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Abstract: The primary structure of proteins consists of a linear chain of amino acids that can vary in length.
Proteins fold, under the influence of several chemical and physical factors, into their 3D structures, which deter-
mine their biological functions and properties. Misfolding occurs when the protein folds into a 3D structure that
does not represent its native structure, which can lead to diseases. Due to the importance of this problem and
since laboratory techniques are not always feasible, computational methods for characterizing protein structures
have been proposed. In this paper, we present a particle swarm optimization (PSO) based algorithm for pre-
dicting protein structures in the 3D hydrophobic polar model. Starting from a small set of candidate solutions,
our algorithm efficiently explores the search space and returns 3D protein structures with minimal energy. To
test our algorithm, we used two sets of benchmark sequences of different lengths and compared our results to
published results. Our algorithm performs better than previous algorithms by finding lower energy structures or
by performing fewer numbers of energy evaluations.
Key words: ab initio approach, HP model, particle swarm optimization, protein structure prediction.

1 Introduction

Proteins perform many biological functions and rep-
resent the building blocks of organisms. They are com-
plex organic compounds of which the basic forming unit
is the amino acid. Proteins are initially linear chains
of amino acids which can vary in length from a few
up to thousands of amino acids. Proteins fold, under
the influence of several chemical and physical factors,
into their unique 3D structures which determine their
biological functions and properties. Misfolding occurs
when the protein folds into a 3D structure that does not
represent its correct native structure, which can lead to
many diseases, such as Alzheimer, several types of can-
cer, etc. (Prusiner,1998). Due to the importance of
this issue to human life, scientists have developed lab-
oratory techniques such as X-ray crystallography and
nuclear magnetic resonance (NMR) to determine the
native structures of proteins. Although these methods
are reliable, they are not always feasible. Hence, pre-
dicting the native structure of a protein, given its pri-
mary sequence, is an important and challenging task in
computational biology.

The primary protein structure is a linear sequence of

∗Corresponding author.
E-mail: nmansour@lau.edu.lb

amino acids connected together via peptide bonds. Pro-
teins fold due to hydrophobic effect, van der Waals in-
teractions, electrostatic forces, hydrogen bonding, etc.
The secondary structures are three-dimensional struc-
tures characterized by a repeating bonding pattern.
The most common structures are helices and strands.
The proteins that include these secondary structures
can further fold into the tertiary structure forming a
bundle of secondary structures, turns and loops. Fur-
thermore, the aggregation of tertiary structure regions
of some separate protein sequences forms the so called
quaternary structures (Rylance, 2004).

The protein structure prediction (PSP) problem is in-
tractable (Unger and Moult, 1993a). Hence, the main
computational approaches are heuristics and can be
classified as homology modeling, threading, and ab ini-
tio methods (Sikder and Zomaya, 2005). For the latter
ones, the only needed input is the amino acid sequence
whereas for the first two methods, data of previously
predicted protein structures are used.

Homology modeling uses sequences of known struc-
tures in the protein data banks to align with the given
protein sequence whose 3D structure is to be predicted.
This approach is based on the assumption that new
proteins have evolved from previous ones after passing
through a set of mutations, which change some amino
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acids without affecting the 3D structures. Examples of
methods and empirical work on homology modeling are
Kopp and Schwede (2004) and Pandit et al. (2006).

Threading is similar to homology modeling. But, in-
stead of finding similar sequences to deduce the native
conformation of the target protein, threading assumes
that the target structure is similar to another existing
structure, which should be searched for. Examples of
threading methods are Lathrop et al. (1998) and Jones
(1998).

Ab initio methods predict the 3D structure of pro-
teins given their primary sequences without relying on
protein databases. The underlying strategy is to find
the best possible structure based on a chosen energy
function. Based on the laws of physics, the most stable
structure is the one with the lowest possible energy (An-
finsen, 1973). The main challenge of these approaches is
searching for the most stable structure in a huge search
space. Some models, such as the Hydrophobic-Polar
models, have been developed and used in order to re-
strict the search to a smaller search space whereas other
models use the detailed representation of proteins with
all the corresponding atoms.

