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Abstract—The Mobile Cloud Network is an emerging cost and
capacity heterogeneous distributed cloud topological paradigm
that aims to remedy the application performance constraints
imposed by centralised cloud infrastructures. A centralised cloud
infrastructure and the adjoining Telecom network will struggle
to accommodate the exploding amount of traffic generated
by forthcoming highly interactive applications. Cost effectively
managing a Mobile Cloud Network computing infrastructure
while meeting individual application’s performance goals is non-
trivial and is at the core of our contribution. Due to the scale
of a Mobile Cloud Network, a centralised approach is infeasible.
Therefore, in this paper a distributed algorithm that addresses
these challenges is presented. The presented approach works
towards meeting individual application’s performance objectives,
constricting system-wide operational cost, and mitigating re-
source usage skewness. The presented distributed algorithm does
so by iteratively and independently acting on the objectives of
each component with a common heuristic objective function. Sys-
tematic evaluations reveal that the presented algorithm quickly
converges and performs near optimal in terms of system-wide
operational cost and application performance, and significantly
outperforms similar naı̈ve and random methods.

I. INTRODUCTION

With the advent of resource virtualisation and disaggrega-

tion in 5th-generation mobile networks as well as Edge- and

Fog-computing, forthcoming cloud infrastructures are poised

to be geographically distributed and capability- and cost-

heterogeneous. In the literature, this paradigm goes by many

names, such as; Fog Computing [8], Telco-Cloud [10], Edge-
cloud [16], and Mobile Cloud [13], [14], [18]. Because of the

network focus in this work, it is referred to as the Mobile

Cloud Network (MCN) [17].

The MCN topological paradigm will proposedly enable

and drive new types of services and applications that exploit

the increased proximity to the end users and key infrastruc-

ture components.Contemporary cloud resources are housed in

centralised Data Centres (DCs) that are separated from the

end-users by the intermediate Wide Area Networks (WANs),

core, and access networks. The added latency and weak-

backhaul introduced by those networks has proven to inhibit

the performance of cloud-based applications [2]. Furthermore,

there is a large and growing set of mission critical real-

time applications such as tele-robotic surgery [1], Radio Base

Station (RBS) baseband signalling [11], gaming [15], and

Augmented Reality (AR) [12] that are unable to operate in

such a latency-, jitter-, and throughout-uncertain environment,

provided by a centralised cloud paradigm. The decreased

distance between the cloud infrastructure and the end-users,

provided by an MCN, reduces the Round-Trip Time (RTT)

and jitter, increases availability, and fault-tolerance [29] for

the infrastructure’s resident cloud applications.

To operate a viable MCN infrastructure, its operator needs

to administer the admitted applications and the system’s re-

sources such that; resources are not over-provisioned, total

operational cost is minimised, and that all applications’ per-

formance requirements are met. When managing an MCN,

its operator’s primary degree of freedom is the placement of

the system’s resident applications. Continuously and scalably

evaluating the placement of a vast set of heterogeneous appli-

cations over a set of heterogeneous nodes is non-trivial and is

the fundamental problem addressed in this paper.

Optimally placing the resident applications in an MCN,

given the constraints above, is NP-hard [27]. Furthermore, the

optimal placement of the MCN’s resident applications was ex-

plored in our previous work [30], where it was concluded that

a centralised solution is not scalable because it fundamentally

fails to keep up with the system’s rate of change.

The problem of placing applications in a cloud environment

has been addressed in the literature for content routing [22],

intra- and inter-DC application placement [5], [19], and in

optimal content distribution in Content Delivery Networks

(CDNs) [9]. To the best of our knowledge, none of the

presented approaches simultaneously and holistically consider

a set of criteria that are synonymous with a vast resource

cost- and capacity-heterogeneous infrastructures with a high

geographic granularity.

The broad challenges of Virtual Machine (VM) placement

across DCs are taxamonised in [20] and formalised in [25].

The literature contains work on the placement of applications

and their constituent VMs in DCs, to minimise cost [5], energy

consumption [4], data-locality [24], network usage [6]. These

methods primarily address the internal objectives of a DC and

therefore inherently disregard the geographical discrepancy to

the end users and the heterogeneity in both applications and

infrastructure. Thus, they cannot be applied to this problem.

Additionally, the internal administration of an MCN’s DCs is

beyond the scope of this work.

Furthermore, CDNs share much of the same distributed

topological properties of an MCN but operate with the objec-

tive of maximising the hit-rate of a set of content over a finite
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set of resources as a function of the of content’s popularity. In

a CDN, content is static and resource usage is often not propor-

tional to the demand and is confined to storage. Additionally,

no performance guarantees can be given for all applications

and instant scalability needs are not a concern. In contrast,

in an MCN resources are heterogeneous and applications are

highly dynamic with heterogeneous performance requirements

that all must be accommodated.

