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Abstract This study is concerned with the nonlinear
dynamic characteristics of a micro-vibration fluid vis-
cous damper used in a satellite.When a controlmoment
gyroscope is working, it produces micro-vibrations,
which is a disadvantage for imaging equipment. Tak-
ing a single-tube micro-vibration fluid viscous damper
as our research subject, a nonlinear dynamic model of
the micro-vibration fluid viscous damper under har-
monic excitation is proposed. Then, the analytical form
of the pressure gradient force is derived. Considering
the entrance effect in the orifice, the nonlinear elas-
tic force and nonlinear damping force are analyzed.
The results reveal that if the entrance effect is not con-
sidered, the elastic force and damping force are lin-
ear forces. When the entrance effect is considered, the
damper has a nonlinear elastic force and a nonlinear
damping force. These nonlinear forces are related to
the orifice length, diameter, fluid viscosity, excitation
amplitude and frequency. In the low-frequency domain,
the differences between the two cases are small, while
in the high-frequency domain, they are considerable.

X. Jiao (B) · Y. Zhao · W. Ma
School of Astronautics, Harbin Institute of Technology,
Harbin 150001, China
e-mail: jiaoxiaoleib@163.com

Y. Zhao
e-mail: yangzhao@hit.edu.cn

W. Ma
e-mail: mawenlai2000@sina.com

Keywords Micro-vibration · Fluid viscous damper ·
Nonlinear damping force · Nonlinear elastic force

1 Introduction

When the control moment gyroscope (CMG) of a
satellite is working, it produces high-frequency micro-
vibrations that have a serious effect on imaging equip-
ment. It is necessary to prevent micro-vibrations pro-
duced by the CMG. The typical methods for isolating
micro-vibrations are passive isolation, active isolation,
and hybrid isolation. Passive isolation is used widely.
Commonly used passive dampers include viscoelastic
material dampers [1] and fluid viscous dampers [2,3].
Active dampers include electromagnetic dampers [4–
6], and hybrid dampers include voice coil dampers
[7,8]. Although active dampers and hybrid dampers
perform well, they are not reliable. In addition, they
need additional energy equipment and control strate-
gies. Therefore, active dampers and hybrid dampers are
not widely used in micro-vibration isolation. In con-
trast, passive dampers have perfect reliability and are
simple structures, so they are widely used. The perfor-
mance of a viscoelastic material damper is sensitive
to the temperature, and the damper requires a high-
performance temperature control system in a satel-
lite. Therefore, a fluid viscous damper is a reasonable
choice.

A fluid viscous damper usually produces damping
forces using a damping orifice or annular clearance.
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When fluid passes through the orifice or annular clear-
ance, the damper produces a pressure gradient force. If
the length of the orifice or annular clearance is long,
it is unnecessary to consider the entrance effect of the
orifice, but when the length of the orifice is short, it is
necessary to consider the entrance effect.

Because the structure of fluid viscous damper is
simple, it is used widely in micro-vibration isolation.
It was first used in the aerospace industry to isolate
micro-vibrations in the Hubble telescope. This micro-
vibration fluid viscous damper is called a D-strut and
is produced by the Honeywell company [2,3]. When
silicon oil passes through the orifice, there are different
pressures in the two cavities. A damping force is pro-
duced because of the pressure gradient between the two
cavities. Two bellows are used to provide themain stiff-
ness. Due to the perfect viscosity–temperature charac-
teristics of silicon oil, the D-strut has perfect perfor-
mance. In recent years, there have been many stud-
ies on micro-vibration fluid viscous dampers used in
satellites. Wang [9] studied the micro-vibration fluid
viscous damper based on a three-parameter system,
in which the harmonic balance method was used to
solve nonlinear equations. Shi [10] studied a fluid vis-
cous damper that had a bellows structure. A dynamic
model of this damper was established, in which non-
linear stiffness and damping were equivalent to linear
stiffness and damping.Narkhede [11] studied the shock
dynamic characteristics of a nonlinear fluid viscous
damper that had an annular clearance, but the study
focused on non-Newtonian fluids. Hou [12] studied
the nonlinear dynamic characteristics of a fluid viscous
damper that had an annular clearance. Hou thought that
the nonlinear damping and stiffness were the result
of shear thinning. Zhang [13] proposed the concept
of the output frequency response function (OFRF)
based on studying a cubic fluid viscous damper. The
results indicated that a damper that contained cubic
damping had perfect performance in isolating vibra-
tions produced by structures with multiple degrees of
freedom. Wolfe [14] studied parameter identification
in a large-scale nonlinear fluid viscous damper. Far-
joud [15] proposed a nonlinear dynamic model of a
single-tube fluid viscous damper. Hou [16] proposed
a nonlinear dynamic model of an annular clearance
damper based on the Navier–Stokes equations, and
Hou analyzed the effects of viscosity and frequency
on the damper response. Narkhede [17] studied the
dynamic characteristics of nonlinear dampers under

impulse excitation. Shum [18] studied the nonlinear
viscous damper under random excitation and proposed
a designmethod for this damper. Guo [19] analyzed the
force and displacement transmissibility of a nonlinear
viscous damper. The transmissibility was derived using
the Ritz–Galerkin method, but this model is based on
a lumped-parameter system. Lang [20] studied a fluid
viscous damper that contained cubic damping using the
OFRF and a lumped-parameter system. Lv [21] studied
a single degree of freedom (SDOF) nonlinear fluid vis-
cous damper vibration system and analyzed the steady-
state response.

In short, previous studies of nonlinear viscous
dampers have focused on lumped-parameter systems.
Nonlinear dynamic equations have been solved with
the harmonic balance method or other methods. There
are not enough studies on the mechanisms of nonlinear
damping and nonlinear stiffness.

This paper focuses on analyzing the mechanism of
the nonlinear damping and nonlinear elastic forces of
a micro-vibration fluid viscous damper. The objective
is to extend the study of the mechanism of nonlinear
damping and nonlinear stiffness. To achieve this goal, a
single-tube damper is used as our research subject, and
a nonlinear dynamic model of a micro-vibration fluid
viscous damper that considers the entrance effect is pro-
posed. Then, an inverse Laplace transform is applied
to obtain the nonlinear damping force and nonlinear
elastic force. The results reveal that when the entrance
effect is considered, the damper has a nonlinear elastic
force and nonlinear damping force. These forces are
related to the orifice length, diameter, fluid viscosity,
excitation amplitude, and frequency.

