analysis and visualization of the 
captured data are done. And finally, in stage 4, the inferred knowledge 
from the past experience is utilized in controlling, monitoring, and future 
decision-making, etc. 

Components of Computer Integrated Manufacturing as Knowledge 
Entities 

As discussed in “Virtual Engineering Object” section, VEO is a knowledge 
representation of engineering artifacts. In this study, each physical component 
of CIM is considered as a VEO and correspondingly the following knowledge 
models are developed: ASRS-VEO, AGV-VEO, Robot-VEO, Lathe-VEO, 
Mill-VEO, and Arm-VEO. Figure 7 illustrates the structure of Lathe-VEO 
knowledge model having information regarding its characteristic, functional-
ity, requirement, connections, present state, and experience of the Lathe. 
Furthermore, adhering to the structure of SOEKS–DDNA, for each module 

Figure 7. Structure of ASRS-VEO. Note: ASRS, automatic storage and retrieval system; VEO, 
virtual engineering object.   
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data and information is structured according to variables, function, constant, 
and rules related to every formal decision. A sample of comma-separated 
values (CSV) files of experience module of ASRS-VEO, Lathe-VEO, and 
Mill-VEO are shown in Appendix 1, Appendix 2, and Appendix 3. On the 
same pattern information of characteristics, requirement, connections, 
present state, functionality related to ASRS-VEO are gathered. 

Similarly, knowledge models for AGV-VEO, Robot-VEO, ASRS-VEO, 
Mill-VEO, and Arm-VEO are developed as shown in Figure 8. 

In a typical CIM setup, the parts to be manufactured are indistinguishable. 
We propose to develop VEP of every part that provides a label an identity for 
each part and determines its path through the production process. The VEP 
information will accompany the part to the intended place where it will be 
used to fulfill its purpose. Appendix 4 shows the sample CSV file having 
VEP experience module. The part is no longer an ambiguous entity and its 
information can be accessed at any stage of its life cycle. This VEP infor-
mation can be stored on RFID tag, which helps to keep the part in control 
throughout machining and assembly operations. RFID signals keep track of 
which parts are completed and ready for shipping. Factory’s entire logistics 
system is also steered by RFID that makes is easier to get the overall picture 
of the flow of wares and thus reduce the warehouse stock. With the help of 
VEP and RFID machines and products can increasingly communicate among 
themselves without people (see stage 2 for Figure 6). This technique makes 
production a zero defect system, mistakes can be recognized immediately 

Figure 8. Knowledge representation architecture of CIM. Note: CIM, computer integrated 
manufacturing.   
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and can be corrected. This is also one of the features of building Industry 4.0 
(Posada et al. 2015). Industry 4.0 is the integration and assimilation of a num-
ber of smaller concepts such as “Cyber-physical systems (CPS),” “Internet of 
things (IoT),” “Internet of services (IoS),” “Internet of data (IoD),” “smart 
products,” etc. (Kagermann, Wahlster, and Helbig 2013; Max et al. 2014). 

As mentioned before, the architecture of VEO is envisaged on cloud 
computing; thus, all the part data can be accessed on the Internet. Once the 
product is delivered to the customer and it is used in the manufacturing 
process, the assembly generated automatic information that can be accessed 
through the Internet as well, and the manufacturer can monitor parts 
performance and decided what kind of product can be required in the future. 
Moreover, digital manufacturing footprints of machine components and 
products that are produced in a CIM-DNA are also attained as shown in 
Figure 8. 

Extracting Knowledge and Semantic Analysis of Data 

Vast amounts of data travel constantly through the factory via VEOs and 
VEPs. Once the data are collected, it is necessary to prepare it for its exploi-
tation. First of all, there is a necessity of some filtering, as all the raw data are 
not useful. The outliers and any other fragment of data that is considered 
noise are eliminated. The next step is to extract knowledge from the collected 
data, which is achieved by querying the CIM-DNA knowledge repository. 

