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Abstract

This paper focuses on the design, development and implementation of new Pareto e�ciency detection and

restoration techniques for integer goal programming. The design of the algorithms and their implementation issues
within (an otherwise continuous) goal programming system are detailed. The di�erences between continuous and
integer goal programming regarding Pareto e�ciency detection and restoration analysis are described. The integer
Pareto e�ciency techniques have been applied to a selection of problems from di�erent industrial contexts in order

to assess their computational performance. Finally, Pareto restoration and detection techniques are applied to an
integer goal programming problem to illustrate the methodology. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Goal programming (GP) is a multi-objective pro-

gramming technique ®rst developed by Charnes et al.

in 1955 [1] and more explicitly de®ned by Charnes and

Cooper in 1961 [2]. GP can be considered as a math-

ematical programming method and a member of the

multi-criteria decision making (MCDM) family, and is

known as a distinguished and e�ective method of pro-

blem solving in this ®eld. Research on the development

of the theoretical and operational aspects of GP is

extensive. A small subset of key references are Refs. [6±

11, 15±18, 21, 22].

This research is concerned with weighted and lexico-

graphic integer GP.

* Weighted integer GP: minimises a weighted sum

of unwanted deviations from the decision maker's set

of targets for a number of goals (criteria). All goals

are therefore considered simultaneously.

The general mathematical representation of a

weighted GP model has the form;

Min z �
Xk
i�1
�uini � vipi � �1�

subject to,

fi�x� � ni ÿ pi � bi, i � 1, . . . , k �2�

x 2 Cs �3�

n, pr0 �4�

xr0 and integer �5�
where fi(x) is a linear function(objective) of x, and x is

the set of decision variables to be determined. bi is the

target value for objective i. ni and pi represent the

negative and positive deviations from this target value,

respectively. ui and vi are the respective non-negative

weights attached to these deviations in the achievement

function z. Cs is an optional set of hard constraints.

* Lexicographic integer GP: minimises a ranked

vector (in order of decision makers importance) of

unwanted deviations from a set of targets for a num-

Omega, Int. J. Mgmt Sci. 27 (1999) 179±188

0305-0483/99/$19.00 # 1999 Elsevier Science Ltd. All rights reserved.

PII: S0305-0483(98 )00038-3

PERGAMON

* Corresponding author. Tel.: +44-1705-843108; Fax: +44-

1705-843106; E-mail: mehrdad.tamiz@port.ac.uk.



ber of objectives, where di�erent goals are grouped

into several levels of priorities. There exists a natural
ordering amongst the goals. Goals in the higher pri-

ority levels are satis®ed as closely as possible and it is
only then that goals in the lower priority levels are

considered, i.e., a sequential minimisation of priority
levels with no degradation in the value of higher pri-

ority levels. The mathematical representation of an
integer lexicographic GP model has the form;

Lex Min a �
�Xk

i�1
�u1i ni � v1i pi �, . . . ,

Xk
i�1
�uLi ni � vLi pi �

�
�6�

Subject to,

fi�x� � ni ÿ pi � bi, i � 1, . . . , k �7�

x 2 Cs �8�

n, pr0 �9�

xr0 and integer �10�
where fi(x) is a linear function(objective) of x, and x is

the set of decision variables to be determined. bi is the
target value for objective i. ni and pi represent the

negative and positive deviations from this target value,
respectively. This model has L priority levels, and k

objectives. a is an ordered vector of L priority levels.
ui
l and vi

l are the respective weights attached to the de-

viations in the lth priority level of the achievement
function. Cs is the optional set of hard constraints.

GPSYS [20] and IGPSYS [13] are the goal program-
ming and integer goal programming systems used in

this research, respectively.

A well known fact that has caused much debate
over recent years is that GP has the ability to produce

Pareto ine�cient or dominated solutions. A standard
GP optimum solution (initial optimal solution) is not

guaranteed to be Pareto e�cient, which according to
Zeleny [24] is probably the most contentious quality of

GP.
Vilfredo Pareto [14] introduced the concept of

Pareto optimality in the ®eld of economics in 1896.
According to his de®nition, a society is Pareto optimal

(Pareto e�cient) when no member of that society can
improve their condition without lowering the condition

of another member.

