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Abstract— In cryptographic applications, super long integer 
operations are often used. However, cryptographic algorithms 
generally run on a computer with a single-core CPU, and the 
related computing process is a type of serial execution. In this 
paper, we investigate how to parallelize the operations of super 
long integers in multi-core computer environment. The 
significance of this study lies in that along with the promotion 
of multi-core computing devices, and the enhancement of 
multi-core computing ability, we need to make the basic 
arithmetic of super long integers run in paralleling, which 
means blocking super long integers, running all data blocks on 
multi-core threads respectively, converting original serial 
execution into multi-core parallel computation, and storing 
multi-thread results after formatting them. According to 
experiments we have observed: if scheduling thread time is 
longer than computation, parallel algorithms execute faster; on 
the contrary, serial algorithms are better. On the whole, 
parallel algorithms can utilize the computing ability of multi-
core hardware more efficiently.

Keywords - super long integers, multi-core, parallel 
computation, algorithms, multi-thread 

I. INTRODUCTION

In public key cryptosystems [1] and digital signature 
schemes [2], for example, RSA [3], ECC [4], and 
REESSE1+ [5, 6], super long integers arithmetic is a basic 
requirement. 

There is not a uniform definition of super long integers. 
In general, super long integers are those integers whose 
lengths are larger than 64 bits, or scopes exceed what is 
allowed by a programming language compiler. 

The basic operations discussed in this paper include 
addition, subtraction, multiplication, division, and 
conversion of number systems. We focus on addition and 
multiplication, for subtraction and division can be 
implemented by addition, multiplication and shift [7]. At the 
end of this paper, we will introduce conversion of number 
systems briefly. 

The realization of parallel computing uses the ability of 
multi-core computers, decomposes the existing super long 
integers arithmetic process, and the decomposition uses 
segmented or fixed interval number of bits, uses multi-
thread mechanism [8], allocates the decomposed data to 
corresponding thread, reduces the running time of serial 

operations, so that make full use of multi-core processing 
ability. 

Our algorithms are applicable to any length of super 
long integers arithmetic, and have no minimum length limit. 
(Because of the programming language, we need to limit the 
maximum output length, the maximum bit we tested now is 
1500.)  

The following shows the meaning of symbols in these 
algorithms. 

A denotes a super long integer of m bits, namely 
a1 …am; B denotes a super long integer of n bits, namely 
b1 …bn; Ai denotes i-th block data of super long integer A; N
denotes the number of processor(s) cores; Tx denotes x-th
execution thread; k = ┌n / N┐ means rounding up the result 
of n/N, and store in the k; l = ┌m / N┐ means rounding up 
the result of m / N, and store in the l; len denotes the length 
of the super long integer, namely the number of bits; br
denotes current borrow value; cr denotes current carry value. 
Throughout the paper, assume that A >= B and m >= n. 

II. REPRESENTATION OF SUPER LONG INTEGERS

A. Samples 
In cryptography algorithms [9,10,11], super long 

integers cannot be represented directly by data types
allowed by program language compiler, for example, 21024.
And computing the product of two integers 
[12345678987654321]10, [456987123654789321]10 is 
difficult. Moreover, calculating the module of the product 
which is the power of two positive numbers, like 1024100 *
2562048 % 21024, is difficult. So we propose a new method to 
achieve the goal directly under the existing computer data 
type. 

B. Data Storage and Representation 
In the paper, we denote structure of super long integers 

by C Program Language. 
For the convenience of maintenance and expansion, we 

predefine variables as follow. 
typedef unsigned int un_int;
typedef unsigned long un_long;
Identifier HBigInt represents variable defined by super 

long integer structure: 
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typedef struct { 
long length;       
int sign;               
un_int *pBigInt;  

} HBigInt; 
length indicates the size of the assigned storage space, 

pBigInt points to array which keep the data of a super long 
integer, sign is used to distinguish between positive or 
negative: 1 denotes non-negative; -1 denotes negative; 0 is 
initialized, not been assigned yet. 

Especially, each "bit" of super long integers is stored in 
index-bit of an integer array. 
We store the super long integer number following Big-
Endian, which means store the most significant bit in the 
smallest address. This way facilitates programming dynamic 
expansion and reduces the length of that. 

III. DESIGN OF PARALLEL ALGORITHMS

A. Description of Addition Parallel Algorithm 
The main idea of the addition parallel algorithm is to 

divide super long integers into pieces, then handles the 
addition of corresponding block to a new open thread, as the 
thread is allocated to one processor of multi-core processor 
by operating system, These multi date blocks compute 
simultaneously, saving overall computing time ultimately. 
Input: A = a1 …am, B = b1 …bn , Where m, n>1
Output: C 
S1: Get N from host. 
S2: If N < n , then exit. 
S3: B will be divided into N blocks, each block k bits, that 

means Bi = bibi+1…bi*k-1, and Ai = aiai+1…ai*k-1, the  
remaining bits non-blocking. 