Detailed models consider the interactions between all
atoms of the protein sequence. Therefore, the search
space is huge, taking into consideration an overwhelm-
ing number of possible degrees of freedom and interac-
tions between the different atoms. The energy function
is usually based on molecular mechanics and force fields
components such as bond lengths, bond angles, dihedral
angles, van der Waals interactions, electrostatic forces,
etc. Genetic Algorithms have been proposed for PSP
in the detailed model (Schulze-Kremer, 2000). Cui et
al. (1998) has proposed a genetic algorithm which con-
strains the search space of the native conformations by

making use of the super secondary structures of the in-
put protein which are predicted using an artificial neu-
ral network. A method based on molecular dynamics
has been proposed (Klepeis and Floudas, 2003). A hy-
brid approach combining a particle swarm optimization
(PSO) algorithm and artificial neural network has been
developed by Datta et al. (2008). Recently, a scatter
search algorithm has been proposed for tertiary struc-
ture prediction (Mansour et al., 2009). Rosetta and
TASSER are also well known techniques that employ
previous protein fragments (Das and Baker, 2008; Roy
et al., 2010). Floudas (2007) surveyed more computa-
tional methods.

Hydrophobic-Polar (HP) models represent each
amino with all of its atoms as one bead labeled as ei-
ther hydrophobic (H) or polar (P). According to this
model, beads lie on points defined by a lattice accord-
ing to some chosen algorithm such that the most sta-
ble structure is the one with the hydrophobic amino
acids lying in its core. The underlying concept is that
hydrophobic amino acids tend to escape from having
contact with the solvent and hence tend to move inside
the structure whereas the polar ones remain on the out-
side. The main energy function used in this model is
the total number of the hydrophobic interactions be-
tween the amino acids and the goal is to have a lattice
with minimum energy, i.e. with maximum number of
H-H contacts. HP models can be 2-dimensional (2D)
or 3-dimensional (3D), as illustrated in Fig. 1. In this
work, we focus on cubic 3D models. The 3D or cubic
lattice differs from the square lattice by representing
amino acids using the z coordinate in addition to the
x and y coordinates. The problem is about folding a
string of Hs and Ps on a three dimensional coordinates
system in a self-avoiding walk.

Fig. 1 From the left: square, triangular, cubic, and face-centered-cubic lattices (Hart and Newman, 2006)

The problem of predicting protein structures in the
HP model is intractable. Hence, heuristic and meta-
heuristics algorithms have been reported for finding
good sub-optimal solutions. In the early nineties of
last century, Unger and Moult (1993b) developed ge-
netic algorithms (GA) combined with the Monte Carlo
method to fold proteins on 2D and 3D lattices. Later, a
standard GA was developed and it outperformed that
of Unger and Moult by reaching a higher number of
hydrophobic contacts with a smaller number of energy

evaluations (Patton et al., 1995). Another genetic al-
gorithm to fold proteins on a 3D lattice using a mod-
ified energy function was developed by Custódio et al.
(2004). Recently, Johnson and Katikireddy (2006) pro-
posed a genetic algorithm with a backtracking method
to resolve the collision problem. Also, Bui and Sundar-
raj (2005) proposed a method which is a combination
of two genetic algorithms. The first is a GA for the sec-
ondary structure evolution. The second GA uses the
resulting secondary structures to find the most stable
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conformations of the protein. Heuristic methods based
on assumptions about the folding mechanism were pro-
posed, such as the constrained hydrophobic core con-
struction algorithm (Yue and Dill, 1995) and the con-
tact interactions method (Toma and Toma, 1996). A
branch and bound algorithm was developed by Chen
and Huang (2005). The algorithm evaluates the im-
portance of every possible position of the hydrophobic
amino acids and only those promising locations are pre-
served for more branching at every level. A number of
methods based on the Monte Carlo (MC) algorithm
have also been proposed: the pruned-enriched Rosen-
bluth method (Bastolla et al., 1998), an MC based
growth algorithm (Hsu et al., 2003), and the evolu-
tionary MC algorithm (Liang and Wong, 2001). Fur-
ther, a modified particle swarm optimization algorithm
for the protein structure prediction problem in the 2D
toy model was proposed by Zhang and Li (2007). An
Ant Colony Optimization algorithm was proposed by
Shmygelska and Hoos (2005) for both 2D and 3D lat-
tice models.

In this paper, we present a Particle Swarm Optimiza-
tion (PSO) based algorithm for protein structure pre-
diction in the cubic 3D hydrophobic polar (HP) model.
PSO is a population-based evolutionary search strat-
egy in which the underlying metaphor is cooperation
rather than rivalry and competition. We evaluate our
predicted structures using their energy values and the
number of energy evaluations required. Our PSO based
algorithm efficiently searches the search space of po-
tential 3D solutions to find structures with compact
hydrophobic cores and a higher number of H-H con-
tacts. Our algorithm produces better results than those
of published methods that are based on genetic algo-
rithms.