2 Dynamic model of the single-tube
micro-vibration fluid viscous damper

When a fluid passes through an orifice, the fluid in the
orifice is laminar (Re < Recr, where Recr is the crit-
ical Reynolds number). Because of the wall boundary
condition at the wall, the velocity near the wall is zero,
while the fluid in the middle of the pipe has the largest
velocity. Considering a micro-fluid column in the pipe
and analyzing the forces that act on this micro-column,
the resistance of the pipe can be obtained.

Rh = 128μl

πd4
(1)
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Fig. 1 Model of a single-tube fluid viscous damper

Fig. 2 Forces on the piston

whereμ represents the viscosity, l represents the length,
and d represents the diameter. A single-tube fluid vis-
cous damper [22] is illustrated in Fig. 1. The piston in
the middle of tube divides the cavity into two parts, the
left part and the right part. When a sinusoidal excita-
tion acts on the piston, it squeezes the silicone oil in
the damper, which produces a pressure gradient force
because of the different pressures in the two cavities.
V1 is the volume of the left cavity, and V2 is the volume
of the right cavity. P1 and P2 are the pressures of the
two cavities. FP1 and FP2 are the forces of the two
cavities. FRh is the force produced by the resistance in
the orifice, as shown in Fig. 2. FQ is the inertia force
of the fluid column in the orifice.

When silicone oil flows in the cavity, a part of the
fluid passes through the orifice from one cavity to
another cavity, while the rest of the fluid is compressed.

According to flux conservation{
−Q + APυ = 1

β
V1 Ṗ1

Q − APυ = 1
β
V2 Ṗ2

(2)

In this equation, Q is the flow rate in the orifice, AP is
the area of the piston, υ is the velocity of the piston,
and β is the bulk modulus of the silicon oil.

Because the viscosity of the silicon oil in the damper
is large and the flow in the orifice is laminar, the force
equilibrium equation of the liquid column in the orifice
can be written as

{
ρLg Q̇ + RhQAg = (P1 − P2) Ag

Rh = 128μLg

πd4
(3)

where ρ is the density of the silicon oil, Lg is the length
of the orifice, Ag is the area of the orifice, and Rh is the
resistance.

If the excitation is the velocity, it can be described
as

υ = υ0 sin (ωt) (4)

where υ0 is the amplitude of the velocity, and ω is the
circular frequency. F is the pressure gradient force and
can be written as

F = (P1 − P2) AP (5)

The state equation of the system can be described as

Ẋ = AX + Bν

A =
⎡
⎢⎣

0 0 − β
V1

0 0 β
V2

Ag
ρLg

− Ag
ρLg

0

⎤
⎥⎦ , B=

⎡
⎢⎣0 0 β AP

V1
0 0 −β AP

V1
0 0 0

⎤
⎥⎦ (6)

For micro-vibrations, the amplitude of the displace-
ment is small, and therefore the volumes of two cavities
are constant: V1 = V2 = V0.

�F =
√
2

β

V0

Ag

ρLg
(7)

�F is the circular frequency of the liquid column in the
orifice. It can be further written as

�F = Ag

√
2β

V0mg
(8)

wheremg is themass of the liquid column in the orifice.
The transfer function can be written as

	(s) = F (s)

υ (s)
=

2βA2
P

V0

(
s + Rh Ag

ρLg

)
s2 + Rh

Ag
ρLg

s + 2 Ag
ρLg

β
V0

(9)

υ = ẋ, υ (s) = sX (s)

Because υ (s) = sX (s), Eq. (9) can be written as

	(s) = F (s)

sX (s)
= 2βA2

P

V0

(
s + Rh Ag

ρLg

)
s2 + Rh

Ag
ρLg

s + 2 Ag
ρLg

β
V0

(10)
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It can be further written as

F (s)

X (s)
= 2βA2

P

V0

s
(
s + Rh Ag

ρLg

)
s2 + Rh

Ag
ρLg

s + 2 Ag
ρLg

β
V0

(11)

It can be seen from denominator of Eq. (11) that the
characteristic root has a relationship with Rh , Ag , Lg ,
ρ, β, V . If these parameters take different values, the
pressure gradient force will be different. Therefore, it
is necessary to analyze the distribution of the charac-
teristic roots.


 = A2
2 − 4A3 =

(
Rh Ag

ρLg

)2

− 8βAg(
ρLg

)
V0

A1 = Rh Ag

ρLg
, A2 = Rh Ag

ρLg
, A3 = 2βAg

ρLgV0
(12)

Equation (12) is a discriminant.
(1) If 
 < 0, the transfer function has a pair of

conjugate complex roots. The conjugate complex roots
can be described as

s1 = a + bj, s2 = a − bj

a = − A2

2
, b =

√
A2
2 − 4A3

2
Equation (11) can be rewritten as:

F (s)

X (s)
= K0

s2 + A1s

(s − s1) (s − s2)
(13)

Using an inverse Laplace transform, the pressure gra-
dient force can be obtained.

F (t) = K0x0ω

⎡
⎣2U cos (ωt) − 2V sin (ωt)

+ 2eat
(
Ms cos (bt) −
Ns sin (bt)

) ⎤
⎦

K0 = 2βA2
p

V0
, A1 = Rh Ag

ρLg
, A2 = Rh Ag

ρLg

A3 = 2βAg

ρLgV0
, B1 = −ω2, B2 = A1ω

B3 = 4aω2, B4 = 2ω
(
a2 − ω2 + b2

)
N1 = a2 − b2 + A1a, N2 = 2ab + A1b

N3 = −4ab2, N4 = 2b
(
a2 − ω2 + b2

)
U = B1B3 + B2B4

B2
3 + B2

4

, V = B2B3 − B1B4

B2
3 + B2

4

Ms = N1N3 + N2N4

N 2
3 + N 2

4

, Ns = N2N3 − N1N4

N 2
3 + N 2

4

(14)

(2) If
 > 0, there are two different real roots, which
can be written as

s1 = − A2

2
+

√
A2
2 − 4A3

2

s2 = − A2

2
−

√
A2
2 − 4A3

2
The transfer function can be written as

F (s)

X (s)
= K0

s2 + A1s

(s − s1) (s − s2)
(15)

Using an inverse Laplace transform, the time response
of the pressure gradient force can be obtained.