The concept of Pareto optimality can be applied to
GP in order to build succinct tools to overcome these

intrinsic de®ciencies. In a GP environment, Pareto
optimality/e�ciency is de®ned as the state in which no

objective can be improved without degrading another
objective. Improvement can be thought of as obtaining

a better level of satisfaction of the objective irrespec-
tive of the target value, conversely degradation implies

a worsening of the satisfaction level. The reason for

the fact that GP models can produce Pareto ine�cient

solutions is that the decision maker may set target

values which are too pessimistic, i.e., objectives which

are easily achieved with respect to the restrictions (con-

straints and con¯icting objectives) imposed. This disad-

vantage has, in the past, caused great concern and

doubt regarding the use of GP, as detailed in

Refs. [23, 24].

To overcome this drawback, Hannan [4, 5] proposed

a remedy to restore Pareto e�ciency. His method is

based on the production of a set of e�cient points

which dominate the standard ine�cient GP optimis-

ation solution point. Further developments to

Hannan's method were carried out by Romero [15], in

order to generate e�cient solutions, while preventing

the degradation of any objective's achieved value from

the standard ine�cient GP solution point. Tamiz and

Jones [19] propose an alternative technique for Pareto

e�ciency and ine�ciency detection and implement it

within a GP optimisation package GPSYS [20]. This

technique consists of a series of tests which are

designed to categorise objectives into Pareto e�cient,

ine�cient or unbounded states [19]. These tests investi-

gate the possibility of improving the objectives from

the initial optimal solution in order to detect e�ciency

or ine�ciency. The examination and inspection of the

GP optimal solution using mathematical programming

simplex tableaux theory takes place in order to per-

form the tests. Only degenerate simplex iterations are

performed and thus the initial GP solution remains

unchanged and no movement occurs.

Fig. 1 shows a simple GP problem illustrating the

case of Pareto e�ciency in the continuous case. The

problem has two objectives, OBJ1 and OBJ2, and a

hard constraint. The shaded area represents the feas-

ible region and z* is the initial GP optimal solution for

the achievement function of

Min z � n1 � n2 �11�

It is clear that both objectives can be improved with-

out degrading the other, resulting ultimately in detec-

tion/restoration of e�cient feasible points z1 and z2.

Thus, point z* is classi®ed as a Pareto ine�cient point

dominated by a set of Pareto e�cient points (Pareto

e�cient boundary). Due to the characteristics of the

simplex algorithm, only the two extreme points z1 and

z2, can be located.

Tamiz and Jones [19] also investigate the restoration

of Pareto e�cient points whereby the decision maker

may have a preference for the restoration of objectives,

i.e., he/she may be more concerned about improving

certain Pareto ine�cient objectives than the others.

The methods proposed in [5, 15, 19] overcome

Zeleny's major criticism of continuous GP. However
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the case of detection and restoration of e�cient sol-

utions in integer goal programming has not yet been

fully addressed or resolved.

In integer GP an objective is Pareto ine�cient if a

di�erent integer solution can be found that improves

that objective without degrading the value of any other

objective. If no such point exists, then that objective is

termed Pareto e�cient. A variant of a Pareto ine�-

cient objective is when the objective can be increased

to an in®nitely high value without degrading other

objectives i.e., Pareto unbounded. An integer GP is

said to be Pareto ine�cient or unbounded when one

or more objectives are ine�cient or unbounded, re-

spectively. It follows that in a Pareto e�cient integer

GP, every objective must be Pareto e�cient.

The methods developed for the continuous case do

not guarantee the identi®cation of ine�cient integer

GP objectives, let alone the restoration of an integer

e�cient point. For example in Fig. 1, z* is a GP

Pareto ine�cient point in the continuous case, but it is

an integer Pareto e�cient point since there are no

other integer points in the z*z1z2 domain. The tech-

nique in Ref. [19] examines and inspects the simplex

solution space and is based on performing degenerate

iterations only. The existence of non-degenerate sim-

plex iterations proves the ine�ciency of the solution.

To detect an improved integer point, simplex iterations

as well as branch and bounding [13] must be per-

formed to con®rm the existence or non-existence of an

integer point. In this paper, methods in Refs. [5, 15, 19]

are thus built upon to develop a new algorithm to

overcome the integer requirements of integer GP

ine�ciency [13].
To clarify the points mentioned above, consider the

integer GP problem depicted in Fig. 2. Point z* is the

integer GP ine�cient point. Continuous Pareto e�-
ciency detection techniques would not be able to detect
the integer e�ciency or ine�ciency of z*, since the
selection of dominating points in the continuous case

might not contain any integer point. In Fig. 2, z2, not
being an extreme point, would not be recognised as a
dominating integer point when the continuous Pareto

e�ciency tests are applied.