Given a pair of sets of experience CIM-DNA (entire CIM repository) and 
querySOEj (SOE made up of query) ∈ S, it is possible to generate a similarity 
metric of the variables called SV ∈ [0,1] by calculating the distance measure 
between each of the pairwise attributes k ∈ CIM-DNAi and querySOEj. The 
Euclidean distance measure has been selected based on its simplicity and 
extended use. Besides, a normalization form was included following the 
notion of the range of comparison, that is, the maximum function. 
The similarity metric takes the following Eq. (1): 

SV CIM DNA; querySOEj
� �

¼
Xn

k¼1
wk

CIM DNA2
ik � querySOE2

jk

�
�
�

�
�
�

max CIM DNAikj j; querySOEjk
�
�

�
�

� �2

2

4

3

5

0:5

8k 2 CIM DNAi ^ querySOEj

ð1Þ

The parser is written in JAVA programming language to read the infor-
mation from the CSV files and convert them into SOEKS. Moreover, using 
formula (1), it calculates the similarity between a query SOEKS and the 
SOEKS collected in the CIM-DNA knowledge repository. 
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Results and Discussion 

Table 1 gives the sample query that was executed to find the most similar 
SOEKS. For example, in query 1, VEP similarity is calculated for a product 
CLY-1 when total time ¼ 12 min, tolerance ¼ −0.1 and finish ¼ 1.8. 
Figure 9 illustrates the execution of this query. CIM-DNA returns the top 
most similar SOEKS which, in this particular case, is VEP-Code no 9 having 
similarity 0.877. The query also returns the codes of ASRS-VEO, Robot-VEO, 
Lathe-VEO, Arm-VEO, and Mill-VEO for the most similar VEP-Code 
(Table 1). This enables to fetch all the micro-level details of each component 
corresponding to most similar VEP-SOEKS. 

The approach helps to categorize the past decisions taken on the CIM and 
then prioritize them according to the situation. 

The main contribution of this work is to demonstrate and implement 
knowledge-based CIM environment in data-intensive Iot/IoD scenario. The 
CIM-DNA, which is the representation of manufacturing process collective 
computational intelligence, is created by capturing the experience of engineer-
ing objects and engineering processes and then using this information for the 
construction of VEO and VEP. The SOEKS and DDNA are applied as the 

Table 1. Sample query with input variables corresponding output. 
Input Output 

Query 
Product  

code 
VEP  

variables 

VEP  
variable  
values 

Top  
VEP  

similarity 
VEP  

code 

ASRS- 
VEO  
code 

Robot  
VEO  
code 

Lathe  
VEO  
code 

Arm- 
VEO  
code 

Mill- 
VEO  
code  

1 CLY-1 Total  
Time  

12  0.877 VEP9 ASRS14 R4 L3 A6 M3 

Tolerance  −0.01 
Finish  1.8 

VEP, virtual engineering process; VEO, virtual engineering object.   

Figure 9. Calculation of similarity for each VEP-SOEKS. Note: VEP, virtual engineering process; 
SOEKS, set of experience knowledge structure.   
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knowledge representation structure for gathering the experience. Furthermore, 
VEF–VEP is used as a tool for decision-making processes that can enhance 
different CIM systems with predicting capabilities and facilitate knowledge 
engineering processes. Moreover, CIM-DNA readily copes with self-organizing 
production and control strategies; this is a strong linking instance of product 
life-cycle management, industrial automation, and semantic technologies as 
required for cyber-physical systems and Industry 4.0. 
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Appendix 1: Experience of ASRS-VEO  

Appendix 2: Experience of Lathe-VEO  

ASRS-VEO code Product code Pallet position Next station Receiving station Total time  

ASRS1 CYL-1 R1C1 Lathe Milling  13.53 
ASRS 2 CYL-1 R1C2 Lathe Milling  8.70 
ASRS 3 CYL-1 R1C3 Lathe Milling  6.77 
ASRS 4 CYL-2 R1C4 Lathe Milling  9.67 
ASRS 5 CYL-2 R1C5 Lathe Milling  8.70 
ASRS 6 RECT-1 R2C1 Lathe Milling  14.50 
ASRS 7 RECT-1 R2C2 Lathe Milling  13.53 
ASRS 8 RECT-2 R2C3 Lathe Milling  6.77 
ASRS 9 RECT-2 R2C4 Lathe Milling  11.60 
ASRS 10 RECT-2 R2C5 Lathe Milling  8.70 
ASRS 11 MISL-1 R3C1 Lathe Milling  12.57 
ASRS 12 MISL-2 R3C2 Lathe Milling  8.70 
ASRS 13 MISL-3 R3C3 Lathe Milling  14.50 
ASRS 14 MISL-4 R3C4 Lathe Milling  12.57 
ASRS 15 MISL-5 R3C5 Lathe Milling  10.63   