F (t) = K0x0ω

[
2U cos (ωt) − 2V sin (ωt) +
c3es1t + c4es2t

]

K0 = 2βA2
p

V0
, B1 = −ω2, B2 = A1ω

B3 = 2ω2 (s1 + s2) , B4 = 2ω
(
s1s2 − ω2)

U = B1B3 + B2B4

B2
3 + B2

4

, V = B2B3 − B1B4

B2
3 + B2

4

c3 = s21 + A1s1(
s21 + ω2

)
(s1 − s2)

, c4 = s22 + A1s2(
s21 + ω2

)
(s1 − s2)

(16)

(3) If 
 = 0, the two real roots are the same. They
can be written as

s1 = s2 = − A2

2
, n = − A2

2
The transfer function can be written as

F (s)

X (s)
= K0

s2 + A1s

(s − s1) (s − s2)
(17)

Using an inverse Laplace transform, the pressure gra-
dient force can be obtained.

F (t) = K0x0ω

[
2U cos (ωt) − 2V sin (ωt)+
(c3t + c4) ent

]
B1 = −ω2, B2 = A1ω, B3 = 4nω2

B4 = 2n2ω − 2ω3, c3 = n2 + nA1

n2 + ω2

c4 = 2n3(
n2 + ω2

)2 ,U = B1B3 + B2B4

B2
3 + B2

4

,

V = B2B3 − B1B4

B2
3 + B2

4

(18)
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Fig. 3 Entrance effect

3 Entrance effect in the orifice

The dynamicmodel derived in Sect. 2 does not consider
the entrance effect in the orifice.When the length of the
orifice is large, this is reasonable. For a shorter orifice,
it is necessary to consider the entrance effect in the
orifice. In this section, a dynamic model that considers
the entrance effect in the orifice will be derived.

When the fluid flows from a large cavity into a short
damping orifice, the energy loss near the entrance is
different from the energy loss in the fully extended
segment. Near the entrance of the damping orifice,
energy losses include viscosity loss and kinetic energy
loss. Because the length of this segment is long for
laminar flow, it is necessary to consider the entrance
effect.

The model that considers the entrance effect in the
orifice can be analyzed using the structure shown in
Fig. 3. s−s is the cross section near the entrance, and
d−d is the cross section near the exit. ps , υs , pd , υd
are the pressures and velocities of the respective cross
sections. 1–1 is the entrance of the orifice, and 2–2 is
the exit of the orifice. p1 and p2 are the pressures of
these two cross sections. vis the velocity in the orifice.
According to the Bernoulli equation

ps
ρg

+ αsυ
2
s

2g
= p1

ρg
+ αυ2

2g
+ ζ1

υ2

2g
(19)

where ζ1 is the local resistance coefficient of the
entrance. The pressure loss between the cross sections
s−s and d−d can be written as


ps−d = ps − pd = 128μLgQ

πd4

[
1 + ξ

Re

64

(
d

Lg

)]
(20)

where Q is the flow rate in the orifice, Lg is the length
of the orifice, μ is the viscosity of the silicone oil, dis
the diameter of the orifice, Re is the Reynolds number,
and ξ ′ and c are correction coefficients. The pressure
loss in the orifice can be written as


p1−2 = p1 − p2 = 128μLgQ

πd4

[
1 + ξ ′ Re

64

(
d

l

)]

= c
128μLgQ

πd4
(21)

The resistance can be written as

R′
h = cRh, c = 1 + ξ ′ Re

64

(
d

Lg

)
(22)

According to Langhaar’s experiment, the approximate
value of ξ ′ can be written as

⎧⎨
⎩ ξ ′ = 2.62

(
Lg
Red

)1/4 Lg
Red ≤ 0.058

ξ ′ = 1.28 Lg
Red > 0.058

(23)

The Reynolds number is

Re = ρυd

μ

Equation (23) can be written as

⎧⎨
⎩ ξ ′ = 2.62

(
μLg

ρυd2

)1/4 Lg
Red ≤ 0.058

ξ ′ = 1.28 Lg
Red > 0.058

(24)

Equation (24) can be written as

R′
h =

{
Rh

(
1 + α1υ

5
4

)
Lg
Red ≤ 0.058

Rh (1 + α2υ)
Lg
Red > 0.058

(25)

where α1 and α2 are coefficients

α1 = 2.62

64

(
ρd2

μLg

) 3
4

, α2 = 1.28

64

ρd2

μLg

Equation (25) contains nonlinear terms. The depen-
dence of ξ ′ and c on l

Red is shown in Fig. 4. When
the transfer function has different characteristic roots,
the response in the time domain will be different too. It
is necessary to discuss the distribution of these roots.
When considering the entrance effect, the resistance
should be R′

h .

A1 = R′
h Ag

ρLg
, A2 = R′

h Ag

ρLg
, A3 = 2βAg

ρLgV0
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Fig. 4 Dependence of ξ ′ and c on l
Red

(1) When there is a pair of conjugate complex roots

U =
A1

[
A2
1
4 + ∣∣A2

2 − 4A3
∣∣]

[
2A2

1ω
2 + 2

(
A2
1
4 − ω2 + ∣∣A2

2 − 4A3
∣∣)] (26)

V =
−K0ω

2
[∣∣A2

2 − 4A3
∣∣ − ω2 − 3A2

1
4

]

A2
1ω

2 +
(

A2
1
4 − ω2 + ∣∣A2

2 − 4A3
∣∣)2 (27)

The damping force can be written as

Fdamp

= 2
A1

[
A2
1
4 + ∣∣A2

2 − 4A3
∣∣]

[
2A2

1ω
2 + 2

(
A2
1
4 − ω2 + ∣∣A2

2 − 4A3
∣∣)]K0 ẋ

(28)