2 Background on particle swarm opti-
mization

Particle Swarm Optimization (PSO) is a population-
based evolutionary search strategy. The initial ver-
sion of PSO was developed by Eberhart and Kennedy
(1995). The underlying theory is that individuals main-
tain some levels of cognitive consistency through social
learning, cooperation and communication with others;
the same applies to swarms of birds or fish which move
in the same direction towards the same destination by
following each other.

The basic steps of the PSO algorithm are as follows:

a) Randomly initialize the Swarm, which is the pop-
ulation of candidate solutions called “Particles”.
At any time t, any Particle i represents a Position
Xi in the search space.

b) Compute the objective functions of the particles
which evaluate the Positions of the Particles in

the search space.
c) Keep track of every Particle’s best Position which

it has achieved so far. This position is henceforth
referred to as pBest or Pi. Also, keep track of the
best Position achieved so far by all Particles in
the Swarm. This position is henceforth referred
to gBest or Pg.

d) Update the Velocity of the Particles, at time t, so
that it moves to a New Position closer to pBest
and gBest.

e) Repeat steps b)-d) until a stopping criterion is
satisfied.

To update the velocity and position of a particle, the
velocities and positions of all of its components need to
be updated. The velocity Vd and the position Xd for
component d of Particle i at time t + 1 are given by:

Vd(t + 1) =ω ∗ Vd(t) + c1 ∗ r1 ∗ (Pi,d − Xd(t))+
c2 ∗ r2 ∗ (Pg,d − Xd(t)) (1)

Then, the position is shifted according to the follow-
ing equation:

Xd(t + 1) = Xd(t) + Vd(t + 1) (2)

Where Pi,d is the position of the component d found in
Pi (i.e. pBest) and Pg,d is the position of the component
d found in Pg (i.e. gBest).

The parameters used to update the velocity are:

• ω is referred to as the inertia. It represents the
weight given to the velocity of the component d.

• c1 and c2 are referred to “self confidence” and
“swarm confidence” respectively. These param-
eters are to be multiplied by the vectors from
the current position Xd(t) to pBest (Pi,d) and
gBest(Pg,d), respectively.

• r1 and r2 are random real numbers between 0 and
1; they determine the influence of pBest (Pi) and
gBest (Pg) respectively. It is claimed that the ran-
domness generated by these two parameters al-
lows the particles to fly through the search space
and prevents fast convergence into local optima.

The update velocity formula takes into account three
vectors for finding the new position. The first vector
is the velocity of the particle’s component d and it is
scaled using the parameter ω. The second vector is−−→
XPi, which represents (Pi,d−Xd(t)), and is scaled with
c1 ∗ r1. The third vector is

−−→
XPg, representing (Pg,d −

Xd(t)), and it is scaled with c2 ∗ r2.

3 PSO for protein structure prediction

In this section, we adapt the PSO algorithm for solv-
ing the PSP problem in the cubic HP model. Fig. 2
shows the different steps of the algorithm, which are
described in the following subsections.
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Random initialization of the swarm

Compute energy of particles

Initialize Pi=Xi & find Pg

Update particle i, Pi and Pg

End

Yes

No

Yes

No

No

No

Yes

Yes

Compute energy of Xi(t+1)

Repair

Update Vi  and Xi
using Eq. (1) and (2)

Stopping criteria? 

RATE selection

determine AA SELECTION POLICY

Does Xi(t+1) meet
acceptance criteria?

Is Xi(t+1) invalid?

More particles?

Fig. 2 PSO-based algorithm for PSP

3.1 Solution representation
A particle is a candidate solution represented by an

array of length n (with index 0, 1, . . . , n-1), where n
is the number of amino acids in the respective protein.
Each element in the array represents the position Xd

of the corresponding amino acid d with respect to the
preceding one and its value can be one of six characters
{b, f, u, d, l, r}. These characters represent the fol-
lowing six directions, respectively {backward, forward,
up, down, left, right}. We note that the position of the
first amino acid (at array index 0) in the protein chain is
assumed to be fixed to provide a reference for the posi-
tion of the other amino acids. In Fig. 3, a 3D structure
sample is illustrated. This structure is represented as
bbburdfulurrur, which is an array of directions of length
14 representing a protein sequence containing 15 amino
acids where the first amino acid is omitted since it is
the reference point. The grayish balls represent the po-
lar amino acids whereas the black balls represent the
hydrophobic ones.

