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Abstract

This paper claims that a new field of software engineering research and practice is emerging: search-based software engineering. The paper
argues that software engineering is ideal for the application of metaheuristic search techniques, such as genetic algorithms, simulated
annealing and tabu search. Such search-based techniques could provide solutions to the difficult problems of balancing competing (and
some times inconsistent) constraints and may suggest ways of finding acceptable solutions in situations where perfect solutions are either
theoretically impossible or practically infeasible.

In order to develop the field of search-based software engineering, a reformulation of classic software engineering problems as search
problems is required. The paper briefly sets out key ingredients for successful reformulation and evaluation criteria for search-based software

engineering. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Software engineers often face problems associated with
the balancing of competing constraints, trade-offs between
concerns and requirement imprecision. Perfect solutions are
often either impossible or impractical and the nature of the
problems often makes the definition of analytical algorithms
problematic.

Like other engineering disciplines, software engineering
is typically concerned with near optimal solutions or those
which fall within a specified acceptable tolerance. It is
precisely these factors which make robust metaheuristic
search-based optimisation techniques readily applicable.

Metaheuristic algorithms, such as genetic algorithms
(GA) [17], simulated annealing [37] and tabu search [16]
have been applied successfully to a number of engineering
problems. For example, a literature survey of genetic algo-
rithms reveals applications to, among others:

mechanical engineering [24,33]

chemical engineering [8,22]

medical and biomedical engineering [29,32,40]
civil engineering [1,6,14,19]

electronic engineering [5,11,25]
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GA research and researchers have even received interest
from observers in the field of social science. Though GA
practitioners may not agree with the findings of sociologists
[18], it is an indication of the wide appreciation of the
significance of these search-based technologies that they
should have penetrated the collective consciousness of
even ‘non-technical’ disciplines such as social science.

However, the discipline of software engineering appears
to be unique with regard to the application of genetic algo-
rithms (and similar search-based, metaheuristic optimisa-
tion techniques); metaheuristic algorithms have received
comparatively little attention from software engineers in
comparison with that which they have received from
researchers and practitioners in the more established fields
of engineering.

A literature search on ‘software engineering’ and ‘genetic
algorithms’ reveals work within the areas of testing
[20,21,36,28,38,39] and cost estimation [12,13], but few
others. Work has also taken place on automatic program-
ming using genetic programming [23] and parallelisation
[31,44], which could be thought of specific topics within
coding, which in turn, could be considered to be a part of
software engineering. Even with the inclusion of this work
on coding, the application of search-based techniques to
problems in software engineering has been, hitherto, some-
what patchy. The thesis underpinning the present paper is
that search-based metaheuristic optimisation techniques are
highly applicable to software engineering and that their
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investigation and application to software engineering is long
overdue. It is time for software engineering to catch up with
its more mature counterparts in traditional fields of
engineering.

Software engineering problems are often typified
[4,3,10,27,26,30,35] by the observations paraphrased
below:

There is usually a need to balance competing constraints.
Occasionally there is a need to cope with inconsistency.
There are often many potential solutions.

There is typically no perfect answer... but good ones can
be recognised.

There are sometimes no precise rules for computing the
best solution.

These properties of software engineering are also found
to be in other engineering disciplines and they are precisely
the attributes which make the application of search-based
techniques so attractive. In order to apply metaheuristic
search-based techniques to software engineering, the
problems software engineers face must be reformulated as
search problems. In Section 2, the paper briefly sets out the
key ingredients for such a reformulation. Section 3 provides
some criteria against which to judge the success (or other-
wise) of an application of search-based techniques to a soft-
ware engineering problem. This paper is essentially a
manifesto for search-based software engineering. Section
4 sets out some research goals for search-based software
engineering, while Section 5 concludes with a call for
more work in this area.

2. Reformulating software engineering as a search
problem

The principal intention of this section is to demonstrate
how conceptually simple is the reformulation of software
engineering to search-based software engineering. It is
hoped that the reader is convinced that, at least in principal,
it will be possible to apply metaheuristic search to a large
body of software engineering problems, where natural
representations, fitness functions and operators suggest
themselves.

In order to reformulate software engineering as a search
problem, it will be necessary to define:

e a representation of the problem which is amenable to
symbolic manipulation,

e afitness function (defined in terms of this representation)
and

e a set of manipulation operators.

In addition, the perception of the problem itself may need
to shift, in order to recast it as a search-based problem. For

example, in the case of testing, the problem becomes one of
searching for test cases, which satisfy some test-adequacy
criterion.