The elastic force can be written as

Felastic = −2
−K0ω

2
[∣∣A2

2−4A3
∣∣ − ω2 − 3A2

1
4

]

A2
1ω

2 +
(

A2
1
4 −ω2 + ∣∣A2

2 − 4A3
∣∣)2 K0x

a = − A2

2
, b =

√
A2
2 − 4A3

2
(29)

(2) When there are two equal real roots

U = 8A1ω
3 + 2A1

(
A2
1 − 4ω2

)
16A2

1ω
3 + ω

(
A2
1 − 4ω2

)2 (30)

V = ω
[− 3

4 A
2
1 − ω2

]
2

[
A2
1ω

2 + ( 1
4 A

2
1 − ω2

)2] (31)

The damping force can be written as

Fdamp = 2
8A1ω

3 + 2A1
(
A2
1 − 4ω2

)
16A2

1ω
3 + ω

(
A2
1 − 4ω2

)2 K0 ẋ (32)

The elastic force can be written as

Felastic = −2
ω

[− 3
4 A

2
1 − ω2

]
2

[
A2
1ω

2 + ( 1
4 A

2
1 − ω2

)2]K0x (33)

(3) When there are two different real roots

U = 2A2ω
4 + 2A1ω

2
(− 3

4 A
2
2 + 4A3 − ω2

)
(− 3

4 A
2
2 + 4A3

)2 + 4ω2
(− 3

4 A
2
2 + 4A3 − ω2

)2
(34)

V = −2A1A2ω
3 + 2ω3

(− 3
4 A

2
2 + 4A3 − ω2

)
(− 3

4 A
2
2 + 4A3

)2 + 4ω2
(− 3

4 A
2
2 + 4A3 − ω2

)2
(35)

The damping force can be written as

Fdamp = 2
−2A1A2ω

3 + 2ω3
(− 3

4 A
2
2 + 4A3 − ω2

)
(− 3

4 A
2
2 + 4A3

)2 + 4ω2
(− 3

4 A
2
2 + 4A3 − ω2

)2 K0 ẋ

(36)

The elastic force can be written as

Felastic = −2
−2A1A2ω

3 + 2ω3
(− 3

4 A
2
2 + 4A3 − ω2

)
(− 3

4 A
2
2 + 4A3

)2 + 4ω2
(− 3

4 A
2
2 + 4A3 − ω2

)2 K0x

(37)

4 Damping force, elastic force, transient force

The characteristic roots of the transfer function have
a relationship with the orifice length and diameter, the
size of the cavity, and the viscosity of the silicone oil.
Therefore, the response in the time domain will be dif-
ferent. In this section, different forms of the pressure
gradient force will be analyzed. Three cases are dis-
cussed. They are similar to the descriptions in Sect. 2.
(1) The transfer function has a pair of conjugate com-
plex roots.

The pressure gradient force in the time domain can
be written as
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F (t) = Fp (t) + Fq (t) (38)

Fp (t) = K0x0ω [2U cos (ωt) − 2V sin (ωt)] (39)

Fq (t)=K0x0ω
[
2eat (Ms cos (bt) − Ns sin (bt))

]
(40)

Fp(t) is the steady component of the pressure gradi-
ent force. Fq(t) is the transient component of the pres-
sure gradient force. The transient component decays
with time. The steady component of the pressure gra-
dient force can be written as

Fp (t) = Fp_c (t) + Fp_k (t) (41)

where Fp_c(t) is the damping force and Fp_k(t) is the
elastic force.

Fp_c (t) = K0x0ω [2U cos (ωt)] (42)

Fp_k (t) = −K0x0ω [2V sin (ωt)] (43)

Equations (42) and (43) can be written as

Fp_c (t) = 2UK0 ẋ (44)

Fp_k (t) = −2V K0ωx (45)

(2) The transfer function has two different real roots.
If the transfer function has two different real roots,

the damping force, elastic force, transient force can be
written as

Fp_c (t) = K0x0ω [2U cos (ωt)] (46)

Fp_k (t) = −K0x0ω [2V sin (ωt)] (47)

Fq (t) = K0x0ω
[
(c3t + c4) e

nt ] (48)

(3) The transfer function has two equal real roots.
If the transfer function has two different real roots,

the damping force, elastic force and transient force can
be written as

Fp_c (t) = K0x0ω [2U cos (ωt)] (49)

Fp_k (t) = −K0x0ω [2V sin (ωt)] (50)

Fq (t) = K0x0ω
[
c3e

s1t + c4e
s2t

]
(51)

5 Comparison between the CFD model and the
analytical model

In this section, a comparison between the analytical
model and the CFDmodel is made to verify the analyt-
ical model. The CFD model is established by ADINA.
ADINA is an advanced tool for the fluid-structure inter-
action problem. The fluid model and structure model

Fig. 5 Fluid–structure interface

should be established separately.A sinusoidal displace-
ment excitation is applied to the structure model, in
which the amplitude is 1 mm, the surface of the piston
is defined as the fluid–structure interface, and the yel-
low part in Fig. 5 is the fluid–structure interface. Dur-
ing the computation, the two models exchange dates
at each time step. To save computational time, a 1/4
model is used. After finishing the computation, forces
of all the nodes on the fluid–structure interface should
be extracted. These forces are called the pressure gra-
dient force. Because the CFDmodel is a 1/4 model, the
final pressure gradient force should be multiplied by 4.
The parameters of the CFDmodel are shown in Table 1.