The contributions of this paper are three-fold. Firstly, the

paper outlines the application placement challenges and dy-

namics in an MCN on which a model is constructed, and

presented in Section II. Secondly, this paper contributes with

an iterative distributed algorithm that solves the application

placement challenge. The algorithm takes a holistic approach

by accommodating the system’s primary objectives over a

neighbourhood of DCs. By doing so the algorithm can ac-

commodate the heterogeneous resources and applications in

the system, without incurring additional cost and application

placement oscillations. The algorithm is defined in section III.

Thirdly, the algorithm is evaluated over a set of infrastruc-

ture topologies and contrasted with an optimal and a naı̈ve

method, detailed in Section IV. The results of the evaluation

presented in Section V show that the algorithm can quickly and

consistently converge while meeting all constituent entities’

objectives. It is also shown that the algorithm approaches

the system’s optimal cost point within 8% and in reasonable

time. Furthermore, the algorithm also outperforms the naı̈ve

method, both in term of convergence and cost. The evaluations

also reveal some of the distinct challenges with the different

topologies. Section VI summarises the results and provides a

discussion on possible continuations of this work.

II. MCN SYSTEM MODEL

In this section a system model of the MCN is detailed. The

model is used for defining the presented algorithm as well as

for constructing a simulated environment for evaluating the

algorithm. The model captures the fundamental challenges

and properties of an MCN infrastructure. The model is an

extension of our previous work [30]. An overview of the

model’s components can be seen in Figure 1.

A. Topology

An MCN infrastructure is modelled as an undirected graph

where the vertices are DCs and the edges are network links,

each with a set of finite resources. Applications admitted to the

MCN are hosted in DCs and are subject to a demand through

the network links, originating at the graph’s leaf, i.e. vertices

with degree one. Thus, let the graph G = (V, E) denote an

MCN topology, where

V = {vi | i = 1, 2, ..., I}, (1)

E = {ej | j = 1, 2, ..., J}, (2)

See Figure 1 for an illustration of the system’s topology.

Compute capacity & cost: ci, ζcici, ζci
Bandwidth capacity& cost: bi, ζbibi, ζbi
Storage capacity & cost: si, ζsisi, ζsi

Data centre: vivi Network link: ejej
Bandwidth: μjμj

Link cost: ηjηj

Application demand: UnUn

Demand leaf nodes: MnMn

Applications: AiAi

Application: anan

SLA: �n
′

�n
′

Compute intensity: γopn , γmig
nγopn , γmig
n
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n , α

mig
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n
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n , βmig

nβop
n , βmig

n

Fig. 1: Model overview with entities and their properties

B. Data centre model

In an MCN, traditional centralised DCs are supplemented

by a large set of geographically dispersed DCs that are

embedded into a Mobile Network Operator (MNO)’s infras-

tructure. The DCs within an MCN are both capacity- and cost-

heterogeneous.

A vertex vi in the graph has the following capacities,

expressed as real positive numbers: compute capacity ci,
storage capacity si, and bandwidth bi. The resource requests

of a DC are aggregated into resource units. These units can

be seen as VMs or containers. A resource unit is defined

by a compute capacity cVM , a storage capacity sVM , and a

bandwidth bVM , expressed as real numbers, where cVM � ci,
sVM � si, bVM � bi. The momentary utilisations of these

resources are expressed as real numbers; compute utilisation

ci, storage utilisation si, and bandwidth utilisation bi. A DC

is assumed to be able to accommodate any set of applications

that aggregately do not exceed its capacity.

Additionally, a vertex vi is associated with an operational

cost per resource and time unit. These operational costs are

defined by the following real number functions of utilisation:

compute cost ζci , storage cost ζsi , and bandwidth cost ζbi .

C. Network model

In an MCN, the links that join the DCs have different cost

and capacity depending on the depth they are at in the network,

who own them, and their medium type. A link in the network

is modelled as an edge ej , j ∈ {1, 2, ..., J} in G and has a non-

directional capacity expressed as a bandwidth μj . Additionally,

a network resource ej has a link cost ηj , which is a function

of throughput that returns the link’s running cost per time unit.

D. Application model

The set of applications hosted by an MCN, A = {an |
n = 1, . . . , N}, are assumed to be wholly managed by the
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MCN. The resident applications’ owners are therefore agnostic

to where and how their applications are being executing.

Each application an, where n ∈ {1, 2, . . . , N} is served by

a DC, vi. Each DC vi hosts a set of applications Ai ⊆ A.

An application an is defined by the following increasing

functions of the demand for the application’s operational

compute intensity γopn , operational storage intensity αop
n , and

operational bandwidth intensity βop
n .