S4: Multithreads T run data block, that Tx: Ci = Bi + Ai. 
S5: Make that cm-n...cm=am-n…am, then pick up carry from the        

low to high so as to merge the results until all threads  
finish computation.

S6: If the most significant bit carry, namely cm-1 is  
not less than the decimal value, then increase the length 
value of the super long integer. 

S7: Format the result by cm = cm-1 / RADIX
cm-1 = cm-1 % RADIX final result is C and len = len + 1;  
Otherwise the value of len is unchanged. 
RADIX denotes custom radix. 

B. Description of Subtraction Parallel Algorithm 
It should be noted that, due to the result of subtraction 

may be negative, we need to convert the negative bit. In 
order to reduce this kind of process, we compare two 
unsigned super long integers before operating, and determine 
the final results of the positive or negative, then get larger as 
the minuend. 
Input: A = a1 …am, B = b1 …bn , Where m, n>1
Output: C 
S1: Get N from host. 

S2: If N < n, then exit. 
S3: B will be divided into N blocks, each k bits, namely  

Bi = bibi+1…bi*k-1; and Ai = aiai+1…ai*k-1, the remaining 
bits non-blocking. 

S4: Multithreads T run data block, that Tx: Ci = Ai - Bi. 
S5: Make that cm-n...cm = am-n…am, then handle borrow from  

the low to high in order to merge the results. 
S6: If the most significant bit borrow, when the result of  

cm-1 = cm-1 - br is zero, reduce the bits of the result. 
S7: The ultimate difference is C, len = len - 1;  

Otherwise, the value of len is unchange. 

C. Description of Multiplication Parallel Algorithm 
The sign of the result of multiplication is not affected 

by the numerical size of two operands but its initial sign, so 
we can know the sign of the result before the operation. 
Input: A = a1 …am, B = b1 …bn , Where m, n>1
Output: C 
S1: Get N from host. 
S2: If N < n, then exit. 
S3: Divide B into N blocks, each block of k bits, and divide A

into N blocks, each block of l bits, namely 
Bi = bibi+1…bi*k-1 Aj = ajaj+1…aj*l-1.

S4: Multithreads T run data block, that Tx: Ci+j = Aj * Bi. 
S5: Until all threads finish computing, pick up carry from  

the low to high in order to merge the results. 
S6: When the most significant bit of a carry, namely cm*n-1 is  

not less than the decimal value, then increase the length 
value of the super long integer. 

S7: Format the result by cm+n-1 = cm+n-1 % RADIX
cm+n = cm+n-1 / RADIX final result is C and len = m + n;
Otherwise len = m + n - 1. 

D. Description of Division Parallel Algorithm 
Due to the special nature of the division of super long 

integers (discard the fractional part), we use multiplication 
and shift to finish the division. To ensure the feasibility of 
parallel algorithms, we ignore the loss of precision 
generated by the displacement. 

Since turning divisor into multiplier is not the focus of 
this paper, it is the key that makes the division in parallel, so 
we will give an example of the transformation processes in 
the concluding remarks. 

IV. EXAMPLES

Because of the super long integer data block division, 
the segmented data blocks will be handled by independent 
running threads, and the results of all the threads are 
centralized treated finally. 

A. Choose Radix 
Decimal storage and calculation cannot meet the ability 

of the 32-bit PC, for 32-bit machine, the computing ability in 
a clock cycle is 216 size level (taking into account the value 
of the multiplication operation number contain two numbers, 
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(216 - 1) * (216 - 1) will not cause the overflow of the data 
results), thus choose 216 as radix. 

B. Resolve Particle 
Due to the schedule of the operating system, it will cost 

time to generate threads or wait for all child threads ending, 
and such scheduling time shows a sharp growth in critical 
value with the increase of the number of child threads, the 
critical value of the sub-thread 1.5 times the number of CPU 
cores. Therefore, the more detailed division of the data does
not mean better, but the more adaptation the better and the 
principle is that the current number of threads are equal to 
the number of CPU cores. The number of cores can be 
fetched when the software is running, thence decomposition 
of data is allocated dynamically. 

C. Parallel Program 
According to the choice of radix and particle size, 

decompose the integration of super long integer arithmetic, 
there are two alternative ways. One is dividing segment 
corresponds to a thread for processing, the size of the 
segment depends on the actual number of threads (i.e. the 
number of CPU cores [12]); the other is the interval bit 
corresponds to a thread to process; the size of the interval bit 
is the number of threads (i.e. the number of CPU cores). The 
former puts a number of consecutive bits into a block, the 
later disperses each bits into mesh. Both of them are 
basically the same in the load balance, for using the average 
approach [13]. The former has one more step than 
calculation, calculating size of "chunks", while the latter has 
advantages than former in accessing memory continuity. 