Figure 6 shows a grid of the fluid in the damper.
Figure 7 is the grid of the piston. To save computation
time, a 1/4 CFD model is used. Figures 8, 9, 10 and 11
are the pressures in the damper of the four cases with
viscosities of 1000, 900, 800, and 700 cst. Pressure in
the left and right cavity is well distributed, while there
is a pressure gradient in the orifice. The largest pres-
sures in the damper are 1.61, 1.57, 1.50, and 1.42 MPa,
respectively. The pressure in the damper decreases as
the viscosity decreases because of the decreasing resis-
tance. Figures 12, 13, 14 and 15 describe velocities in
the damper. Velocity has the largest value in the orifice,
but is equal to zero in the two cavities. The maximum
velocities for the four cases are 27.06, 29.04, 31.10, and
33.37 m/s, respectively. Thus, the velocity decreases
with decreasing viscosity. The reason is that when the
viscosity increases, the fluidity of the silicone oil in
the damper decreases. There is a diffusion region near
the exit of the orifice due to the expansion of the cross
section.
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Table 1 Parameters of the CFD model

Case Parameter Value

1 d 2 mm

Lg 30 mm

ν 1000 cst

x0 1 mm

f 50 Hz

2 d 2 mm

Lg 30 mm

ν 900 cst

x0 1 mm

f 50 Hz

3 d 2 mm

Lg 30 mm

ν 800 cst

x0 1 mm

f 50 Hz

4 d 2 mm

Lg 30 mm

ν 700 cst

x0 1 mm

f 50 Hz

D = 25 mm, L = 50 mm, ρ = 903Kg/m3, β = 100MPa

Fig. 6 Grid of the fluid in the damper

The length of the diffusion region increases as the
viscosity increases. Pressure gradient forces of differ-
ent viscosities are shown in Figs. 16, 17, 18 and 19. The
pressure gradient force has the largest value of 1783 N
when the viscosity is 1000 cst, it has the smallest value
of 1721 N when the viscosity is 700 cst. It is shown
that the pressure gradient force decays as the viscosity
decreases. In the first vibration cycle (0–0.02 s), the

Fig. 7 Grid of the piston

Fig. 8 Pressure in the damper (case 1)

Fig. 9 Pressure in the damper (case 2)

amplitude of the pressure gradient force is small com-
pared with the amplitude of the steady state because
the direction of the transient force is opposite to that of
the pressure gradient force. The transient force decays
with time, which is consistent with the theory presented
in Sect. 3.
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Fig. 10 Pressure in the damper (case 3)

Fig. 11 Pressure in the damper (case 4)

Fig. 12 Velocity in the damper (case 1)

Table 2 shows the relative errors of the pressure gra-
dient force between the CFD model and the analytical
model. The largest error is 5.05%. The smallest rela-
tive error is 2.96%. It is shown that the analytical model
can describe the dynamic characteristics of single-tube
micro-vibration isolators exactly.

Fig. 13 Velocity in the damper (case 2)

Fig. 14 Velocity in the damper (case 3)

Fig. 15 Velocity in the damper (case 4)

In this section, the nonlinear damping force and non-
linear elastic force will be analyzed for different values
of parameters.
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Fig. 16 Comparison of the pressure gradient force from the ana-
lytical model and the CFD model (case 1)

Fig. 17 Comparison of the pressure gradient force from the ana-
lytical model and the CFD model (case 2)

Fig. 18 Comparison of the pressure gradient force from the ana-
lytical model and the CFD model (case 3)

Fig. 19 Comparison of the pressure gradient force from the ana-
lytical model and the CFD model (case 4)

Table 2 Relative errors of the CFD model and analytical model

Viscosity 700 cst 800 cst 900 cst 1000 cst

Analytical model 1772 N 1812 N 1841 N 1873 N

CFD model 1721 N 1745 N 1764 N 1783 N

Relative error 2.96% 3.84% 4.37% 5.05%

6 Decomposition of the pressure gradient force

According to the derivation in Sect. 4, the pressure gra-
dient force can be divided into an elastic force, a damp-
ing force, and a transient force. The elastic force pro-
vides stiffness, the damping force provides damping,
and the transient force decays with time. Two cases are
studied. The model parameters for these two cases are
shown in Table 3. The difference between the two cases
is the diameter of the orifice. The diameter of case 1
is 5 mm, and the diameter of case 2 is 2 mm, while
the other parameters remain the same. In each case, we
studied the pressure gradient force while considering
and ignoring the entrance effect.

Figure 20 shows the pressure gradient force Fpressure
when considering the entrance effect (case 1, diame-
ter of the orifice is 5 mm). From 0 to 0.02 s, there is
an oscillation phenomenon because the transient force
oscillates significantly at the beginning. The pressure
gradient force can be divided into a nonlinear damp-
ing force Fdamp, a nonlinear elastic force Felastic, and
a transient force Ftransient. It can be seen from Fig. 20
that the curve has some differences compared to the
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Table 3 Model parameters

Case Parameter Value

1 d 5 mm

Lg 10 mm

ν 500 cst

x0 1 mm

f 50 Hz

2 d 2 mm

Lg 10 mm

ν 500 cst

x0 1 mm

f 50 Hz

D = 25 mm, L = 50 mm, ρ = 903Kg/m3, β = 100MPa

Fig. 20 Pressure gradient force considering the entrance effect
(case 1)

sinusoidal curve due to the nonlinear damping force
and the nonlinear elastic force. The reason is that when
the entrance effect is considered, there is a nonlinear
term in the resistance, and the pressure gradient force
becomes a nonlinear force.

Figure 21 shows the pressure gradient force Fpressure
without considering the entrance effect (case 1, diam-
eter of the orifice is 5 mm). It can be seen from Fig. 21
that the pressure gradient force is sinusoidal. This
means that the pressure gradient force is a linear force.
The reason is that if the entrance effect is not consid-
ered, the damping force and elastic force have linear
relationshipswith velocity and displacement. The pres-
sure gradient force Fpressure can be divided into the lin-
ear damping force Fdamp, the linear elastic force Felastic
and a transient force.

Fig. 21 Pressure gradient forcewithout considering the entrance
effect (case 1)

Fig. 22 Pressure gradient force considering the entrance effect
(case 2)

Figure 22 shows the pressure gradient force consid-
ering the entrance effect (case 2, diameter of the ori-
fice is 2 mm). The nonlinear elastic force is very clear,
while the nonlinear damping force is not substantial. In
this case, the transient force decays with time exponen-
tially because when 
 > 0, the characteristic roots are
real roots and the transient force contains the exponen-
tial term. It can be seen from Fig. 22 that the pressure
gradient force is a nonlinear force. This is more clear
than in case 1 because when the diameter of the orifice
decreases, the velocity in the orifice increases, so the
nonlinear term in Eq. (25) also increases.