Initially, the swarm is populated with a set of N can-
didate solutions which are randomly generated. That

14 15

131211

2
1

10 9
65

8
74

3

Fig. 3 A sample solution

is, each position Xd of amino acid d (d = 1, 2, . . . ,
n-1) is assigned a random value for the candidate so-
lution/particle i (i = 0, 1, . . . , N-1). All the velocities
are initially set to 0.
3.2 Repair algorithm

A particle is invalid if it experiences collision. Colli-
sion occurs if two or more amino acids lie at the same
point on the cubic 3D lattice. Invalid particles are not
accepted in our proposed algorithm but are repaired us-
ing a backtracking repair function, which takes as input
the invalid particle and returns as output the repaired
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one, if possible, or the same particle if it could not be re-
paired. Fig. 4 provides an outline of this function. The
repair function detects a collision and tries to repair it
locally by finding an alternative empty location for the
amino acid which caused the collision. If none is avail-

able, then it searches for previous amino acids whose
locations can be modified. If more than three amino
acids have been searched or if none can be modified,
then it is assumed that the particle cannot be repaired
and the initial input particle is returned.

REPAIR PARTICLE (Particle)

1. for every AA i in the particle, i = 1, 2, . . . ., n-1

2. Find the candidate vacant spots with respect to the position of the preceding AA

3. if the number of vacant spots != 0 then

4. if current direction of AA i is marked as occupied then //Collision

5. Randomly choose another vacant spot

6. endif

7. else //No vacant spots

8. Search previous AA whose direction can be changed

9. if (None is available OR number of searched AAs > 3) then

10. Return Particle

11. else

12. i ← index of AA whose direction was changed //i decremented

13. end if

14. end if

15. end for

16. Return Repaired Particle

Fig. 4 Repair algorithm

3.3 Objective function

The objective function is the sum of the hydrophobic
contacts between non adjacent amino acids multiplied
by −1. Since we are using the cubic lattice, the max-
imum number of possible (non-bonded) contacts per
amino acid is four, since each amino acid has 2 bonds
with the two adjacent AAs (neighbors) in the peptide
chain and the maximum number of neighbors in a cubic
lattice is six. The first and last amino acids might have
up to five contacts, since they only have one bond with
one adjacent AA. Each H-H contact is given the score of
−1. This type of scoring is used since we need to min-
imize the objective function to make it similar to the
energy function of real proteins. We, henceforth, use
the terms energy and objective function interchange-
ably. The goal is to minimize the energy of the particles
to obtain structures with the most compact hydropho-
bic core. For example, in Fig. 3, the energy value of
the displayed structure is −5. The hydrophobic con-
tacts are displayed in dotted lines and there are five of
them between the following pairs of hydrophobic amino
acids: (3, 8), (3, 10), (4, 7), (5, 10) and (6, 9).

Evaluating the energy of a particle is simple. Every
hydrophobic amino acid in the sequence is checked for
any non-adjacent (not connected by a bond) hydropho-
bic amino acids in the six positions around it on the
lattice, at a distance 1, and the number of these amino
acids is accumulated.

3.4 Position update
The positions of the amino acids in each

particle are updated using the procedure UP-
DATE POSITION V1, which employs Equations
1 and 2. In this procedure, the direction of each
amino acid (AA) i in a particle, except the first one,
is updated with a certain probability, RATE. The
possible direction that an AA i can take is one of
six: b, f, u, d, l and r with respect to AA (i-1);
the dependence on the preceding AA in the peptide
chain is consistent with description of the solution
representation in section 3.1. The new position of AA
i is determined by a change in the x, y or z coordinate,
which is then translated into one of the six directions.
The choice of which coordinate to change is done
randomly. To determine the new position of AA i, we
first calculate its velocity using Equation 1. Then, the
position of the amino acid is updated, using Equation
2, along the same randomly chosen axis. The value
of the position is converted to either 1 (if positive) or
−1 (if negative), with respect to AA (i-1), since the
distance between any two consecutive amino acids in
the lattice is considered to be unity. This position
value, thus, determines the updated direction in the
lattice. That is, if the position turns out to be (0.2,
0.7, 0.5) after applying Equation 2 and the randomly
selected axis for this particular position update step
is the z-axis, then the new position is translated to
(0,0,1) with respect to the existing position, since the
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z-value is positive.
3.5 Determining RATE and selection policy of

amino acids
The RATE parameter is used to determine the per-

centage of the amino acids of a particle for which
the UPDATE POSITION function is applied. In our
adapted PSO algorithm, RATE is set to 0.1, meaning
that only 10% of the directions of the particles are up-
dated in each iteration. This reduced RATE value is
employed in order to accomplish a better neighborhood
search.