Migrating an application between two DCs incurs additional

resource usage for both the recipient and the host, and is

defined by a migration compute intensity γmig
n , migration

storage intensity αmig
n , and migration bandwidth intensity

βmig
n , all functions of to the application’s aggregate demand.

1) Demand: The applications’ end users subject the appli-

cations to a quantitatively and spatially time-variant demand.

An application an is subject to an aggregate demand from a set

of demand sources Un = {un,m|m ∈Mn} where Mn ⊂ V is

the set of leafs from which the demand originates. Each source

of demand un,m is represented by a function of time that

returns a real number specifying the demand for application

an at time t from leaf m.

2) Performance requirements: Application owners can im-

pose a set of performance requirements per application that

the operator of an MCN is obliged to accommodate, a Service

Level Agreement (SLA). In this work, an application’s SLA

is conventionally expressed as the maximum of the 95th-

percentile of the network delay distribution [28]. Furthermore,

network delay is proportional to the number of links separating

an application’s end user from the current hosting DC. Thus,

an application’s SLA �n
′

is defined as the upper limit of the

95th percentile of the mean network distances between its set

of sources of demand Un and the DC it is hosted vi. The set

of network distances for application an is defined as:

ln = {|σV(vi, vm)| | m ∈Mn} (3)

where | · | denotes the cardinality of a set, σV : V × V →
P(V), with P(·) being the power set operator, is a function

that determines the minimum path between two nodes. See

Figure 1 for an illustration of the relationship between the

applications and their demand.

III. DISTRIBUTED RESOURCE MANAGEMENT ALGORITHM

The presented algorithm scalably solves the challenge of

where to place a set of highly heterogeneous applications in

a cost- and capacity- heterogeneous distributed cloud infras-

tructure while meeting both the DCs’ operational cost and the

infrastucture’s resident applications’ performance objectives.

Central to the algorithm are two types of reactive agents,

a DC-agent and an application-agent. The agents represent

the objectives of the two primary stakeholders in the system,

namely DCs and applications. The agents act independently

based on the performance of their respective objectives,

namely operational cost and application SLA.

To achieve the objectives in a tractable manner, each agent

reacts on an objective violation by re-evaluating the placement

of a set of applications over a subset of DCs in a neighbour-

hood. The neighbourhood of depth at most k for vi is defined

as the set:

N k
i := {|σV(vi, vj)| ≤ k + 1 | j = 1, . . . , I, j �= i} . (4)

The resulting placement decision is reached using a com-

mon heuristic objective function R that is formalised in Sec-

tion III-A. The two agent types react to objective violations by

re-evaluating the common heuristic objective function R over

a subset of the system’s resources and applications. To meet

their individual objectives the common heuristic objective

function is applied differently for each agent. The fundamental

properties of the algorithm are illustrated in Figure 2.

Strict caps on resource utilization and costs do not accom-

modate variations demand across the system and might either

put the system in an instable state or require a much finer

granularity of evaluation, at a significant cost. Therefore, in

this algorithm, a budget for each DC is adopted to represent

its desired resource utilisation or cost level, over time. The

long-term objective of the algorithm is to maximise the mean

budget surplus across the system. A DC’s budget surplus or

deficit history is distributed amongst its peers and is used to

evaluate its suitability when re-evaluating the neighbourhood’s

application’s placements. More on the budget-mechanism in

Section III-B.

A. Common objective function

In a distributed heterogeneous system, such as in fog com-

puting, an application can incur very different loads and costs

in different DCs in a neighbourhood. Similarly, applications’

SLAs might be accommodated with varying success amongst a

set of neighbouring DCs. Thus, migrating a set of applications

from one DC to mitigate its budget violation may violate

the applications’ SLAs and/or incur budget violations in the

recipient DCs. They in turn might incur additional violations

and application placement oscillations due to subsequent mit-

igation actions.

Due to additional resource usage, application migrations are

preferably avoided. Additionally, because any migration incurs

a cost, the migration should preferably be long-lasting. Thus,

the objective function should take into account both budget

constraints, SLA constraints, and the additive cost of link

usage in a holistic manner.