Figure 23 shows the pressure gradient force without
considering the entrance effect (case 2, diameter of the
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Fig. 23 Pressure gradient forcewithout considering the entrance
effect (case 2)

Table 4 Model parameters

Case Parameter Value

1 d 2 mm

Lg 10 mm

ν 200 cst

x0 1 mm

f 1 Hz

2 d 2 mm

Lg 10 mm

ν 200 cst

x0 1 mm

f 5 Hz

3 d 2 mm

Lg 10 mm

ν 200 cst

x0 1 mm

f 50 Hz

D = 25 mm, L = 50 mm, ρ = 903Kg/m3, β = 100MPa

orifice is 2 mm). It can be seen from the figure that
the curve is a sinusoidal curve, which means that the
pressure gradient force is a linear force. Because the
entrance effect is not considered, the damping force
and elastic force are linear forces too.

A comparison between the nonlinear pressure gradi-
ent force and the linear pressure gradient force is made
at different frequencies. Model parameters are shown
in Table 4. The frequency of case 1, 2, and 3 is 1, 5, 50
Hz, respectively.

Fig. 24 Comparison between the linear and nonlinear pressure
gradient forces (case 1)

Fig. 25 Comparison between the linear and nonlinear pressure
gradient forces (case 2)

Figure 24 is a comparison between the linear pres-
sure gradient force and the nonlinear pressure gradient
force, with a frequency of 1 Hz. There is an oscillation
at the beginning due to the transient force, as seen in
the figure. In addition, the linear pressure gradient force
and the nonlinear pressure gradient force are nearly the
same becausewhen the frequency is low, the velocity in
the orifice is low, the nonlinear term in Eq. (25) is small,
and the resistances (both when the entrance effect is
considered and when it is not) are nearly the same. The
amplitude of the pressure gradient force is 7 N.

Figure 25 compares the linear pressure gradient
force and the nonlinear pressure gradient force for a
frequency of 5 Hz. There are some differences. The
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Fig. 26 Comparison between the linear and nonlinear pressure
gradient forces (case 3)

amplitude of the nonlinear pressure gradient force is
42 N, while the amplitude of the linear pressure gradi-
ent force is 35 N. The figure shows that the nonlinear
force is not substantial because the nonlinear term in
the resistance is small for 5 Hz.

Figure 26 compares the linear pressure gradient
force and the nonlinear pressure gradient force at a fre-
quency of 50 Hz. The nonlinear force is substantial.
The amplitude of the nonlinear pressure gradient force
is 751N, while the amplitude of the linear pressure gra-
dient force is 361 N. The nonlinear pressure gradient
force is twice the linear pressure gradient force. There-
fore, there will be a large difference between the two
models (bothwith andwithout considering the entrance
effect). The reason is that when the viscosity is low at a
high frequency, the entrance effect is substantial; there-
fore, it is necessary to consider the entrance effect in
this scenario.

7 Hysteresis loop of pressure gradient force

A hysteresis loop can describe damping and stiffness
intuitively. The area of a hysteresis loop represents the
energy loss. The slope of the hysteresis represents the
stiffness. In this section, a hysteresis loop of the pres-
sure gradient force will be analyzed. The model that
considers the entrance effect is used. Themodel param-
eters are shown in Table 5. Five cases are analyzed.
Case 1 is an analysis of hysteresis loops for different
diameters. Case 2 is an analysis of hysteresis loops for
different lengths. Case 3 is an analysis of hysteresis

Table 5 Model parameters

Case Parameter Value

1 d 1.0/1.2/1.4/1.6 mm

Lg 10 mm

ν 200 cst

x0 1 mm

f 50 Hz

2 d 2 mm

Lg 5/10/15/20 mm

ν 200 cst

x0 1 mm

f 50 Hz

3 d 2 mm

Lg 10 mm

ν 100/200/300/400 cst

x0 1 mm

f 50 Hz

4 d 2 mm

Lg 10 mm

ν 200 cst

x0 0.6/0.8/1.0/1.2 mm

f 50 Hz

5 d 2 mm

Lg 10 mm

ν 200 cst

x0 1 mm

f 10/20/30/40 Hz

D = 25 mm, L =50mm, ρ = 903Kg/m3, β = 100MPa

loops for different viscosities. Case 4 is an analysis of
hysteresis loops for different amplitudes. Case 5 is an
analysis of hysteresis loops for different frequencies.

Figure 27 shows hysteresis loops for different diam-
eters. The diameters are 1.0, 1.2, 1.4, and 1.6 mm. The
frequency is 50 Hz. The area of the hysteresis loop
increases as the diameter increases, which means that
more vibrational energywill be consumed, but the slope
of the hysteresis loop decreases, the reason is that when
the diameter increases, more silicone oil flows through
the orifice, while at the same time, less silicone oil will
be compressed. Figure 28 shows hysteresis loops for
different lengths. The lengths are 5, 10, and 20 mm.
The frequency is 50 Hz. The area of the hysteresis loop
increases as the length of orifice increases. This means
that more vibrational energy will be consumed as the
length increases. The hysteresis loop is not elliptical
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Fig. 27 Hysteresis loops for different diameters (case 1)

Fig. 28 Hysteresis loops for different lengths (case 2)

because of the nonlinear pressure gradient force. Fur-
thermore, the slope of the hysteresis loop increases as
the length increases, whichmeans that the stiffness will
increase because the resistance increases as the length
increases and more silicone oil will be compressed.

Figure 29 shows hysteresis loops for different vis-
cosities. The viscosities are 100, 200, 300, and 400
cst. The frequency is 50 Hz. The area of the hysteresis
loop increases as the viscosity increases. It means that
more vibrational energy will be consumed when the
viscosity increases. The slope of the hysteresis loop
increases as the length increases, which means that the
stiffness increases as the viscosity increases. The resis-
tance increases as the viscosity increases, and more
silicone oil will be compressed.

Figure 30 shows hysteresis loops for different ampli-
tudes. The amplitudes are 0.6, 0.8, 1.0, and 1.2 mm.

Fig. 29 Hysteresis loops for different viscosities (case 3)

Fig. 30 Hysteresis loop of different amplitudes (case 4)

These curves are concentric. This reveals that the stiff-
ness is constant at different amplitudes when the fre-
quency is constant. The area of the hysteresis loop
increases as the amplitude increases, which means that
more vibrational energy will be consumed.