In updating the positions of the amino acids of a
particle, the amino acids are selected in an ordered
way, starting with the first (the left-most) amino acid.
Henceforth, we refer to this policy as ‘sequential’.
3.6 Acceptance criterion of new particle and

stopping criterion
In this adapted version of PSO, we used a greedy

policy for accepting a new particle. That is, a new
particle replaces the old particle if its energy value is
lower or equal to the energy of the old particle.

The algorithm will terminate when no improvement
in the results is observed for two successive iterations.

4 Experimental results and discussion

In this section, we present the experimental results
obtained upon running our PSO algorithm and compare
them to those of published techniques on various date
sets. One technique is reported by Patton et al. (1995),
which proposed a standard genetic algorithm for this
problem and reported better results than those achieved
by Unger and Moult (1993b); the second technique is by
Johnson and Katikireddy (2006), which reported better
results than those achieved by Patton et al. for the
smaller sequences. We also experimented with some
variants of our PSO algorithm.
4.1 Experimental procedure
4.1.1 Data

We used two sets of benchmark sequences used first
by Unger and Moult (1993b). These are amino acid se-
quences of Hs and Ps generated randomly: 10 sequences
are of length 27 and 10 sequences of length 64 which
are given in Tables 1 and 2.
4.1.2 PSO algorithm versions

In order to gain confidence about the design choices
in our PSO algorithm, we have implemented a few ver-
sions of this algorithm based on different design deci-
sions. These versions are illustrated in Table 3, where
Version 1 refers to our proposed algorithm. The other
versions are associated with different combinations of
parameter values and design choices. Versions 2-5 are
based on changing one parameter at a time, whereas
Versions 6-8 involve changes in more than one parame-
ter.

In UPDATE POSITION V2 used in Table 3 for some

versions, we found the new velocity vector for amino
acids in a particle, with a specific RATE, and its “tem-
porary” new position using Equations 1 and 2. Then, in
contrast with UPDATE POSITION V1, we calculated
the Euclidean distance from this temporary position to
the vacant candidate spots in the lattice around the
preceding amino acid. The new position of the current
amino acid will be the one with the minimum Euclidean
distance. The ‘Any’ policy used in some versions for ac-
cepting a newly generated particle to replace an incum-
bent particle refers to always accepting the new particle
regardless of its energy function value.
4.1.3 Metrics used

We evaluated the results using the following metrics:

• Energy: It is the total number of non-consecutive
H-H contacts multiplied by −1.

• Number of Energy Evaluations: This is the num-
ber of times the energy function is computed to
reach the final energy score for a specific sequence.
This metric is used as an indicator of the efficiency
of algorithms.

• Relative Percentage of Energy Evaluations: This
metric refers to the percentage of our number of
energy evaluations with respect to the number of
energy evaluations recorded by the published re-
sults.

• Time: This is the time needed to produce results,
which is reported only to give an idea of the re-
quired execution time.

4.1.4 Parameters
The parameters used in the PSO algorithm were set

as follows:

• Inertia (ω): It is typically set between 0.4 and 0.9
(Wilke, 2005). For all of our versions, we set it to
0.5.

• Self confidence (c1) and swarm confidence (c2) val-
ues were set to 2 (Eberhart and Kennedy, 1995).

• r1 and r2: are real random numbers which can
range between 0 and 1 (Das et al., 2008).

• Swarm size: Typically, the swarm size used in
PSO algorithms is fairly small. For many prob-
lems, a swarm size of 20 particles can be sufficient
(Wilke, 2005). We used a swarm size of 5 for the
smaller sequences and 10 for the longer sequences.

• Number of iterations: we allowed the algorithm
to run for a maximum of 10000 iterations for the
27-long sequences and 40000 iterations for the 64-
long sequences. However, we recorded the results
at the point beyond which no improvement took
place, if this occurred before reaching the maxi-
mum number of iterations.
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Table 1 Benchmark sequences of length 27

Seq # Sequence
Lowest Energy in Patton et al.