The common objective function R is formulated for DC

vq ∈ V and the running applications A at time t as,

R(q,A, t) :=
∑
i∈Nk

q

∑
n∈A

Pq
i,n(

+ φb
1− (ϑop

n,i(t) + ϑmig
n,i (t))

ξi(t)

+ φs
1− �95thn,i

�n
′

+ φlL)

(5)
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where ϑop
n,i is the momentary operational cost for each

application in DC i,

ϑop
n,i(t) = ψn(t)ζ

VM
i , (6)

with ψn(t) being the unitary resource allocation cost of

application n in any DC that is defined as:

ψn(t) =

⌈
max

(
γn(t)

cVM
,
αn(t)

sVM
,
βn(t)

bVM

)⌉
, (7)

where ζVM
i is the cost of each resource unit in DC i and

is defined as:

ζVM
i = cVMζci + sVMζsi + bVMζbi . (8)

where L is the aggregate system-wide link and is formally

defined as,

L =
∑
i∈V

∑
n∈Ai

∑
m∈Un

ηmβ
op
n un,m(t) (9)

and Pq
i,n being the elements of a binary matrix Pq of size

|A|×|N k
q |, here called application placement decision matrix.

In particular, Pq
i,n is equal to 1 if and only if application

ai ∈ A is placed in node vn ∈ N k
q , 0 otherwise. Note that,

by construction, each row sums to 1, since an application

cannot be placed in more than one node. Finally, {φb, φs, φl}
are weights in the interval [0, 1]. The ith row of the matrix

represents the placement of the ith application ai ∈ Ā
amongst the DCs in the neighbourhood N k

q , represented by

the columns.

The placement decision is expressed as follows,

Pq,�(t) := argmax
Pq

R(q,A, t) (10)

constrained by each evaluated DC’s budget surplus ξi and

the operational cost εi, formalised as,

∑
n∈Aq

Pq
i,nϑ

op
n,i(t)te ≤ ξi(t) (11)

∑
n∈Aq

Pq
q,nϑ

op
n,q(t)te ≤ εi (12)

Because the algorithm is applied iteratively and is not

evaluated over the entire network, hard constraints cannot be

applied on individual application’s performance. In worst case,

an application might have to traverse a set of DCs where

its SLA will be violated to reach a DC where it can run in

compliance with its SLA.

When maximising the objective function R(q, Ā, t), the

remaining budget across all its neighbours reduces the number

of additional violations in the neighbourhood and the process

also takes into account any pending SLA violations, when the

system is in a stable state. By normalising each component in

the objective function with their individual quantitative targets,

the algorithm can indiscriminately evaluate the placement of Ā
across a highly heterogeneous set of DCs and applications. As

the incurred link cost is not accommodated in a DC’s budget,

the link cost is treated independently. The above detailed

mechanisms of the algorithm and its parameters are illustrated

in Figure 2.

The use of a budget to represent the state of a DC and

the limited evaluation domain imposed by the neighbour-

hood decouples the algorithm allowing in to be implemented

in a distributed manner. Additional information and state

granularity would require significantly more synchronisation

between agents and states and information passing, marking

the implementation intractable.

B. Data Centre agent

Each DC in the network is governed by a DC agent. The

objective of a DC agent is to contain the operational cost of

a DC and is realised by the budget monitor process which is

continuously run in each DC vi ∈ V .

Essential to the algorithm and the DC agent is a budget

that is assigned to each DC. A DC’s budget is the maximum

allowed operational expenditure over a period and is a heuristic

for a DC’s capacity and desired maximum utilisation over

that period. In practice, the budget allows the operator of an

MCN to set coarse-grained holistic objectives for the system’s

resources that do not interfere with the internal management

of each DC. Additionally, the budget also allows the algorithm

to integrate temporary costs, over time, such as migration

overheads and smaller workload variations, within the confines

of the budget over an epoch.

1) Budget monitor process: The budget monitor process in

each DC is assigned a budget εi for its operational cost over

a period of time, referred to as an epoch Δte. The operational

cost of a DC is defined as,

ζi(t1, t2) =

∫ t2

t1

∑
n∈Ai

ϑop
n (t) dt, (13)

In runtime, the operational cost ζi of each DC is evaluated

over an epoch of length Δte. If the budget is violated before

the end of the epoch, i.e., ζi(hΔte, t2) ≥ εi, with h ∈ N,

and hΔte ≤ t2, the placement of the resident applications Ai

is evaluated over the neighbourhood N k
i using the objective

defined in Section III-A.

When a budget is violated or when an epoch expires

without a budget violation, the budget is renewed for another

epoch. For each such event, the budget surplus ξi(t) = εi −
ζi(hΔte, (h+1)Δte) of vi is passed to all its neighbours N k

i .

The resulting vector of the last reported neighbours’ budget

surpluses for DC i is denoted as,

Bi(t) = {ξq(t) | q ∈ N k
i } (14)

The budget monitor process is summarised in Algorithm 1.

2) State: The state of a DC agent is defined by its budget

surplus ξi, its resource unit cost ζVM
i , its resident applications

Aq , and the budget surplus of its neighbours.
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Fig. 2: The algorithm’s mechanism; agents, actions, and evaluation domains.