Figure 31 shows hysteresis loops for different fre-
quencies. The frequencies are 10, 20, 30, and 40 Hz.
It can be seen from the figure that the hysteresis loop
is not elliptical due to the nonlinear pressure gradi-
ent force. The area of the hysteresis loop increases as
the frequency increases, which means that more vibra-
tional energy will be consumed. When the frequency
increases, the velocity in the orifice increases, and the
damping force also increases. In addition, the slope of
the hysteresis loop is not significant because when the
frequency is low, little silicone oil will be compressed.
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Fig. 31 Hysteresis loops for different frequencies (case 5)

Fig. 32 Nonlinear elastic forces for different diameters (case 1)

8 Nonlinear elastic force

According to the derivation in Sect. 2, when consider-
ing the entrance effect, the pressure gradient force is
nonlinear. In this section, the nonlinear elastic forces
for the 5 cases that are shown in Table 5 will be ana-
lyzed. The model parameters are shown in Table 5.
Figure 32 shows the nonlinear elastic force for differ-
ent diameters. The diameters are 1.0, 1.2, 1.4, and 1.6
mm. It can be seen from the figure that the nonlinear
elastic force decreases as the diameter increases for the
same frequency because when the diameter increases,
the amount of silicone oil that is compressed decreases
and more silicone will pass through the orifice.

Figure 33 shows the nonlinear elastic forces for dif-
ferent lengths. The lengths are 5, 10, 15, and 20 mm.

Fig. 33 Nonlinear elastic forces for different lengths (case 2)

Fig. 34 Nonlinear elastic forces for different viscosities (case
3)

It can be seen from the figure that the nonlinear elastic
force increases as the length increases at the same fre-
quency. The reason is that when the length increases,
the resistance increases and more silicone oil will be
compressed.

Figure 34 shows the nonlinear elastic forces for vis-
cosities of 100, 200, 300, and 400 cst. The nonlinear
elastic force increases as the viscosity increases at the
same frequency because when the viscosity increases,
the resistance increases and more silicone oil will be
compressed.

Figure 35 shows the nonlinear elastic forces of dif-
ferent amplitudes, 0.6, 0.8, 1.0, and 1.2 mm. It can be
seen from the figure that the nonlinear elastic force
increases as the amplitude increases for the same fre-
quency, because when the amplitude increases, the
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Fig. 35 Nonlinear elastic forces for different amplitudes (case 4)

Fig. 36 Nonlinear elastic forces for different frequencies
(case 5)

velocity increases, leading to increased resistance and
more compression of the silicone oil.

Figure 36 shows the nonlinear elastic forces for
different frequencies. The elastic force significantly
increases as the frequency increases. The reason is
when the frequency increases, the velocity also increases,
leading to an increased resistance; therefore, more sil-
icone oil will be compressed. However, when the fre-
quency increases to a certain value, the stiffness does
not increase.

9 Nonlinear damping force

According to the derivation in Sect. 4, the damping
force is a functionof the velocity. In this section, nonlin-

Fig. 37 Nonlinear damping force for different diameters (case 1)

Fig. 38 Nonlinear damping force for different lengths (case 2)

ear elastic forces for the 5 cases shown inTable 5will be
analyzed. The model parameters are shown in Table 5.

Figure 37 showsnonlinear damping forces for differ-
ent diameters of 1.0, 1.2, 1.4, and 1.6mm. The damping
force increases as the diameter increases. However, this
trend is opposite to that of the elastic force. The rea-
son is that when the diameter increases, the resistance
decreases because the silicone oil flows better through
the orifice.

Figure 38 shows the nonlinear damping force for
different lengths. The damping force increases as the
length increases. When the length is short, the nonlin-
ear damping force is substantial; however, when the
length is long, the nonlinear damping force is not sub-
stantial. The reason is when the length increases, the
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Fig. 39 Nonlinear damping force for different viscosities
(case 3)

Fig. 40 Nonlinear damping force for different amplitudes
(case 4)

resistance increases, velocity in the orifice decreases,
and the nonlinear term in the resistance decreases.

Figure 39 shows the nonlinear damping force for
different viscosities. The damping force increases as
the viscosity increases. It is clear when the viscosity is
small; however, the nonlinear force is not substantial
when the viscosity increases because when the viscos-
ity increases, the velocity in the orifice decreases, and
the nonlinear term in the resistance also decreases.

Figure 40 shows the damping force for different
amplitudes.When the amplitude increases, the shape of
the curve does not change, but the amplitude of the non-
linear damping force increases. This occurs because as
the amplitude increases, the nonlinear damping coeffi-
cient does not change, but the velocity increases, which

Fig. 41 Nonlinear damping force for different frequencies
(case 5)

leads to an increase in the amplitude of the nonlinear
damping force.

Figure 41 shows the damping force for different fre-
quencies. It can be seen from the figure that the curves
of the four frequencies nearly coincide with each other,
but if the frequency continues to increase, the difference
will become substantial. This occurs because when
the frequency is low, the damping coefficient changes
slowly. When viscosity is 200 cst, the nonlinear damp-
ing force will change slowly, but when the frequency
continues to increase, the damping coefficient changes
quickly, so the difference is very substantial.

10 Conclusions

In this paper, a nonlinear dynamic model of a micro-
vibration fluid viscous damper has been proposed.
While considering the entrance effect in the damping
orifice, the nonlinear damping force and the nonlinear
elastic force are analyzed. The results reveal the fol-
lowing:

(1) The pressure gradient force contains a damping
force, an elastic force, and a transient force. The
elastic force provides stiffness, the damping force
consumes vibration energy, and the transient force
decays with time. The transient force decays with
time according to an exponential law or oscillation
law. It depends on the diameter and length of the
damping orifice and the viscosity of the silicone
oil.

123



X. Jiao et al.

(2) When ignoring the entrance effect in the orifice,
the damping force and elastic force are linear
forces. When considering the entrance effect in
the damping orifice, the damping force and elas-
tic force are nonlinear forces. At low frequencies,
the pressure gradient forces in the two cases are
nearly the same, but at high frequencies, they are
quite different.