(1995) & Johnson and Katikireddy (2006)

273d.1 phphphhhpphphppppppppppphhp −9

273d.2 phhpppppppppphhpphhpphpphph −10

273d.3 hhhhppppphppppphhhpppppppph −8

273d.4 hhhpphhhhppphphpphhpphppphh −15

273d.5 hhhhpppphphhppphhpppppppppp −8

273d.6 hpppppphphhhpphhppphpppphph −11

273d.7 hpphphhppphppppphphhphphphh −13

273d.8 hppppppppppphphpppppppphphh −4

273d.9 ppppppphhhppphphhppphpphppp −7

273d.10 ppppphhphphphphpphhphhphppp −11

Table 2 Benchmark sequences of length 64

Seq # Sequence

Lowest Energy

in Patton et al.

(1995)

643d.1 pphhhhhppphhppppphhppphpppppphphppphpphpphppppphpppphhphhpphpphp −27

643d.2 pphphpphpphhhphhhhpphhhpppphphppphphppphphppppphphpphphppphpphpp −30

643d.3 hphhpphhphppppphhhphhhhpphpphphhppphphpphhhphhphppppphhhhhhhhppp −38

643d.4 hpphhpphpphphpphpppphpppppphphphhhpphphppphphpphhpphpphpphphhhph −34

643d.5 hppphhpphphppphppphphhppphhphphhphpphppphpphphhhpphpphpphhhphhhh −36

643d.6 hpphhphhhhpppppphhpphpppphhppphpphphhphpppphhpppphppppphpppphphh −31

643d.7 pppphppphppphhhhphhppppphpphphhphphppppphpppppppppphhhhpppphhpph −25

643d.8 ppphhhpphphpphpphhppphpphpphhphppphppppppphphhhphhhhhpphhppphpph −34

643d.9 hpphpphhhpppphphppphphhphhhhhpppphphphpppphphppphhphpppphpphhphp −33

643d.10 pphpphpphhhppphphpphpphpppppphpphhhpphpphpphphpppppphhhppppphphp −26

Table 3 Algorithm versions

Version # Update Position Function RATE
Acceptance Criterion

of New Particle
AA Selection Policy

Version 1 UPDATE POSITION V1 0.1 Greedy Sequential

Version 2 UPDATE POSITION V2 0.1 Greedy Sequential

Version 3 UPDATE POSITION V1 1 Greedy Sequential

Version 4 UPDATE POSITION V1 0.1 Any Sequential

Version 5 UPDATE POSITION V1 0.1 Greedy Random

Version 6 UPDATE POSITION V2 1 Greedy Sequential

Version 7 UPDATE POSITION V2 1 Any Sequential

Version 8 UPDATE POSITION V2 0.9 Any Random

4.2 Results
Tables 4 and 5 present the results of the PSO algo-

rithm versions and also include the previously published
results, for proteins with lengths 27 and 64 amino acids,
respectively. Tables 6 and 7 provide a summary of the
results of PSO algorithm Version 1 with the best pre-
viously published results.

Based on Tables 4 and 5, we make the following com-
ments:

a. PSO Version 2 yields the same energy values as
PSO Version 1 for the short sequences in 9 out of

10 cases, where the remaining case, 273d.6, has
a higher energy value. For these sequences, the
number of energy evaluations is larger for 80%
of the cases. However, for the long sequences,
PSO Version 2 fails to compete with Version 1 on
all 10 cases. These results indicate that the pol-
icy UPADTE POSITION V1 is more appropriate
than UPDATE POSITION V2.

b. For PSO Version 3, a similar assessment to that
of PSO Version 2 holds, except that the num-
ber of energy evaluations for the short sequences
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Table 4 Results for sequences of length 27

Seq #

Johnson and

Katikireddy

(2006)

Version 1 Version 2 Version 3 Version 4 Version 5
Version 6 Version 7

Version 8

Energy
Energy

Eval.
Energy

Energy

Eval.
Energy

Energy

Eval.
Energy

Energy

Eval.
Energy

Energy

Eval.
Energy

Energy

Eval.

Energy Energy
Energy

Energy

Eval.