Algorithm 1 Budget monitor process for DC vi,
for each epoch.

1: Input : Budget εi, application set Ai, current placement

Pi, and budgets in neighbourhood Bi,

2: Output : Budget surplus ξi,
3: application placement matrix Pi,�

4: t← 0, ζ
′
i ← 0

5: Pi,� ← Pi

6: while t < Δte do
7: ζ

′
i ← ζ

′
i + ζi(t, t+Δt)

8: if ζ
′
i ≥ εi then

9: ξi ← 0
10: Pi,� ← argmaxPi R(i,Ai, t)
11: break
12: end if
13: ξi ← εi − ζ ′

i

14: t← t+Δt
15: end while
16: return {ξi,Pi,�}

C. Application agent

The performance of each resident application in the infras-

tucture is monitored by an application agent. The objective of

an application agent is to ensure that the observed application

meets its SLA. This is realised by an SLA monitoring process

which is continuously run in parallel to each application an
in each vi.

1) SLA monitoring process: An application’s performance

is measured in terms of its SLA, �n
′
. An application’s place-

ment is re-evaluated when its SLA is violated, �i,n ≥ �n
′
.

The SLA monitoring process is summarised in Algorithm 2.

Note that in the case of an SLA violation, only one

application is evaluated, i.e. Ā = an.

2) State: The state of an application is defined by its

demand’s location and quantity Ûn and current latency per-

formance �95thi,n .

Algorithm 2 SLA monitor process for application n.

1: Input : Hosting DC vi, SLA �n
2: Output : Application placement matrix Pi,�

3: while true do
4: if �i,n ≥ �n

′
then

5: Pi,� ← argmaxPi R(i, {an}, t)
6: break
7: end if
8: t← t+Δt
9: end while

10: return Pi,�

IV. EXPERIMENTS

The experiments detailed below are designed to examine the

viability of the algorithm as a tractable holistic MCN resource

management approach. Given the distributed nature of the

algorithm, the evaluation is primarily focused on stability and

on how closely it performs to optimal, as defined in [30].

The experiments are designed to do so by determine the

algorithm’s convergence time from a random state as well as

its step response. To add contrast to the experiments, both a

random method and a naı̈ve method. Additionally, to evaluate

how the distributed algorithm performs in both current and

forthcoming network topologies, the experiments employ both

fat-tree and random graph network topologies. The models in

the experiments are designed based on the findings in our

previous work [21].

As there are no MCNs yet in existence, the experiments

are conducted in a simulated environment. The simulator was

design in python1 around a time driven core using MILP

solvers from PuLP [23] to represent and solve the objective

function.

A. Infrastructure

An MCN infrastructure is represented by a set DCs and

links in a network, as defined in Section II. To add cost- and

1Code and experiments available at: gitlab.com:eit-wit/mcn placement
simulator.git
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TABLE I: DC categories, their capacity and costs.

Small Medium Large Huge
Capacity ψn 250 500 1000 2000

Unit cost 2 150% 125% 112.5% 100%

TABLE II: Link categories, their capacity and costs.

Small Medium Large
Capacity μj 3000 5000 80000

Unit cost 3 77% 87% 100%

capacity-heterogeneity to the infrastructure, a set of categories

for each resource component are defined. Each category has

a unique capacity and cost, reflective of their position in the

infrastructure, these are specified below.

B. Data Centres

A DC’s resources are partitioned into and provisioned as

discrete units. DCs are categorised as either Small, Medium,

Large, or Huge. The DC capacity is halved for each succeeding

category, proportional to its depth in the network, while the

operational cost grows linearly with depth. For example, a

Huge DC is 8 times larger than a Small DC and cost 44%

less to operate per resource unit. The properties of each DC

category are summarised in Table I. The DCs are assigned a

budget εi that is proportional to 80% of the total cost of all

resources over an epoch, as advised by [26].

C. Links

The links are categorised by capacity μj as either Small,

Medium, or Large. A summary of the each link category’s

properties can be found in Table II.

D. Topology

The DCs and links specified above are situated in a network.

In this paper, a fat tree and an Erdös-Rényi random graph are

used to evaluate the performance of the distributed algorithm,

representing a current and a forthcoming network topology,

respectively. The topology used in the evaluation consists of

40 nodes (I = 40), which corresponds to the typical size of a

regional MCN. The topology types have an equivalent depth

and total DC capacity.
1) Fat tree: Mobile core and access networks often take the

shape of fat trees, with the middle tiers having the greatest

amount of interconnectivity [3]. The network is assigned a

Huge DC in the root node, Small DCs are assigned in the leaf

nodes and remaining nodes are assigned a DC category per

its depth in the network. Figure 3a illustrates the structure and

resource assignment of the fat-tree topology.
2) Random graph: Access and core networks are becoming

more and more interconnected, through multiple carriers and

with the addition of new disaggregated network technologies

[7]. To imitate this type of topology, an Erdös-Rényi random

graph of I = 40 nodes is used. The graph is generated using

a branching probability of 1.1.