These issues are covered in far more detail in the general
literature on metaheuristic search [17,41,43]. They are only
mentioned here to demonstrate that the reformulation
suggested and consequent development of search-based
software engineering is conceptually feasible.

2.1. Representation

The representation of a candidate solution is critical to
shaping the nature of the search problem. Representations,
which are frequently used in existing applications for
problem parameters are floating point numbers and binary
code. In the latter case, grey codes are generally preferred to
‘pure binary’ numbers [42], since successor decimals (for
instance 7 and 8) are not near neighbours in a pure binary
code (4 mutations are required to mutate the four differing
digits, rather than one). Grey coding avoids this problem.

2.2. Fitness

The fitness function is the characterisation of what is
considered to be a good solution. In measurement theoreti-
cal terms [34], the fitness function need merely impose an
ordinal scale of measurement upon the individual solutions
itis applied to. That is, it will generally be sufficient to know
which of two candidate solutions is the better according to
the properties (or set of properties) to be measured. The
fitness function imposes a fitness landscape, the character-
istics of which will both determine which search techniques
are most applicable and will shed light on the nature of the
problem and its candidate solutions in terms of their
perceived fitness. Fitness landscapes should not be too
flat, nor should they have sharp maxima that can easily be
missed. Often the fitness function, which first occurs,
requires tuning to avoid these problems and to help guide
the search towards good solutions.

In some cases it may be hard to define a fitness function,
because the artefact to be optimised may have aesthetic
qualities which make the determination of an ordinal scale
metric difficult. However, in such situations a search-based
approach may still be applicable, as will be argued in
Section 3.3.

2.3. Operators

Different search techniques use different operators. As a
minimum requirement, it will be necessary to mutate an
individual representation of a candidate solution to produce
a representation of a different candidate solution. Clearly,
this is a very minimal requirement. It will make it possible
to apply hill climbing approaches and certain forms of
evolutionary computation. If it is also possible to determine
the set of ‘near neighbours’ of a candidate solution (in terms
of its representation) then simulated annealing and tabu
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search can be applied. If instead (or in addition), it is possi-
ble to sensibly cross-over two individuals (to produce a
‘child” which retain characteristics of both ‘parents’) then
genetic algorithms will be applicable.

This section has glossed over a lot of issues which
underly the choice of representation, fitness function and
operators. The intention was not to suggest that these issues
are unimportant. On the contrary, such issues are likely to
form the large body of research work to be undertaken to
successfully move from speculation to application.
However, this work will be highly domain dependent and
so cannot be adequately covered in this overview paper.

3. Evaluation criteria for search-based software
engineering

This section sets out some guidelines against which an
attempt to apply metaheuristics to software engineering can
be validated. The base line criteria suggest essential goals
for any search-based approach. For a more thorough valida-
tion, Section 3.2 suggests ways in which search-based soft-
ware engineering might be combined with classical
software engineering and the ways in which these combined
approaches might be validated.

3.1. Base line validity

To achieve a measure of base line acceptability, a meta-
heuristic technique must out-perform a purely random
search. That is, metaheuristics should find better solutions
or find them with less computational effort than random
search. Metaheuristic techniques should be able to find
values, which compare well with known solutions and
should tend to produce fitness values, which are considered
acceptable for a reasonable subclass of elements of the
problem space. Of course, these latter two criteria are some-
what vague and depend upon the application domain. This
section merely sets out some guidelines.

3.1.1. Random search

Any search-based technique must perform better than a
purely random search in order to qualify as worthy of
consideration as a successful application of search-based
software engineering. Random search therefore provides a
lowest benchmark for the application of metaheuristic
search. Where a metaheuristic search does not consistently
outperform random search it must be rejected. However,
where this occurs, it may well indicate a poor choice of
search technique (for example hill climbing in a multi-
modal ‘rugged’ fitness landscape), and therefore may
invalidate merely the choice of technique or its implemen-
tation, rather than the whole notion of applying metaheur-
istics to the software engineering problem under
consideration.

3.1.2. Discovery of known solutions

Even in situations where there is no known general algo-
rithm for solving a problem, there may be known examples,
constructed by hand, where individual solutions are known
for particular elements of the problem domain. One natural
approach to validation is, therefore, to establish whether the
metaheuristic search is able to find solutions that compare
well with these known individual solutions.

Of course, ‘compare well’ requires some elucidation. If
the known solutions are provided for a small set of simple
problems, then metaheuristic search should perform as well
as or better. However, where hand constructed solutions are
used to illustrate ‘difficult problems’ for which solutions are
hard to define, the phrase ‘compare well’ might be inter-
preted less stringently.