273d.1 -9 15,854 -9 3,158 -9 73,253 -9 326,547 -7 94,710 -9 4,849 -7 -6 -9 298,456

273d.2 -10 19,965 -10 5,771 -10 11,546 -10 345,290 -7 322,090 -10 4,329 -8 -7 -10 245,756

273d.3 -8 7,991 -8 2,667 -8 2,584 -8 88,369 -7 745,190 -8 3,456 -6 -5 -8 84,134

273d.4 -15 23,525 -15 8,556 -15 59,497 -15 608,494 -12 315,430 -15 9,267 -11 -10 -15 190,348

273d.5 -8 3,561 -8 893 -8 10,569 -8 161,510 -7 128,470 -8 1094 -6 -5 -8 70,876

273d.6 -11 14,733 -12 12,790 -11 21,182 -11 450,983 -8 117,970 -11 13,664 -8 -7 -11 260,564

273d.7 -13 23,112 -13 17,024 -13 5,251 -12 80,307 -10 325,430 -13 18,098 -9 -8 -13 201,543

273d.8 -4 889 -4 149 -4 734 -4 8,027 -4 12,510 -4 558 -3 -3 -4 9,700

273d.9 -7 5,418 -7 1,915 -7 3,306 -7 196,229 -6 345,230 -7 4,508 -6 -5 -7 67,900

273d.10 -11 5,592 -11 2,638 -11 12,808 -11 609,229 -9 58930 -11 3,849 -9 -7 -11 23,981

Table 5 Results for sequences of length 64

Seq #
Patton et al. (1995) Version 1

Version 2 Version 3 Version 4 Version 5 Version 6 Version 7 Version 8

Energy
Energy

Eval.
Energy

Energy

Eval.
Energy Energy Energy Energy Energy Energy Energy

643d.1 -27 433,533 -28 1,131,552 -24 -18 -14 -27 -18 -12 -21

643d.2 -30 167,017 -31 456,877 -26 -18 -16 -30 -21 -13 -24

643d.3 -38 172,192 -39 113,315 -36 -24 -24 -39 -27 -14 -30

643d.4 -34 107,143 -36 1,730,129 -32 -25 -15 -35 -22 -10 -25

643d.5 -36 154,168 -38 1,602,646 -33 -24 -19 -36 -24 -15 -26

643d.6 -31 454,727 -31 410,586 -27 -21 -18 -31 -19 -12 -23

643d.7 -25 320,396 -27 1,296,319 -24 -17 -14 -26 -16 -11 -17

643d.8 -34 315,036 -35 1,113,330 -29 -19 -18 -34 -22 -14 -33

643d.9 -33 151,705 -35 404,199 -27 -24 -17 -35 -20 -12 -30

643d.10 -26 191,019 -27 175,053 -26 -17 -14 -26 -16 -8 -24

Table 6 Results of Version 1 compared to Johnson et al. (2006) (Seqs. of length 27)

Seq #

Johnson and Katikireddy (2006) Version 1 Difference

in Energy

Relative %

Eval. UsedEnergy Energy Eval. Energy Energy Eval. Time (Sec)

273d.1 -9 15,854 -9 3,158 7 0 19.91

273d.2 -10 19,965 -10 5,771 10 0 28.9

273d.3 -8 7,991 -8 2,667 7 0 33.37

273d.4 -15 23,525 -15 8,556 14 0 36.36

273d.5 -8 3,561 -8 893 2 0 25.07

273d.6 -11 14,733 -12 12,790 22 -1 86.81

273d.7 -13 23,112 -13 17,024 28 0 73.65

273d.8 -4 889 -4 149 0.5 0 16.76

273d.9 -7 5,418 -7 1,915 5 0 35.34

273d.10 -11 5,592 -11 2,638 8 0 47.17

Table 7 Results of Version 1 compared to Patton et al. (1995) (Seqs. of length 64)

Seq #

Patton et al. (1995) Version 1 Version 1
Difference

in Energy

Relative

% Eval.

Used
Energy

Energy

Eval.
Energy

Energy

Eval.
Energy

Energy

Eval.

Time

(min)

643d.1 -27 433,533 -27 422,373 -28 1,131,552 12 -1 261

643d.2 -30 167,017 -30 159,873 -31 456,877 5 -1 273.55

643d.3 -38 172,192 -38 109,541 -39 113,315 1 -1 65.8

643d.4 -34 107,143 -34 167,879 -36 1,730,129 18 -2 1614.78

643d.5 -36 154,168 -36 189,634 -38 1,602,646 17 -2 1039.54

643d.6 -31 454,727 -31 410,586 -31 410,586 5 0 90.29

643d.7 -25 320,396 -25 309,532 -27 1,296,319 3 -2 404.59

643d.8 -34 315,036 -34 410,813 -35 1,113,330 12 -1 353.39

643d.9 -33 151,705 -33 143,182 -35 404,199 4 -2 266.43

643d.10 -26 191,019 -26 165,762 -27 175,053 2 -1 91.65
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is significantly larger. This indicates that the
low/moderate RATE values for the number of
AAs of a particle that are updated per iteration
are more appropriate than high rates.