2. Detection

A new algorithm has been developed and im-
plemented in IGPSYS to detect and categorise the
Pareto state (e�cient, ine�cient, unbounded) of the

objectives for integer GP problems [13]. The state of
every objective will be reported at the initial optimal
integer GP solution. This classi®cation helps the de-
cision maker to ®nd out the state of each objective in

order to make rational decisions in the real life pro-
blems, especially in large scale integer GP models
where the shear amount of data renders it impossible

to visually scan for such details.
To be able to detect the Pareto e�ciency status of

an integer GP optimum solution, other integer points

must be found in the feasible dominating area. In the
case where there are no other integer points in the
feasible dominating area, the optimum integer GP

Fig. 1. Pareto e�ciency in a continuous case.
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point is classi®ed Pareto e�cient. An integer optimis-
ation technique, such as branch and bound with di�er-
ent state-of-the-art branching facilities and speed
ups [13] is employed for the detection process. Unlike

the continuous case, depending on the structure of the
model, there are movements from the initial integer
point to at least one, and in most cases, several other

integer points in the dominating area. Every time that
a new integer point is detected, the status of every
objective is examined at that point. If there are objec-

tives with status unknown, the original integer opti-
mum point is retrieved and branch and bound is
employed to maximise a new achievement function.
This results in the movement towards and the reaching

of a new integer point. The status of the remaining
unknown objectives are then examined.

2.1. Notation

The following notation is used for the explanation
of the detection and restoration algorithms described
in this paper.

. InfCnt =The Pareto ine�cient objective counter

. LNWVi
=A lower bound placed on NWVi

. NWVi=The deviational variable of one-sided objec-

tive i which is not in the achievement function
. UWVi

=The upper bound placed on WVi

. ValueNWVi
=The value of NWVi at the initial opti-

mal point
. Value*

NWVi
=The value of basic NWVi at the new op-

timal point

. ValueWVi
=The value of WVi at the initial optimal

point
. WVi=The deviational variable of one-sided objec-
tive i which is in the achievement function

2.2. Integer GP Pareto e�ciency detection procedure

The following algorithm outlines a new integer
Pareto e�ciency detection procedure developed and
implemented in IGPSYS. It is used to detect the
Pareto state of the optimum point by the maximisation

of the non-weighted deviational variables, NWVs [13].
The steps of the algorithm are now stated:
(1) Initialise the state of each objective to `Pareto

E�cient' if both deviational variables are in the
achievement function (two-sided objective), or other-
wise to `Unknown'. Note: The reason for the above

classi®cation is that if both deviational variables of an
objective, say OBJ1, are in the achievement function
then they are at their minimum value in the optimal
solution. Any change will cause the objective to move

from its optimal value. Thus, OBJ1 is classi®ed as
Pareto e�cient.
(2) If a WVj is in the basis, an upper bound is placed

on it to stop possible degradation. The upper bound is
the value of WVj at the optimal solution. That is
(UWVj

=ValueWVj
). WVjs outside the basis are ®xed to

zero.
(3) Set up an achievement function of NWVjs from

those objectives with status `unknown'.

Fig. 2. Pareto e�ciency in an integer case.

M. Tamiz et al. / Omega, Int. J. Mgmt Sci. 27 (1999) 179±188182



(4) If NWVj is in the basis, a lower bound is placed

on it to stop possible degradation. The lower bound is

the value of NWVj at the optimal solution point. That

is (LNWVj
=ValueNWVj

).

(5) Solve the integer GP by performing the Branch

and Bound algorithm, maximising the new achieve-

ment function.

Max z �
X
j�J 0

NWVj �12�

subject to,

fi�x� � ni ÿ pi � bi, i � 1, . . . , k �13�

WV b
j RValueWVj

�14�

NWV b
j rValueNWVj

�15�

x 2 Cs �16�

n, pr0 �17�

xr0 and integer

where J' is the set of objectives with status `unknown'.

WVj
b and NWVj

b are the basic WVj and NWVj, re-

spectively, with the optimum values of ValueWVj
and

ValueNWVj
. The integer GP optimum solution point is

the starting point for this maximisation problem. The

newly created integer GP maximisation problem is

solved using IGPSYS. Di�erent Branch and Bound

strategies could be used, depending upon the structure

of the problem [13].