D. Examples of Addition Parallel Computing 
Calculate [123456789 + 345879] (dual-core for 

example):
123456789 is decomposed into 123 456 789, 123 is "extra" 
high, is not involved in operations, directly assigned to the 
provisional results; and 345879 are decomposed into 345 
and 879 

Thread 1 computing: 
4    5 6

+ 3    4    5
7    9    11

Thread 2 computing: 
7 8 9

+ 8 7 9
15 15 18

Temporary results, namely 
1   2   3 7  9  11  15  15  18    

Then traverse from low to high, and handle the bit 
which has carry data (carrying process is abbreviated), 
namely 

1   2   3 8 0 2 6 6 8
Theoretically save nearly half computing time, because 

the thread 1 and 2 are performed simultaneously. By 
extension, when using a 4-core, 8-core, computation time 
will be the original serial 1/4 and 1/8. 

Subtraction is similar to addition, the only difference is 
that intermediate results generated by addition may be 
greater than the radix (for example greater than 10 when 
radix is decimal), and the subtraction may produce a negative. 
Calculate [123456789 - 345879], intermediate result is: 

1   2   3 1 1 1 -1 1 0
Then traverse from low to high, and handle the bit 

which has borrow data (borrowing process is abbreviated), 
namely 

1   2   3 1 1 0 9 1 0

E. Examples of Multiplication Parallel Computing 
Calculate [189 * 34] (dual-core example): 
189 is decomposed into 1, 8 and 9, while 34 is 

decomposed into 3 and 4 
Thread 1 computing: 

1 8 9
* 4

7 5 6
Thread 2 computing: 

1 8 9
* 3

5 6 7
Temporary results, namely 

7 5 6
+ 5 6 7

5 13 12 6
carry bit 6 4 2 6

Finally, traverse from the low to the high, and handle 
the bit which has carry data. But there is a difference 
compared with addition operations, the generation of 
intermediate results have dependency relationship, since the 
overlap of portion of the data bits (columns 2 and 3 in thread 
1 corresponding to columns 1 and 2 in thread 2 respectively), 
we need to do some exclusive treatment during the 
cumulative, you can also use an intermediate variable to 
circumvent this exclusive phenomenon. So this operation is 
also saving half time of computing the bits of theoretical. By 
extension, when using a 4-core, 8-core, computation time 
will be 1/4 and 1/8 of the original serial. 

In summary, the parallel algorithms are feasible and 
practical. 

V. EFFICIENCY ANALYSIS

A. Experimental Data 
The "bits" column in the table below shows the number 

of bits involved in computing the super long integers. 
For example, [12345678909876543210] represents the 

"bits" of 20-bit integer.  
The main experimental source code can reference the 

appendix. 

TABLE I. THE EXECUTION TIME OF ADDITION

bits/(ms) Serial Dual-Core Quad-Core
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70 0.003352 0.360660 0.375574

150 0.004531 0.378718 0.383751

300 0.008095 0.382632 0.391063

600 0.015419 0.395561 0.397107

1500 0.038750 0.413783 0.406129

TABLE II. THE EXECUTION TIME OF MULTIPLICATION

bits/(ms) Serial Dual-Core Quad-Core

70 0.123479 0.470730 0.495437

150 1.285638 0.992584 0.913955

300 4.692521 3.376838 2.075612

600 13.785123 5.938657 4.156538

1500 30.618759 11.798465 9.369179

� Dual-Core PC configuration: Windows XP + Intel 
T2250 1.73GH + 1GB 

� Quad-Core PC configuration: Windows XP + Intel
i3-3240 3.40GH + 2GB 

B. Result Analysis 
From the time of parallel and serial computation above, 

we can see that, with the increasing of bits of super long 
integer, the time of serial execution grow linearly. However, 
The time of parallel execution is less than that of serial 
execution, while The time of parallel execution is less than 
the increment of linear growth. In addition for example, 
compared with the serial execution approximately 100-fold 
in 70 bits parallel execution reduced to 10-fold in 1500 bits;
then take multiplication for example, compared with the 
serial execution approximately 4 times in 70 bits parallel 
execution reduced to 1/3 times in 1500 bits. 