2The costs are relative to the DC category: Huge
3The costs are relative to the Link category: Large

(a) Fat-tree with depth 4 and
branching factor 3.

(b) Erdös-Rényi random graph
with branching probability of 1.1.

Fig. 3: Network topologies used in experiments, each with 40

nodes. DC assignment: Huge, Large, Medium, Small. Link

assignment: Large, Medium, Small.

The nodes in the network are assigned to a DC category

based on their number of connections. The tier of nodes with

the fewest connections are assigned a Small DC. The top

10% of the nodes with the highest number of branches are

assigned a Huge DC. Intermediate nodes are assigned either

Large and Medium DC in proportion to their network distance

to one of the Huge DCs. The topology’s structure and resource

assignment are illustrated in Figure 3b.

A key difference between the two topologies is that a ran-

dom graph is more heterogeneous than a fat-tree in the sense

that a fat-tree is symmetric and that the depth of the network

strongly correlates with the mean distance to the demand, DC

capacity, and degree of connectivity. Furthermore, in a random

graph, a set of neighbours do not have to be of similar capacity

and with very different degrees of connectivity.

E. Workload and applications

To model the spatial-, and quantitative-heterogeneity of the

applications and users in a MCN the system is subjected to a

workload that is composed of a set of applications and their

respective demand, as defined in Section II. In this paper, 400

applications heterogeneous are hosted in the infrastructure.

The applications’ aggregate requested resource needs equate

to a time-average of 50% of the systems resources. A system

load of 50% is reasonable for this type of system, yet high

enough to cause resource contention.

An application is defined by three properties; its demand,

its performance requirements (SLA), and its resource usage

profile. They are as defined below.

1) Demand spread and quantity: The demand of an ap-

plication is spread over a set of leaf nodes. In this paper,

the spread of an applications demand is categorised as either

local, regional, or global. The demand spread of an application

is linked to the branching factor of the network’s DCs. The

spread of demand is at most the number of leafs that can

be reached from a DC at the minimum network distance to

any leaf node in the network from that any DC of that type.

Local demand is associated with small DCs, regional demand
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TABLE III: Application SLA range as the maximum of the

95th percentile of the distance distribution

SLA range
Local [1, 2]
Regional [2, 3]
Global [3, 5]

TABLE IV: Application resource utilisation characteristic

types with utilisation intensities.

Compute Storage I/O
CPU Intensive 0.95 0.5 0.05
I/O Intensive 0.05 0.75 0.95
Symmetric 0.5 0.5 0.75

is associated with medium and large DCs, and global demand

is associated with huge DCs. The demand spread types are

uniformly distributed across the 400 applications. Furthermore,

the quantity of demand is proportional to the capacity of the

DC type, which is associated with their demand spread.

2) Performance requirements: The performance require-

ments or SLA for an application is a real number upper limit

of the 95th percentile of the network distance distribution of

the number of hops from all users of an application to where

the location of the DC in which the application is hosted.

An application’s SLA is associated with the type of DC that

the application’s demand spread is associated with. The SLA

is uniformly chosen from a range from the minimum to the

mean network distance between all leafs nodes to all DCs of

the corresponding type. The ranges are specified in Table III.

3) Resource usage: An applications’ resource usage profile

is classified as either compute, storage, or I/O intensive. For

example, a compute intensive application is characterised as

using relatively more compute resources than storage and I/O

resources, in proportion to its total demand. The resource

usage intensity classes used in this paper are detailed in

Table IV. In this paper, the resource usage profile types are

uniformly distributed over the 400 applications, and assigned

independently of the application’s SLA and demand spread.

F. Comparison methods

In the experiments, the performance of the proposed algo-

rithm is compared with an optimal, a random, and a naı̈ve

placement method.

1) Random selection and placement: This method utilises

the fundamental change agents of the presented algorithm,

but the decision is applied in a random manner. To be more

precise, if the budget is violated in DC vi, one random

application out of Ai is selected and migrated to a random DC

in N k
i with a recorded budget surplus greater than 0. Similarly,

if the SLA of an application an ∈ Ai is violated, it is migrated

to a random DC in N k
i with a reported budget surplus greater

than 0. From now on this method is referred to as the random

method.

