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Abstract

We consider an evolution model, in which the mutation rates depend on the
structure of population: the mutation rates from lower populated sequences to
higher populated sequences are reduced. We have applied the Hamilton-Jacobi
equation method to solve the model and calculate the mean fitness. We have
found that the modulated mutation rates, directed to increase the mean fitness.
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1. Introduction

Ideas and methods of statistical physics have been applied to study various
interesting interdisciplinary research problems, such as literary authorship dis-
putes [1, 2, 3], financial fluctuations [4, 5, 6, 7, 8, 9], and biological evolution
[10, 11, 12, 13, 14]. In this paper, we will address an interesting problem in
molecular models of biological evolution.

In recent decades, there was much progress in the study of asexual biological
evolution models [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]
with fixed fitness landscape and constant mutation rates. In such models, a
genome with L genes is represented by a chain of L spins (alleles) and every
spin takes the values ±1, similar to the Ising model [27]. There are 2L different
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types of sequences Si ≡ (σ
(i)
1 , σ

(i)
2 , . . . , σ

(i)
L ), 0 ≤ i ≤ 2L − 1 with corresponding

probabilities pi and the fitness ri. The Hamming distance between Si and Sj is
given by

dij ≡ (L−

L
∑

k=1

s
(k)
i s

(k)
j )/2.

Without the loss of generality, we can choose the sequence with the largest ri
value as a reference sequence and denote it as S0 with all spin components being
+1. During a short period of time dt, any allele can change the type (from +1
to -1 or from -1 to +1) with the probability µdt.

There are two famous molecular models of biological evolution. One is the
Eigen model [10, 14, 20, 22] with coupled mutation-selection scheme, in which
mutation and reproduction appear in the same term in the equations for pi;
another is the Crow-Kimura model [11, 17, 21] with parallel mutation-selection
scheme, in which the equations for pi appear in different terms. The Crow-
Kimura model has been mapped into the quantum statistical model of the Ising
model in the transverse magnetic field [17]; in such a mapping, the genome
length L is corresponding to to the lattice size of the lattice spin model [27]. A
lattice model may have a phase transition when the lattice size approaches to
infinite. To get different phases for evolutionary dynamics, we need rather large
genome length [21] and population size.

The calculated quantities in biological evolution models include the mean
fitness [17, 19, 22], the steady state distribution [23, 24, 28], and population
dynamics [25, 29]. These solutions supported the idea that there is something
more than a ”climbing of fitness hills” [30] (the population moves in the genome
space to the genome with the maximal fitness) and there are essentially collective
(emergent) phenomena in evolution, including the error threshold [10] (the phase
transition from the phase where the majority of population is around the high
peak to the phase with uniform distribution of population) and selection via the
flatness phenomenon [13] (the group of sequences with the equal fitness, the flat
peak, can attract more population than single sequence with a higher fitness).
The refereed phenomena have a collective behavior, while ”hill climbing” can be
organized simply, without any collective interaction. The collective phenomenon
is a result of the statistical physics aspects of evolution models, as has been
realized by Tarazona [15].

The mentioned phenomena was found in the evolution with the fixed fit-
ness landscape and looks like a cooperation between replicators with different
genomes. The fixed fitness landscape had been modified to take into account
some more realistic situation. Bratus, et al. [31] considered explicit space and
global regulation of the Eigen model to study the diffusive stability of the model.
A spatial quasispecies model was studied in [32]. The experimental results re-
ported in [33] support the idea that there are more involved collective effects
in evolution, when viruses of different types (quasispecies) interact with each
other during the evolution processes, getting some advantage for the whole pop-
ulation. During the experiments two virus populations have been isolated, the
wild-type, and the second virus population with the suppressed mutation rate
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due to a special point mutation. As a result, the second virus population has
approximately the same fitness landscape as the first one, while carries 6 times
less mutations. After putting the virus population in the new environment, the
first, more heterogenous population, was much more effective at infecting new
cells than the second one. It has been suggested that there are some coopera-
tive interactions between viruses with different genomes. It is a highly involved
phenomenon. While the mutation process is mainly random, its strength is
somehow modulated according to the current structure of population. The phe-
nomenon observed in [34] has been identified either as a second level selection
(the high fitness does not mean that such a sequence will attract the majority
of population), or as a selection via evolvability, when the evolving population
tends to have an evolution advantage in changing environments. It is impossible
to describe such a phenomena using a simple evolution scheme with a constant
mutation rate and fitness landscape. There are good experimental confirmations
that the mutation rate has been well modulated for different parts of genome
[35]. The cooperative phenomenon in case of cancer cells clonal evolution is
even stronger than in case of viruses [36].