Lathe-VEO code Product code Program code Feed Speed Machining time  

L1 CYL-1 L-T-1  0.12  577  5.64 
L2 CYL-1 L-T-2  0.07  1199  3.63 
L3 CYL-1 L-TT-1  0.10  574  2.82 
L4 CYL-2 L-TT-2  0.11  1326  4.03 
L5 CYL-2 L-G-1  0.12  1333  3.63 
L6 RECT-1 L-T-3  0.08  1371  6.04 
L7 RECT-1 L-T-4  0.09  810  5.64 
L8 RECT-2 L-TT-3  0.09  661  2.82 
L9 RECT-2 L-TT-4  0.10  1103  4.83 
L10 RECT-2 L-G-2  0.06  1155  3.63 
L11 MISL-1 L-T-5  0.11  1231  5.24 
L12 MISL-2 L-T-6  0.11  1388  3.63 
L13 MISL-3 L-TT-5  0.09  1282  6.04 
L14 MISL-4 L-TT-6  0.10  689  5.24 
L15 MISL-5 L-G-3  0.11  1156  4.43   
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Appendix 3: Experience of Mill-VEO  

Appendix 4: Experience of VEP   

Mill-VEO code Product code Program code Feed Speed Machining time  

M1 CYL-1 M-1  0.08  889  4.36 
M2 CYL-1 M-2  0.06  1239  2.81 
M3 CYL-1 M-3  0.1  896  2.18 
M4 CYL-2 M-4  0.11  912  3.12 
M5 CYL-2 M-5  0.08  872  2.81 
M6 RECT-1 M-6  0.06  1352  4.68 
M7 RECT-1 M-7  0.1  1153  4.36 
M8 RECT-2 M-8  0.1  926  2.42 
M9 RECT-2 M-9  0.12  1295  4.83 
M10 RECT-2 M-10  0.07  1284  5.80 
M11 MISL-1 M-11  0.12  924  3.38 
M12 MISL-2 M-12  0.12  978  7.25 
M13 MISL-3 M-13  0.06  1151  5.32 
M14 MISL-4 M-14  0.06  1055  7.25 
M15 MISL-5 M-15  0.11  812  7.25   

VEP  
code 

Product  
code 

Part  
material 

Lathe- 
VEO code 

Mill- 
VEO code 

Total  
time (min) 

Tolerance  
(mm) Finish  

VEP1 CYL-1 Aluminum L1 M1  14.53  0.01  1.82 
VEP 2 CYL-1 Aluminum L1 M2  9.7  −0.02  1.82 
VEP 3 CYL-1 Aluminum L1 M3  7.77  −0.03  1.82 
VEP 4 CYL-1 Aluminum L2 M1  10.67  0.00  1.82 
VEP 5 CYL-1 Aluminum L2 M2  9.7  0.01  2.73 
VEP 6 CYL-1 Aluminum L2 M3  15.5  0.00  1.82 
VEP 7 CYL-1 Aluminum L3 M1  14.53  0.01  2.73 
VEP 8 CYL-1 Aluminum L3 M2  7.77  −0.01  2.73 
VEP 9 CYL-1 Aluminum L3 M3  12.6  −0.02  1.82 
VEP 10 CYL-1 Mild steel L1 M1  9.7  0.03  2.73 
VEP 11 CYL-1 Mild steel L1 M2  13.57  0.05  1.82 
VEP 12 CYL-1 Mild steel L1 M3  9.7  −0.03  1.82 
VEP 13 CYL-1 Mild steel L2 M1  15.5  0.01  2.73 
VEP 14 CYL-1 Mild steel L2 M2  13.57  0.04  1.82 
VEP 15 CYL-1 Mild steel L2 M3  11.63  −0.03  1.82   
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