(6) Perform the following procedure:

InfCnt = 0

For each objective, j = 1 to J, Do

If (Value*
NWVj

> LNWVj
) Then

(OBJNWVj
) is `Pareto Ine�cient'

InfCnt = InfCnt + 1

Endif

Continue (For loop)

If (InfCnt = 0) Then

`Unknown' objectives are `Pareto E�cient' STOP

Else

Retrieve original optimum integer GP, GOTO 2

Endif

In step 6, the values of the deviational variables in

the new objective function are monitored. If Value*
NWVj

is greater than LNWVj
then there has been improve-

ment. Therefore, the objective whose deviational vari-

able is NWVj is classed as `Pareto ine�cient'. If the

Pareto ine�ciency counter has not been incremented,

i.e., no improvement has occurred (InfCnt = 0), then

objectives with unknown Pareto e�ciency state are

classi®ed as `Pareto e�cient'. In the case where the
Pareto ine�ciency counter is incremented (InfCntr1),

the original integer GP problem is retrieved and a new
achievement function, from the deviational variables of
the objectives which still maintain status `unknown', is

formed and the resultant new integer GP problem is
maximised.
This is a ®ltering process; at each iteration undeter-

mined objectives are examined and the process termi-
nates when e�ciency or ine�ciency of all objectives
are determined. This guarantees the classi®cation of

each objective and guarantees the convergency of the
method.

2.3. An illustrative example

The ®ltering process of integer GP detection tech-
nique is illustrated by a hypothetical example on a

simple integer GP problem with four objectives where,
ni and pi represent the negative and positive deviational
variables for objective i, respectively. Let the original
achievement function be of the form,

Min z0 � n1 � p2 � n3 � p4 �19�
After solving the integer GP problem, in order to
detect the Pareto e�ciency status of the solution, a

new achievement function is constructed from the non-
weighted deviational variables, that is,

Max z1 � p1 � n2 � p3 � n4 �20�
The new solution is then compared with the initial op-
timal solution and the objectives are then given the rel-
evant Pareto state. Table 1 shows the hypothetical

value of the deviational variables during the process of
integer Pareto detection, where

0<a1
0<b1<b2
0<g1<g2

8<:
Thus, p1 and p3 have improved from their original

values at z0 to a1 and g2, respectively, at z1, whereas
values of n2 and n4 remain unchanged. Thus objectives
1 and 3 are classi®ed as Pareto ine�cient. Table 2

shows the Pareto status of all objectives during the
Pareto detection process.
Pareto e�ciency status of all objectives are unknown

at z0 whereas objectives 1 and 3 are categorised as
Pareto ine�cient at z1. Subsequent categorisation of
objectives with as yet unde®ned status takes place by

maximisation of z2 and z3, respectively. That is

Max z2 � n2 � n4 �21�
and
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Max z3 � n4 �22�

It is clear that objectives 1 and 3 have both been
improved as a result of the integer point found when

maximising z1, thus, classed as Pareto ine�cient. In
maximising z2, objective 2 is improved at an integer
point and is therefore categorised as Pareto ine�cient.

Finally, objective 4 is Pareto e�cient since no
improved integer points could be found when maximis-
ing z3.

3. Restoration

If one or more objectives in an integer GP model
are found to be Pareto ine�cient, the decision maker
would be advised to investigate and preferably restore

e�ciency. Three di�erent restoration algorithms;
straight, preference based and interactive, have been
developed and implemented in IGPSYS. These algor-

ithms help the decision maker to restore Pareto e�-
ciency within the subset of the feasible region that
dominates the ine�cient point found. In the case

where there exist multiple Pareto e�cient points on the
e�cient boundary that dominate the original solution,
the di�erent mechanisms and structure of the three res-
toration techniques developed in this research provides

added ¯exibility for the decision maker [13].
Techniques in the continuous case for restoring

Pareto e�cient points in the dominating feasible area

cannot be applied to the integer case. The algorithms
developed for the continuous case can only restore
non-integer points. These points are on the continuous

Pareto e�cient boundary. Whereas, the integer Pareto
e�cient points are normally in the interior of the dom-
inating area and are located on a di�erent and integer
Pareto e�cient boundary.