In the current work we construct a simple generalization of the traditional
quasispecies model with the mutation rate modulated by the sequence distri-
bution in the population. The mutation rate between the adjacent Hamming
classes (groups of sequences with the same number of mutations from the refer-
ence sequence) depends on the ratio of the number of viruses on these chasses,
therefore we have somehow modulated asymmetry of mutation rates. The asym-
metry of mutation rates is well confirmed experimentally [37]. In our model the
population itself modulates the mutation rates, while in [33] it is done artifi-
cially. What is common in both cases, the existence of different mutations rates,
the heterogeneity of population, brings to the evolutionary advantage. The
advantage of our model is that it is still exactly solvable. The dependence of
the fitness on the population distribution is well known phenomenon in evolu-
tionary game models [38, 39]. Another well known case of the changing of the
mutation rate by the virus population is a mutator phenomenon, well confirmed
by experiments [40]. Our model assumes the modulation of mutation rate by
population distribution, and it is much more involved to solve the current model
than the mutator model [29, 41].

Here we consider the parallel mutation selection scheme of the Crow-Kimura
model [11, 17, 21], the selection and mutations are two parallel processes, con-
trary to the Eigen model where the selection is coupled with the mutation [14].

We consider the case of symmetric fitness landscape when the fitness is a
function of number of mutations from the reference sequence. For such a model
with symmetric original distribution of viruses, it is possible to get a short set
of L + 1 equations [12, 16, 18] for the probabilities. The probabilities of the
sequences at the same Hamming distance from the reference sequence ( number
of mutations from the reference sequence to the given sequence) are the same,
there are Nl =

L!
l!(L−l)! sequences in the l-th Hamming class (the collection of

all the sequences with the l mutations from the reference sequence).
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In the Crow-Kimura model [11, 17, 21], we consider the following system of
equations for the probabilities Pl of the whole Hamming class:

dPl

dt
= rlPl +

µ

L
(Pl−1(L− l + 1) + (l + 1)Pl+1 − LPl)− Pl

L
∑

n=0

rnPn, (1.1)

Here rl is the fitness of the sequence from the l-th Hamming class. The last
term in Eq.(1.1) ensures that the balance condition

∑

n Pn = 1 is maintained
in time evolution.

2. The model with conditional mutation rates for the Hamming class

probabilities

2.1. The statics of the model for the smooth fitness landscape

Let us modify the mutation rates in the model by Eq.(1.1): the mutation
rates from one class to the adjacent are attenuated, if the original class has a
smaller probability than the class after mutation:

dPl

dt
= rlPl +

µ

L
(Pl−1(L− l + 1)J(Pl−1 − Pl) + (l + 1)Pl+1J(Pl+1 − Pl)

− Pl((L− l)J(Pl − Pl+1) + lJ(Pl − Pl−1)))− Pl

L
∑

n=0

rnPn. (2.1)

where J(y) = 1, y > 0 and J(y) = c, y < 0. We take 0 ≤ c ≤ 1. For the
steady state solution P̂l we have a system of equations

rlP̂l +
µ

L
(P̂l−1(L − l + 1)J(P̂l−1 − P̂l) + (l + 1)P̂l+1J(P̂l+1 − P̂l)

−P̂l((L − l)J(P̂l − P̂l+1) + lJ(P̂l − P̂l−1))) = RP̂l,

R =

L
∑

n=0

rnP̂n, (2.2)

where R is the mean fitness. We see that R is the eigenvalue of the matrix
on the left hand side of the latter equation. The non-diagonal elements of the
matrix are all positive numbers, therefore we can apply the Perron-Frobenius
theorem, stating that the maximal eigenvalue R0 of such matrix is unique. Thus
the solution of the linear system

dPl

dt
= rlPl +

µ

L
(Pl−1(L− l + 1)J(Pl−1 − Pl) + (l + 1)Pl+1J(Pl+1 − Pl)

− Pl((L− l)J(Pl − Pl+1) + lJ(Pl − Pl−1))) (2.3)

after large period of time is

Pl = P̂l exp[R0t]. (2.4)
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We replace rl with the function f(x):

rl = f(1− 2l/L) ≡ f(x), x ≡ 1− 2l/L, (2.5)

where we choose the function under the constraint

f(x) ≥ 0, x > 0,

f(0) = 0. (2.6)

To solve the model we assume the following ansatz [23, 24]

Pl = exp[Lu(x, t)]. (2.7)

Then we obtain the following Hamilton-Jacobi equation (HJE):

∂u(x, t)

∂t
+ H(x, u′) = 0,

−H = f(x) + µ[
1 + x

2
e2u

′

J(u′) +
1− x

2
e−2u′

J(−u′)−
1 + x

2
J(u′)

−
1− x

2
J(−u′)− f(s(t))], (2.8)

where u′ = ∂u(x, t)/∂x, s(t) is the maximum point for the u(x, t). To solve
Eq.(2.8) we drop the last term, then recover the solution of Eq.(2.8) considering
the transformation u → u−