Analysis  time-consuming of algorithms: 
The execution time of "one-bit" calculation is A, the 

cycle execution time is C, the rest definition of variables and 
formatting functions are essentially changeless, so the total 
time can be defined as D, then the "n-bit" super long integer 
serial execution time can be expressed as:  

Tserial = (A + C) * n + D. 
Due to "n-bit" will be decomposed, such formal 

expression is incomplete in the parallel environment, 
assume that the number of cores is N, then the actual 
parallel operation time is: Tparallel = (A + C) * n / N + D. If 
the expression is established, then why the actual time of 
addition implementation is even longer than the parallel 
computing? The reason is that ignoring a new thread 
generated before the parallel computing, and the time that 
thread is waiting to be released. 

Considering the precise millisecond level 
(Microsecond, Nanosecond), this neglect is fatal. Because 
the cost of time that an operating system schedules a thread 
is three tenths of milliseconds or so, of course, not increase 
in linear growth with the increase of thread-number. In

practice it shows that when the number of threads does not 
exceed the threshold, the scheduling time of the operating 
system is basically unchanged, maintaining the level of 
three tenths of milliseconds or so, when the scheduled time 
exceeds the threshold, it will increase to milliseconds level. 
Therefore, we need to modify the expression of parallel 
algorithms for the computation time: Tserial = (A + C) * n + 
D + K. Where K is the time that operating system 
scheduling thread required. 

Due to different hardware environment (affected by 
CPU clock speed, register read and write rates, Cache size, 
etc.), the required time of "one-bit" operation is different, we 
use a uniform symbol A, and similarly, represent the cycle 
time by C.

Compare the required time of Tserial and Tparallel. 
Let S =  Tparallel - Tserial  

=  [(A + C) * n](1 / N - 1) + K  
=  K - [(A + C) * n ](1 – 1 / N) 

As seen from the comparison result, with the increasing
of N value (i.e. CPU cores), the result approximates K - [( A 
+ C) * n] (N is large enough, for example, N = 8), that is the 
difference value between the operating system scheduler 
threads require and actual computing time cost. In other 
words: If the time of scheduling threads is longer than the 
computing time, the implementation of parallel algorithms 
will be faster; on the contrary, the executing time of the 
serial algorithms is faster. 

From the above data conversion, the complexity of 
serial computation is: 

O((A + C) * n + D) = O((A + C) * n) + O(D) ≈ O(n). 
Since A+C is a constant, D is also a constant, so the 

time complexity of serial computing is about O(n).
From the above data conversion, the complexity of 

muti-core parallel computation is O((A + C) * n / N + D + K)
= O((A + C) * n / N) + O(D + K) ≈ O(n / N). 

Since A+C is a constant, D+K is also a constant, so the 
time complexity of parallel computing is about O(n / N). 

Note: The time given in conclusions is the execution 
time of the costing by serial computing. 

VI. CONCLUSIONS

With the enhanced hardware integration of PC and 
mobile clients, parallel algorithms can make best use of 
hardware resources constantly, and get excellent quality and 
reasonable price. As the time  of addition showed, parallel 
algorithms cannot be used blindly, in super long integers 
(currently only authenticate to 1500 integer) bits operation, 
the serial algorithms still has a great advantage, even with
the increase of bits gap continued narrow. And this 
advantage will be enhanced with the promotion of hardware 
capabilities, because the promotion of hardware capabilities 
is shortened. 

As for the shift operation, it will need to convert super 
long integer between decimal and binary, so we give brief 
introduction of radix conversion. In this paper, 216 is chosen 
as the "one-bit" radix, in the radix conversion directly from 
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"one-bit" store number corresponding to the sixteen bits 
binary number, for example: 
[8589869055]10  = [1 65534 65535]2

16

= [1 1111,1111,1111,1110 1111, 1111, 1111, 1111]2
On the other hand the process of binary to decimal is as 
follows: 
[ 1 1111,1111,1111,1110 1111,1111,1111,1111 ]2  
= [1 65534 65535] 2

16 = [8589869055]10
It can be seen that the storage number "every-bit" is 

unrelated to each other when doing a conversion, in line with 
data decomposition characteristics of independence, so 
parallel algorithms described in this article is also supported 
by the conversion operations. 

Finally, introduce the process of division by 
multiplication and shift simply. Assume a is the dividend, b
is the divisor, and b > 1. We know that a / b= (1 / b) * a,
since b > 1, so 1 / b is less than 1, and can only handle 
integer CPU general purpose registers, so we must find a 
way to 1 / b increased to 2 ^ e times, is left e bits position, 
and the results obtained e bits in the right place to get 
business, namely: a / b = ((2 ^ e / b) * a) / 2 ^ e , where e is 
an integer greater than 0, specifically determined by the b.

For example: a = Dividend, b = 0xAAAAAAAB; (i.e., 
b = (2 ^ 33 + 1) / 3) r = (a * b) >> 33, r is the quotient of a/3;
similarly, b = 0x24924925; r = (a * b) >> 32, r is the 
quotient of a/7. 
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