3.1.3. Discovery of desirable solutions

Since the fitness function is a measure of ‘goodness’ of
the solutions, another natural approach to validation consists
of seeing just how much the fitness increases and gathering
empirical data to provide evidence of the kinds of solution
which may be obtained for typical problem elements.

3.1.4. Efficiency

In many (but by no means all) cases, a search-based
approach may be slower than an existing analytical
approach, because the search will involve repeated trials
of the fitness function to evaluate candidate solutions.
However, so long as the search-based technique can produce
better solutions, there will be many software engineering
applications where the search-based approach is more
appropriate because quality overrides speed.

Where there exists a technique for producing solutions
which is always applicable and which produces consistently
high-quality solutions, a search based approach will clearly
still be preferable if it produces solutions of equal or better
quality more speedily.

3.2. Validation with respect to existing analytical
techniques

In this section, the phrase ‘analytical techniques’ is used
to describe any non-search-based algorithm for constructing
solutions to the software engineering problem in question.

Where there exist analytic techniques for constructing
reasonable solutions, search-based techniques will still be
applicable. For instance, where analytical techniques are
known to favour certain forms of solution or to have biases,
which affect their behaviour, a search-based technique may
find solutions, which cannot be discovered by the analytical
technique. Where analytical techniques are applicable only
to a subset of the problem space, search techniques may
provide a mechanism for ‘filling in the gaps’. Where analy-
tical techniques are not consistently good at constructing
solutions, search-based techniques may be used as a ‘second
guess’. Finally, where analytic techniques exist, but are
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known to produce sub-optimal solutions, these existing
techniques may be used to seed the metaheuristic search
with an initial population of reasonable solutions. It would
then be hoped that the metaheuristic search would improve
upon these initial seeds.

For each of these situations, analytic techniques produce
only a part of the overall answer and metaheuristic search
can be used to augment the existing approach.

3.2.1. Avoiding bias in analytical techniques

Where metaheuristic search is used to address bias in
existing analytic solutions, the evaluation criteria will
measure the novelty of solutions relative to those produced
(and their relative fitness) compared to those produced by
the analytic approaches. In such situations, even where the
metaheuristic technique does not outperform the analytical
techniques on fitness, it may be validated in terms of the
additional insight gained from considering solutions
previously thought atypical or non-standard.

3.2.2. Filling problem space gaps left by analytical
solutions

Where existing analytic techniques are not applicable to
the entire problem space, the use of metaheuristics may be
partially validated, simply by showing that they ‘fill in the
gaps’. However, a stronger validation would clearly involve
demonstrating comparable (or improved) fitness of meta-
heuristic solutions relative to those produced by analytic
algorithms. However, where problem subspaces uncovered
by analytic algorithms represent ‘harder’ problems to solve
than those which are covered, this criterion may be too
stringent. In this situation, validation may simply show
that the metaheuristic technique is capable of producing
better solutions for previously uncovered areas of the
problem space than can be found with random search alone.

3.2.3. Optimisation of partial or suboptimal analytical
solutions

Where metaheuristic techniques are used to provide
second guesses or where such algorithms are seeded by an
initial population of results from an existing analytic algo-
rithm, the metaheuristic technique should clearly be shown
to provide improvement (i.e. increased fitness).

A simple-minded hybrid approach could simply try both
the existing approach and a search-based approach and
select the best solution. Fortunately, any such combined
analytical and metaheuristic technique need only produce
better results than the pure analytical approach on ‘a few’
occasions in order to be considered worth while. The inter-
pretation of ‘a few’ will depend upon the domain of appli-
cation.

3.2.4. Choice of technique and fitness function

The general application of metaheuristic techniques to
software engineering presents a large number of choices.
The representation, fitness functions, operators and search

technique to apply must all be carefully considered. For
some applications, a simple hill-climbing approach may
produce either good or adequate results. For other problems,
the multi-modal nature of the fitness landscape may demand
a more robust technique. In general, it will be wise to experi-
ment with a variety of techniques, fitness functions and
operators. Fortunately, the highly generic nature of search-
based techniques supports just this form of experimentation.

Finally, for some applications, the fitness function itself
may require some form of validation. Where there exist
well-understood and widely accepted metrics for assessing
elements of the solution space, the fitness function will not
require validation; it can simply be appropriated from the
software measurement literature. However, in the software
measurement literature there are few uncontroversial
metrics [34,15]. Where there is disagreement about how
to measure candidate solutions, the fitness function used
and the landscape it imposes on the solution space will
require validation. In all cases, the algorithmic complexity
of the computation of the fitness function may be an issue. In
some application areas, a computationally demanding
fitness evaluation may render the approach impractical,
even where searches are often highly productive with
respect to the solutions found.