(3) The nonlinear damping force and the nonlinear
elastic force have a relationship with the diameter
and length of the damping orifice, viscosity, ampli-
tude, and frequency. The nonlinear damping force
and elastic force change with these parameters.

The results sufficiently demonstrate the nonlinear
dynamic characteristics of a single-tube fluid viscous
damper. The model that considers the entrance effect
can be used to design the nonlinear damping and stiff-
ness of micro-vibration fluid viscous dampers. In addi-
tion, the bulk modulus of the fluid is also considered
in this model; therefore, the model can be used in low-
frequency and high-frequency applications.

Acknowledgements The authors gratefully acknowledge the
support of National Basic Research Program of China (No.
2013CB733004) and National Defense Basic Research Plan of
China (No. A0320110016).

References

1. Kamesh, D., Pandiyan, R., Ghosal, A.: Modeling, design
and analysis of low frequency platform for attenuating
micro vibration in spacecraft. J. Sound Vib. 329(17),
3431–3450 (2010)

2. Davis, P., Cunningham, D., Harrell, J.: Advanced 1.5
Hz passive viscous isolation system. In: 35th Structures,
Structural Dynamics, and Materials Conference, vol. 32,
No. 5Suppl, pp. 2655–2665 (2013)

3. Davis, L.P., Carter, D.R., Hyde, T.T.: Second-generation
hybrid D-strut. In: Proceedings of SPIE, pp. 161–175 (1995)

4. Stabile, A., Aglietti, G.S., Richardson, G.: Electromagnetic
damper design using a multiphysics approach. Proc. SPIE.
9431(20), 1–9 (2015)

5. Stabile, A., Aglietti, G.S., Richardson, G., Smet, G.: Design
and verification of a negative resistance electromagnetic
shunt damper for spacecraft micro vibration. J. Sound Vib.
386, 38–49 (2017)

6. Stabile, A., Aglietti, G.S., Richardson, G., Smet, G.: A
2-collinear-DoF strut with embedded negative-resistance
electromagnetic shunt dampers for spacecraft micro
vibration. Smart Mater. Struct. 26(4), 045031 (2017)

7. Lee, D.-O., Park, G., Han, J.-H.: Experimental study
on on-orbit and launch environment vibration isolation
performance of a vibration isolator using bellows and
viscous fluid. Aerosp. Sci. Technol. 45, 1–9 (2015)

8. Lee, D.-O., Park, G., Han, J.-H.: Hybrid isolation of micro
vibrations induced by reaction wheels. J. Sound Vib. 363,
1–17 (2016)

9. Wang, J., Zhao, S., Wu, D.: Performance of a type of
nonlinear fluid micro vibration isolators. J. Aerosp. Eng.
28(6), 04015002 (2015)

10. Shi, W.-K., Qian, C., Chen, Z.-Y., Cao, Y., Zhang, H.: Mod-
eling and dynamic properties of a four-parameter Zener
model vibration isolator. Shock Vib. 2016, 1–16 (2016)

11. Narkhede, D.I., Sinha, R.: Behavior of nonlinear fluid
viscous dampers for control of shock vibrations. J. Sound
Vib. 333(1), 80–98 (2014)

12. Hou, C.-Y.: Behavior explanation and a new model for
nonlinear viscous fluid dampers with a simple annular
orifice. Arch. Appl. Mech. 82(1), 1–12 (2011)

13. Peng, Z.K., Lang, Z.Q., Zhao, L., Billings, S.A., Tomlin-
son, G.R., Guo, P.F.: The force transmissibility of MDOF
structures with a non-linear viscous damping device. Int. J.
Nonlinear Mech. 46(10), 1305–1314 (2011)

14. Wolfe, R.W., Yun, H.B., Masri, S., Tasbihgoo, F., Benzoni,
G.: Fidelity of reduced-order models for large-scale nonlin-
ear orifice viscous dampers. Struct. Control Health Monit.
15(8), 1143–1163 (2008)

15. Farjoud, A., Ahmadian, M., Craft, M., Burke,W.: Nonlinear
modeling and experimental characterization of hydraulic
dampers: effects of shim stack and orifice parameters on
damper performance. Nonlinear Dyn. 67(2), 1437–1456
(2011)

16. Hou, C.-Y.: Fluid dynamics and behavior of nonlinear
viscous fluid dampers. J. Struct. Eng. 134(1), 56–63 (2008)

17. Narkhede, D.I., Sinha, R.: Influence of shock impulse
characteristics on vibration control using nonlinear fluid
viscous dampers. J. Vib. Control 23(9), 1463–1479 (2015)

18. Shum, K.M.: Tuned vibration absorbers with nonlinear
viscous damping for damped structures under random load.
J. Sound Vib. 346, 70–80 (2015)

19. Guo, P.F., Lang, Z.Q., Peng, Z.K.: Analysis and design of
the force and displacement transmissibility of nonlinear vis-
cous damper based vibration isolation systems. Nonlinear
Dyn. 67(4), 2671–2687 (2012)

20. Lang, Z.Q., Jing, X.J., Billings, S.A., Tomlinson, G.R.,
Peng, Z.K.: Theoretical study of the effects of nonlinear
viscous damping on vibration isolation of sdof systems. J.
Sound Vib. 323(1–2), 352–365 (2009)

21. Lv, Q., Yao, Z.: Analysis of the effects of nonlinear viscous
damping on vibration isolator. Nonlinear Dyn. 79(4),
2325–2332 (2014)

22. Goldasz, J., Alexandridis, A.A.: Medium- and high-
frequency analysis of magnetorheological fluid dampers. J.
Vib. Control 18(14), 2140–2148 (2011)

123


	Nonlinear dynamic characteristics of a micro-vibration fluid viscous damper
	Abstract
	1 Introduction
	2 Dynamic model of the single-tube micro-vibration fluid viscous damper
	3 Entrance effect in the orifice
	4 Damping force, elastic force, transient force
	5 Comparison between the CFD model and the analytical model
	6 Decomposition of the pressure gradient force
	7 Hysteresis loop of pressure gradient force
	8 Nonlinear elastic force
	9 Nonlinear damping force
	10 Conclusions
	Acknowledgements
	References