2) naı̈ve - maximum improvement worst-fit mitigation:
This method utilises the fundamental change agents of the

presented algorithm but the decision is applied in a maximum

improvement worst-fit approach. The reasoning here is to

locally minimise the additional operational cost and load

incurred by an application placement change. If the budget

is violated in DC vi, a set of applications are selected for

expulsion, based on the cost they incur if they are migrated

in relation to how much the application contributes to the

aggregate operational cost of the hosting DC, as given by:

ai = argmax
an∈Nk

i

ϑ̂op
i (t0, t0 +Δte)

ϑ̂mig
i

(15)

The applications are then placed in the DC in N k
i with the

largest budget surplus. SLA violations are mitigated by placing

the application in the vk ∈ N k
i where the mean distance to

the demand is minimised, per:

minimize
i∈Nk

q

�95thi,n (16)

subject to ϑop
n,i(t)te + ϑmig

n,i ≤ ξ̂i(t) (17)

The method is naı̈ve in the sense that it acts locally without

and independently of the system’s other objectives.

3) Centralized optimal placement: To provide an upper

performance bound for the presented algorithm, a centralised

optimal placement method is also included. The approach

is as described in our previous work [30]. All applications

are placed where they incur the least amount of cost, meet

their individual performance requirements, given that they do

not aggregately exceed any individual DC’s desired allocation

level.

To increase the potential total utilisation level of the system

given a highly heterogeneous workload this method does not

have a global load balancing objective. A soft load balancing

constraint would contradict the soft cost minimisation con-

straint. This is contrary to the presented distributed algorithm

where a uniform load across a neighbourhood is actively

pursued, as it is essential for the algorithm to iteratively

permutate successfully to find a steady state.

G. Evaluation metrics

The algorithm is evaluated on its ability to meet the system’s

management objectives using the following metrics.

Total system cost The total momentary cost of all resources

at time t, defined as:

κ(t) :=
∑
i∈V

∑
n∈Ai

(ϑop
n (t) + ϑmig

n (t)) + L (18)

The system’s management objectives seek to minimise

the total momentary cost, which means that a low value

is desired.

Number of budget violations by any resource, at each point

in time. A low number is desired.

Number of SLA violations by any application, at each point

in time. A low number is desired.

Resource allocation distribution is defined as the standard

deviation of the distribution of DC allocation levels across
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the infrastructure. The metric shows how well the load is

balances across the system. A low standard deviation is

desired.

V. RESULTS

In this section the results from the experiments detailed in

Section IV are presented and analysed. This section begins

with observing the algorithm’s convergence time to a steady

state from a random state followed by their step responses and

resource utilisation distributions.

A. Convergence

From the onset, at time t = 0, all applications are placed

randomly in the network and 50% of the system’s DC capacity

is requested. Thus, on average, 65% of the applications violate

their SLAs, and 50% of the DCs violate their budgets. Below,

the convergence time of the algorithm is evaluated for both

its agents’ performance objectives, SLA and budget. The

convergence time from a random state is representative of how

quickly, if at all, an algorithm can reach a steady state.

Note that, when an agent evaluates the objective function

the agent uses the last reported budget surplus values from its

neighbours. Therefore, neither method begin to act until the

first budget surpluses ξi are communicated, namely at the end

of the fist epoch t = 10. Furthermore, as the optimal method

is already in a steady state, its convergence time is naturally

not considered.

1) SLA: Starting with the traditional fat-tree topology, as

illustrated by Figure 4a, the distributed algorithm can meet

all resident applications’ SLAs after 20 time steps. The naı̈ve

method does not do so until t = 70. This is due to the naı̈ve

method’s competing actions, the budget violation and SLA

processes. To this effect, up until this point, the naı̈ve method

has retarded 19% of the applications’ SLA deficits while

working towards meeting all DCs’ budgets. In the random

case, the SLA violation process does not converge within the

time-frame of the experiment.

The random graph scenario leads to a different outcome.

Due to the higher degree of connectivity, the distributed

algorithm’s SLA process is now able to converge after 12 time

steps, see Figure 5a. The naı̈ve and random methods fail to

converge because they can at this point no longer be propelled

by the differential between the heterogeneous layers in the fat

tree topology. Instead, the naı̈ve method permanently deposits

9% of the applications that violate their SLA’s in DCs from

which it cannot find more suitable hosts. Interesting to note

is that the random method is well suited to handle this degree

of heterogeneity. Although it does not converge until t = 140,

the random method can reach a steady state.

2) Budget: The distributed algorithm’s budget violation

process converges after 40 time-steps when deployed in the

fat-tree topology scenario, see Figure 4b. The naı̈ve method

converges at t = 70, at the expense of an additional 100 budget

violations. When considering the SLA deficit/surplus of the

applications, none of the applications with a small SLA surplus

are migrated up until the point the SLA process converges at
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Fig. 4: Objective violations in a fat-tree topology.
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Fig. 5: Objective violations in a random graph topology.

t = 20. Again, the random method does not converge within

the time frame of the experiment.