The original integer optimisation causes movement
from the initial continuous optimum point to the inte-
ger optimum point. The Pareto e�ciency status of

objectives at this point are then investigated. In the
case where ine�cient objectives are detected, restor-
ation techniques are employed to achieve e�ciency.

The Pareto e�cient solution for an integer GP model
is obtained by using one of the variants of the Pareto
restoration analysis techniques. The restoration of

Pareto e�cient integer points in the dominating feas-
ible area are performed using any of the algorithms

available in the integer optimisation system developed
in Ref. [13].
In most problems, there are usually more than one

Pareto e�cient integer solution. Movement towards
and reaching di�erent integer Pareto e�cient solutions
in the dominating feasible area may depend on the de-

cision maker's use of a particular restoration technique
variant.

3.1. Straight restoration

This is similar to the detection process.
Maximisation of the sum of the non-weighted devia-

tional variables (NWVj) is performed i.e.,

Max z �
X
j�J0

NWVj �23�

where J0 is the set of NWVj's of the objectives found
to be ine�cient by the detection process. This is equiv-
alent to the imposition of an additional priority level
to the integer GP. In the case of detecting one or more

Pareto unbounded objectives, a Pareto e�cient sol-
ution cannot be reached. The steps of this algorithm
can be stated as follows:

(1) Call Detection
(2) If all objectives are e�cient, Stop. Otherwise con-

tinue.

(3) Place an upper bound on WVjs
(UWVj

� ValueWVj
). This prevents degradation of WVjs

during the maximisation process.
(4) Set up an achievement function of NWVjs from

those objectives with status `Ine�cient'.
(5) Place a lower bound on NWVjs

(LNWVj
� ValueNWVj

). This prevents degradation of

NWVjs during the maximisation process.
(6) Solve the integer GP, maximising the new

achievement function. This process is e�ectively the

same as that of a lexicographic integer GP where the
last priority is made up of a summation of the NWVjs.
There is usually more than one Pareto e�cient inte-

ger point in the dominating area. This technique re-
stores the integer point with the best unweighted
improvement, i.e., that which o�ers the greatest
improvement considering all objectives equally.

3.2. Preference based restoration

This is achieved by the addition of one or more
extra priority levels to the original integer GP. In this
case, the weights of the deviational variables in the

original achievement function and their priority levels
for the lexicographic GP case, are taken into account,
maintaining a preference structure. For the weighted

Table 1

Process of integer GP detection algorithm

OBJ z0 z1 z2 z3

1 p1=0 p1=a1 ± ±

2 n2=b1 n2=b1 n2=b2 ±

3 p3=g1 p3=g2 ± ±

4 n4=0 n4=0 n4=0 n4=0
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GP the new achievement function will be of the form

Lex Min a �
�XJ

j�1
�wj �WVj �,

XJ
j�1
ÿ �wj �NWVj �

�
�24�

For the lexicographic GP, the mathematical represen-
tation of the new achievement function is of the form;

Lex Min a �
��XJ

j�1
w1jWVj

�
,

�XJ
j�1

w2jWVj

�
, . . . ,

�XJ
j�1
ÿ w1jNWVj

�
,

�XJ
j�1
ÿ w2jNWVj

�
, . . .

�
�25�

where wlj is the weight of WVj in the objective function
associated with NWVj and priority level l (l= 1, . . . ,

L). This model has 2L priority levels.
This method has an advantage over straight restor-

ation in that it considers the relative degree of import-
ance of each objective at each priority level to the

decision maker. In this technique, priority levels are
dealt with in their order of importance when consider-
ing lexicographic integer GPs. The following is the al-

gorithm for the preference based technique designed to
handle integer GP models:

1. Call Detection

2. If all objectives are e�cient, Stop. Otherwise
continue.

3. Place upper bounds on WVjs
(UWVj

� ValueWVj
)

4. For i= 1 to Number-of-Priority-Levels. Set up
an achievement function

of NWVjs from those objectives with status
`Ine�cient' in priority

level i with the corresponding weights of wij.
Solve the integer GP,

maximising the new achievement function.

If (i>1, and NOT-last-priority-level) Then
Place lower bounds on NWVjs

(LNWVj
� ValueNWVj

)
Else

Exit.
Endif

Next i.