c. PSO Version 4 fails badly in comparison with PSO
Version 1 on both the energy values and the num-
ber of energy evaluations. This demonstrates the
merit of the greedy policy for accepting newly gen-
erated particles.

d. PSO Version 5 yields fairly comparable results to
PSO Version 1 for the short sequences in terms
of energy values and number of energy evalua-
tions. For the larger sequences, it produces 7 out
of 10 worse energy values. This indicates that the
sequential policy of selecting AA for updating is
more favorable than the random selection policy.

e. PSO Version 6 and 7 yield much worse energy
values than those of PSO Version 1 for short and
long sequences. PSO Version 8 also fails badly
on the long sequences although it gives compara-
ble energy values for the short sequences, for a
much larger number of energy evaluations. This
shows that the combinations of parameter values
employed in these versions are not appropriate.

f. The results of Versions 3 and 6 show
that UPDATE POSITION V1 and UP-
DATE POSITION V2 do not lead to the
lowest energy solutions if applied on 100% of the
amino acids (RATE = 1). That is, regardless of
the function used to update the position, we note
that when the rate of modifying the directions is
high, the quality of the results becomes lower.

g. Based on the observations made in parts a-f, the
PSO Version 1 produces better solutions than all
other versions. Version 1 represents a combina-
tion of appropriate choices which improve the re-
sults. In this version, we are keeping only good
particles and searching for same quality or better
ones in their small neighborhoods. This way, we
are forcing the swarm to improve while exploring
the search space with small jumps.
Based on Tables 6 and 7, we infer the following:

h. For the 27-long sequences, the energies recorded
by PSO Version 1 for all sequences, except for
sequence 273d.6, were equal to those of Johnson
et al. (2006) but with a fewer number of energy
evaluations. For sequence 273d.6, PSO Version
1 found a structure with an energy value of -12,
which is lower than the lowest so far in the liter-
ature, to the best of our knowledge.

i. For the 64-long sequences, PSO Version 1 found
lower energy values than Patton et al. (1995) for
9 out of the 10 sequences, although for a higher

number of energy evaluations. However, for find-
ing the same energy values, PSO Version 1 runs
for a comparable number of energy evaluations.

Therefore, PSO Version 1 produces better results
than those of the published algorithms, so far, for the
given set of sequences with respect to the number of
evaluations for the 27-long sequences and with respect
to the energy values for the 64-long sequences. By using
a very small set of candidate solutions in the swarm, our
proposed algorithm is capable of exploring the search
space and finds slightly better structures with lower en-
ergy than genetic algorithms, which normally require a
fairly large population. However, as shown in Table 7,
the PSO algorithm (Version 1) performs a larger num-
ber of energy evaluations.

5 Conclusion

We have presented a PSO based algorithm for solv-
ing the PSP problem in the 3D HP model. Given a se-
quence of Hs and Ps, where H represents a hydrophobic
amino acid and P represents a polar one, we aim to find
the 3D structure, which is a map of the given sequence
into a 3D lattice characterized with a hydrophobic core,
such that the number of H-H contacts is maximized.

Our proposed PSO algorithm (Version 1) efficiently
explores the search space of possible solutions and re-
turns the 3D structure with low energy. It starts with a
set of randomly created potential solutions or particles
gathered in a swarm. These particles are evaluated for
their energy function values. At every iteration, this
swarm is updated using a function that updates the ve-
locity of the particle, which is the main operator of the
algorithm. This operator’s task is to explore new areas
of the search space to find the optimal solutions. The
performance of our algorithm is evaluated by comparing
it to the results of previous algorithms using the same
set of benchmark sequences. Our PSO algorithm has
been shown to produce better results than these pub-
lished results by reaching the same energy values with
a fewer number of energy evaluations for the small se-
quences and by finding lower energy structures for the
longer ones.

Further work can be done. The 3D model can be
extended to more complex geometric shapes that rep-
resent more similarity to the real proteins like the face
centered cubic lattice. This might allow us to use real
proteins as our HP sequences and study the effects of
hydrophibicity on the protein folding kinetics. More-
over, the energy function can be extended by taking
into consideration the H-P and the H-Solvent contacts
to study the effects of such integration on the overall
performance of the algorithm (Custódio et al., 2004).
Furthermore, a parallel PSO might further improve the
results for the longer sequences by providing a faster
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and more efficient means to explore the search space.
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