A similar outcome can be found in the random graph

topology, see Figure 5b. Again, the algorithm is assisted by the

higher degree of connectivity, and now converges at t = 35.

3) Operational cost: Starting with the fat-tree topology;

once converged, the distributed algorithm incurs a total system

cost within 9% of the operational cost achieved by the optimal

method, see Figure 6a. The method’s ability to approach the

optimal cost point reflects the system load and/or the budget.

A smaller budget forces the methods to find a lower cost point

but at the cost of ability to permutate. Despite failing to meet

all DCs’ budgets the naı̈ve method incurred cost converges

to 13% of the optimal. As with the previous scenarios, the

random method fails to converge.
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(b) Random graph topology.

Fig. 6: Total operational cost relative to the cost incurred by

the optimal approach.

The outcome for the random graph topology is illustrated

in Figure 6b. The total system cost achieved by the distributed

algorithm when employed in the random graph topology

converges to 13% within the cost incurred by the optimal

approach. In this case, both the naı̈ve and random methods

converge to an incurred system cost of 18% and 20% from

the optimal, respectively.

B. Step response

Observing the algorithms’ step responses reveal how well

they can respond to changes from a steady state. To subject the

system to a change, the capacity of a random medium-sized

DC in the network is instantly halved. The budget of that DC

is also adjusted accordingly.

In the fat-tree topology, the capacity change is done at

t = 75. The distributed algorithm can spread the affected

DC’s excess demand to its neighbours, who then propagate

any excess to their neighbours while attempting to balance the

load throughout the system. Because the objective function

considers the SLA deficit/surplus of the applications, only

applications that would reduce the net load in the neighbour-

hood or improve its SLA deficit, are likely to be affected.

The distributed algorithm’s budget process thus reaches a

new steady state after 7 time steps. The naı̈ve method on

the other hand fails to spread the excess load over DC 2’s

neighbours, and instead creates a bottleneck in the middle

of the network. From this point on, the naı̈ve and random

methods’ budget process diverges, and therefore fails to load

balance the system, which will inhibit the system to handle

any forthcoming changes in load or capacity.

In the random topology, the capacity is also changed at t =
75. With a larger number of neighbours per DC, the distributed

algorithm can converge to a new steady state with only 20%

of the violations compared to the fat-tree topology. Due to the
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(b) Random graph topology.

Fig. 7: Standard deviation of the distribution of DC allocation

levels across the system.

increased interconnectivity of the random graph it can handle

a large change in capacity. Furthermore, the naı̈ve and the

random methods have still not converged at t = 150, with a

significant number of both SLA and budget violations.

C. Allocation distribution

Although the allocation of the resources is not one of the

system objectives, as explained earlier, it does provide an idea

of the state to which the algorithms converge to. As a result,

the optimal solution does not have this objective. A wide

allocation distribution across the system’s resources implies

that certain resources are less able to permutate in the event of

a change in capacity and/or demand. In these experiments the

load distribution imposed on the system by the applications’

demands is uniform, thus a narrow distribution is desired.

Figure 7a shows the standard deviation of the distribution

of DC allocation levels across a fat-tree topology. The figure

reveals that all the non-optimal methods achieve a very similar

level of allocation distribution. Note that each algorithm con-

verges to its previous level despite a significant reallocation

of resources.

For the random graph topology, presented Figure 7b, all

the non-optimal solutions achieve a lower allocation variance

than the optimal solution. Additionally, in the random graph

topology, all non-optimal methods converge significantly faster

and are less disrupted by the change in the capacity at t = 75
than the fat-tree topology. This can be attributed to the greater

variety of resources available to any given node in the random

graph topology.

VI. CONCLUSIONS

This paper presents a distributed algorithm to holistically

manage a large set of heterogeneous DCs and applications

with different objectives. The main challenge has been to

reach a steady system state and while accommodating a set of
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entities with heterogeneous objectives hosted in a cost- and

capacity-heterogeneous network. The distributed algorithm

was evaluated over two different types of topologies with

varying degrees of heterogeneity and compared to both a

centralised optimal solution, and two naı̈ve methods. The

results reveal that the distributed algorithm presented in this

paper can quickly and consistently converge despite a high

degree of heterogeneity in the system. The evaluations also

reveal some of the properties in a heterogeneous topology that

can be used to extend this work.

A possible investigative extension of this work is a thorough

investigation of the distributed algorithm’s convergence per-

formance under a transient workload and resources with time-

variant capacity and cost. Possible extensions to the algorithm

include elastic horizontal scaling of applications and multi

component applications.
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