3.3. Interactive restoration

The ®rst step of the restoration phase consists of
providing the decision maker with the set of ine�cient
objectives. The decision maker then chooses the objec-

tive that he/she wishes to improve. Each time a single
achievement function containing only one NWVj is
maximised:

Max z � NWVj, j 2 J �26�
where J is the set of objectives found to be ine�cient
by the detection process. Once the achievement func-

tion is set up, the new problem is then optimised by
performing the integer optimisation using a branch
and bound algorithm. A new report is then constructed

stating the e�ciency or ine�ciency of each of the set
of objectives at the new integer point. This interactive
process is repeated until all objectives are returned e�-

cient. The maximisation and thus improvement of a
singleton objective during each iteration of the algor-
ithm guarantees the convergency of the method.
Depending on decision maker's choice of objectives

to be improved during this interactive process, optimis-
ation causes movement towards and ultimately reach-
ing the best integer solution for his/her purpose.

If any one of the objectives is however found to be
Pareto unbounded, it cannot be made Pareto e�cient
and is thus categorised as Pareto unbounded. The

interactive restoration approach is implemented using
the following steps:
(1) Call Detection. If every objective is `E�cient',

Stop. Otherwise continue.

(2) Set up a new achievement function of the Kth
objective as selected by the decision maker with ine�-
cient status, NWVk

(3) Solve the integer GP, maximising the new
achievement function by performing integer optimis-
ation

(4) Place a lower bound on NWVk.
(LNWVk

� ValueNWVk
).

(5) Goto 1.

4. Computational experiments

In order to evaluate the computational performance

of the detection and restoration analysis tools, a set of
integer GP problems from di�erent industrial contexts
are analysed [12]. A 486 PC with 33 MHz Intel co-pro-

cessor was used for this purpose. All times given are in
CPU seconds. A summary of the analysis is given in
Table 3.

Models 2 and 7 are taken from MIPLIB, library of
real life integer programming problems, and converted
to integer goal programming models. The most time

Table 2

Table of status classi®cation

OBJ z0 status z1 status z2 status z3

1 Unknown Ine�cient Ine�cient Ine�cient

2 Unknown Unknown Ine�cient Ine�cient

3 Unknown Ine�cient Ine�cient Ine�cient

4 Unknown Unknown Unknown E�cient
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consuming model regarding the detection time is
model 10 with the highest number of ine�cient objec-

tives. Model 6 has no ine�cient objectives and there-
fore the detection time is minimum. The straight and
preference based restoration times are the same or
with little di�erence in most models apart from models

4 and 10 with 19 and 123 ine�cient objectives, respect-
ively. The detection and restoration analysis processing
times, except for model 6, are approximately less than

10% of the execution time for ®nding the optimal sol-
ution.

5. An example

In this section, an example is given to demonstrate
the Pareto detection and restoration algorithms devel-

oped to overcome GP ine�ciency with respect to a
model's integer requirements. The mathematical rep-
resentation of this example has the form

Min z � 2n1 � n2 � n3 �27�
Subject to,

x 1 � n1 ÿ p1 � 6:5 �28�

x 2 � n2 ÿ p2 � 7:5 �29�

2x 1 � 3x 2 � n3 ÿ p3 � 7:5 �30�

x 1R10:5 �31�

0:6x 1 � x 2R20:5 �32�

n, pr0 �33�

xr0, and integer �34�

Fig. 3 illustrates the above example diagrammati-

cally. The shaded area OABC represents the feasible

region for the model with three objectives and two

hard constraints. Point F(6.5, 7.5) is the initial GP op-

timum solution. DBEF is the feasible dominating area

of this solution. It contains substantial number of inte-

ger points, few of which are marked in Fig. 3. By

applying branch and bound algorithm, the initial inte-

ger GP optimum solution, point G(7, 8), is obtained.

Applying the detection algorithm, the new achieve-

ment function will have the form;

Max z 0 � p1 � p2 � p3 �35�
Maximisation of z' for the remaining of this section is

subject to the set of goals and constraints as set out in

Eqs. (28)±(34). This will result in the detection of point

H(10, 14) in Fig. 3 which means improvement of

objectives 1, 2 and 3, i.e., all objectives are classi®ed as

Pareto ine�cient.

A Pareto detection status report is given to the de-

cision maker by IGPSYS once the status of each objec-

tive is classi®ed, as shown in Table 4.