3.3. Psychological considerations

Software engineering involves aesthetic as well as tech-
nical qualities. It may be found, as with more aesthetic
applications of metaheuristic search [7,9,2], that a non-auto-
matic, human-based fitness evaluation is required. In such
cases, the psychological implications of repeated trials on
the same human subject (and the judgment biases that this
may induce) should be considered.

There is also a ‘human dimension’ to search-based soft-
ware engineering research where the solution produced
requires an explanation. In most cases, the fitness function
should be well-understood, so that the solutions can be
explained purely in terms of their superior fitness. However,
it may also be the case that the metaheuristic search
approach is applied to give insight into the fitness function
itself. Where a metric which captures the property (or
properties) of interest is hard to define, the search may be
used to explore the fitness landscapes created by several
candidate metrics/fitness functions.

4. Future work

The authors expect to see a dramatic development of the
field of search-based software engineering. The special
issue of Information and Software Technology, of which
this paper forms a part, represents the embryonic state of
a rapidly growing sub-area in software engineering
research. This section sets out some goals and milestones
for the emergent search-based software engineering
research community.
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It seems likely that within five years, metaheuristic search
will have been applied to, at least, the following areas of
software engineering. (To the authors’ knowledge, work is
already in progress in several of these areas.)

1. Requirements prioritisation

2. Finding good designs

3. Test data selection

4. Reverse and re-engineering through transformation and

re-factoring

. Development of software measurement

6. User-based fitness evaluation for aesthetic aspects of
software engineering

W

In addition, it is hoped that the field of search-based soft-
ware engineering will provide:

1. Comparative studies and evaluations of different techni-
ques as applied to software engineering problems. In an
embryonic field of research, it is natural that many results
will represent isolated advances in related but slightly
different directions. As the field develops and matures,
it is reasonable to hope for and expect that comparative
studies and surveys will start to appear. The relative
number of such studies might be thought of as a crude
first approximation to an assessment of the maturity of
search-based software engineering.

2. Theoretical development, in order to answer questions
such as ‘which technique/operators are likely to be fruit-
ful for software engineering problem X?’. Comparative
studies will help to answer questions like ‘which techni-
que works best for problem X?°. In addition, it is to be
hoped that development of search-based software engi-
neering will be deep as well as broad; that theoretical
studies will emerge to complement the empirical work
in the field.

3. Analyses of fitness landscapes for software engineering
problems. This may yield deeper insight into the nature
of the problems themselves.

4. Tailoring of fitness functions. Examination of the
behaviours of metaheuristic search, may suggest modifi-
cations to the fitness landscape in order to improve the
success of the search. Such modifications may produce
useful feedback to the software measurement commu-
nity. In any case, the wide-spread development of
search-based software engineering is likely to inform
and be informed by work on software measurement,
since there is a clear and strong connection between
software metrics and fitness evaluation.

5. Deeper appreciation of metaheuristics within the wider
software engineering community. Currently, many soft-
ware engineers are only tangentially familiar with meta-
heuristic search. It is hoped that the reformulation of
many software engineering problems as search-based
problems will widen awareness of metaheuristic search
within the wider software engineering community.

6. Wider application of search-based software engineering
in practice. Naturally, it is hoped that the next five years
will witness a large increase in the application of meta-
heuristic search, building on the existing successes with
test-data generation.

7. Provision of surprising solutions. One of the novel
features which search-based software engineering adds
to software engineering is the way in which the solutions
found are occasionally surprising and not previously
considered by analytic solutions. The metaheuristic
search simply aims to optimise the value of the fitness
function. Such a search-based approach is therefore
entirely declarative; it is formulated in terms of what is
required rather than how it is to be constructed. In other
applications of metaheuristic search, it has been observed
that this declarative nature of the approach leads to unex-
pected solutions which tend to yield additional insight
into the formulation of the problem.

5. Conclusion

Software engineering problems are, by their very nature,
ideal for the application of metaheuristic search techniques.
This paper has argued that a new field of software engineer-
ing research, search-based software engineering is
emerging. This sub-area of software engineering seeks to
reformulate software engineering problems as search-based
problems, facilitating the application of metaheuristic
search-based techniques such as genetic algorithms, simu-
lated annealing and tabu search.

The paper sets out key ingredients for this reformulation
and provides criteria against which the success of individual
approaches and the development of the field of research can
be measured. The authors believe that the development of
search-based software engineering is long overdue. The aim
of this paper (and part of the motivation for this special
issue) is to encourage a ‘research gold rush’. Many exciting
and challenging problems in software engineering lie within
reach of metaheuristic search.
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