. The straight restoration algorithm in the integer

case is similar to the detection process. Maximisation

of deviational variables, as detailed in Eq. (35), is per-

formed. This results in the movement towards a new

position on the Pareto e�cient boundary and ®nally

settling on B(10, 14.5). By performing the integer op-

timisation, the integer Pareto e�cient point, H(10, 14),

is obtained where all objectives are improved.

. The preference based restoration method considers

the decision maker's preferences. The weights in the

original integer GP are used when the maximisation of

Table 3

Performance of integer Pareto detection and restoration analysis tools on some industrial contexts

Model Application Type NOB DTM NIO SRT PRT

1 Set partitioning WGP 6 0.441 4 0.055 0.059

2 MIPLIB WGP 12 0.715 7 0.109 0.109

3 Oil distribution WGP 20 2.914 6 1.703 1.703

4 Diet planning WGP 20 2.582 19 0.330 1.648

5 Capital budget LEX (8) 24 0.386 4 0.054 0.054

6 Transportation LEX (4) 39 0.277 0 0.0 0.0

7 MIPLIB WGP 59 2.527 39 0.328 0.328

8 Education LEX (4) 86 0.604 12 0.221 0.109

9 Basket selection LEX (3) 181 17.967 3 9.230 9.121

10 Petro-Chem-Plants LEX (4) 319 253.574 123 40.219 6.922

The explanation of the column headers are as follows: Type = The type of the GP model under consideration: WGP= Weighted

GP; LEX(n) = Lexicographic GP with n priority levels; NOB=Number of objectives; DTM= Detection time; NIO =Number

of Ine�cient objectives in the initial optimal solution; SRT= Straight restoration time; PRT= Preference based restoration time.
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NWVjs take place. For the example above the maximi-

sation problem will have the form

Max z 0 � 2p1 � p2 � p3 �36�
The weight on objective 1 causes movement towards

and ®nally reaching the integer Pareto e�cient point

H(10, 14). If objective 2 had a greater weight, e.g., the

maximisation problem was of the form

Max z 0 � p1 � 2p2 � p3 �37�
then the Pareto e�cient point I(7, 16) would have been

obtained. Therefore, in the preference based restor-

ation technique the original structure of the integer GP

is maintained, satisfying the decision maker's prefer-

ences.

. The ®nal variant of the restoration technique is

the interactive case where the decision maker has the

option of choosing objectives to be improved during

the restoration process. At each stage the Pareto e�-

ciency status of every objective is reported to the de-

cision maker.

Choosing the interactive restoration technique for

the above example, the decision maker has a choice of

improving any of the 3 Pareto ine�cient objectives. If

the decision maker chooses objective 2 to be improved

then, point I is reached and objectives are reported

Pareto e�cient. If objective 3 is chosen to be

improved, the simplex and branch and bound algor-

ithms will cause movement towards the Pareto e�cient

integer boundary and ®nally residing at point H,

where all objectives are Pareto e�cient. Point J(10, 8)

is obtained when objective 1 is chosen to be improved

®rst. The status of objectives are then reported to the

decision maker, as shown in Table 5, where objectives

2 and 3 are ine�cient. At this point the decision maker

Fig. 3. Detection and restoration of integer pareto e�ciency.

Table 4

Pareto detection status report

Integer Pareto detection report

Objective 1: Ine�cient

Objective 2: Ine�cient

Objective 3: Ine�cient

Table 5

Pareto restoration status report

Integer Pareto restoration report

Integer point: (X1=10, X2=8)

Objective 1: E�cient

Objective 2: Ine�cient

Objective 3: Ine�cient
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can either choose objective 2 or objective 3 to be
improved. In either case, H(10, 14) is the ®nal Pareto

e�cient integer point.

6. Conclusion and discussions

This paper has reported the development of a novel

approach to the design and implementation of unique
specialised integer Pareto e�ciency detection and res-
toration analysis tools to detect and restore Pareto

e�ciency [13].
The algorithm developed in this research enables the

practitioners to model and solve real life integer GP
problems and ®nd the corresponding Pareto e�cient

solutions by using the integer GP analysis tools devel-
oped in Ref. [13]. This can easily be implemented in
other integer optimisers. This research has thus over-

come the criticism and doubt [24] that GP/Integer GP
faces in the possible production of inferior solutions.
A further research would enable the new Pareto e�-

ciency analysis tools to be adopted with new heuristic
search methods such as Tabu search and Genetic
algorithms [3] in order to ®nd Pareto e�cient sol-

utions.
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