∫

f(s(t))dt.
Thus we look at the equation

∂u(x, t)

∂t
+ H(x, u′) = 0,

−H = f(x) + µ[
1 + x

2
e2u

′

J(u′) +
1− x

2
e−2u′

J(−u′)

−
1 + x

2
J(u′)−

1− x

2
J(−u′)]. (2.9)

We have two branches of the Hamiltonian: for u′ > 0,

−H+ = f(x) + µ[
1 + x

2
e2u

′

+
1− x

2
e−2u′

c−
1 + x

2
−

1− x

2
c], (2.10)

and for u′ < 0

−H− = f(x) + µ[
1 + x

2
e2u

′

c+
1− x

2
e−2u′

−
1 + x

2
c−

1− x

2
]. (2.11)

The asymptotic solution of Eq.(2.9) can be used to calculate the mean fitness
R =

∑

l Plrl at the steady state. Let us assume that there is a solution for the
HJE

u(x, t) = R0t+ u0(x). (2.12)
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Such an assumption is certainly correct in the case of our model with a single
maximal eigenvalue of the corresponding system of linear equations (2.3).

Then the mean fitness in the steady state is

R = R0 (2.13)

To define the R0, we follow idea of [23]. At any point x, we define the potentials
U±(x) as

U±(x) = min
p

[−H±(x, p)]. (2.14)

Let us put the ansatz by Eq.(2.12) in the HJE by Eq.(2.9). We have a real
number solution, when

R0 = max
−1≤x≤1

U(x) ≡ U(xm). (2.15)

If we assume that the maximum of distribution is at some point s,

U(x) = U+, x > s,

U(x) = U−(x), x < s (2.16)

The s is defined by the equation [18]

R0 = f(s) (2.17)

Assuming that the maximum of U(x) is at some x > s, we derive:

U(x) = f(x) + [
√

c(1− x2)−
1− x

2
− c

1 + x

2
]µ. (2.18)

Equations (2.13), (2.15) and (2.18) can be used to obtain analytic result for R.
To test the accuracy of our analytic equations for R, we used the Euler

algorithm [42] to solve Eq. (2.1) directly for the fitness function r = f(x) =
kx2/2 and L = 500. The numerical results for c=0.75, 0.5, and 0.25 are shown
as black dots in Fig. 1, which are consistent very well with the smooth curves
calculated from our analytic equations for R. The dashed line corresponds to
the case c = 1 of the Crow-Kimura model. Figure 1 shows that for a give k, R
increases when c decreases from 1, i.e. modulated mutation rates in our model
can enhance the mean fitness. To make this point even more clear, we plot the
mean fitness R as a function of c for mutation rate µ = 1, the fitness function
f(x) = kx2/2 with k =1, 2, and 3 in Fig. 2, which also shows that R increases
as c decreases from 1.

2.2. Single peak fitness case

As another test of analytic equations in Section (2.1), we consider the single
peak fitness of the Crow-Kimura model [11, 17, 21]. In this case we can take

f(1) = A,

f(x) = 0, x < 1. (2.19)
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0.5
R

Figure 1: The mean fitness versus the parameter k for the model with L = 500, f(x) = kx2/2
for c = 0.25, c = 0.5, c = 0.75, µ = 1 (from up to down). The smooth lines are our
analytical results obtained from Eqs. (2.13), (2.15) and (2.18) and the dots are corresponding
to the numerical results by solving Eq. (2.1) with the Euler algorithm [42]. The dashed line
corresponds to the case c = 1 of the Crow-Kimura model.

0.0 0.2 0.4 0.6 0.8 1.0
c0.0
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Figure 2: The mean fitness versus the parameter c for the model with f(x) = kx2/2 for
k = 1, k = 2, k = 3, µ = 1 (from up to down). Equations (2.13), (2.15) and (2.18) were used
to obtain analytic result for R
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The maximum of the distribution is at l=0 (x=1), then it decreases monotoni-
cally. Thus, we should take the branch U+(x) of the potential.

Our analytic equations in Section (2.1) give

R = A− µ, (2.20)

which coincides with the result of the Crow-Kimura model [11, 17, 21].

3. Conclusion

It has been assumed that mutations are not completely random, their fre-
quencies are somehow controlled during the evolutionary dynamics. The phe-
nomenon is important both for the viruses evolution and clonal evolution of
cancer cells. It is important to construct such a model. The construction of
evolution models with the changing fitness landscape and mutation rate is the
mainstream of current evolutionary research [43]. Our goal was to construct
a simple generalization of the evolution model with controlled mutation rates.
We considered the evolution model with the simplest version of cooperation:
the mutation from one Hamming class to another class with higher population
attenuated, thus enhancing the heterogeneity of population. Such cooperation
strongly changes the evolution picture, creating the nonlinearity. Figure 2 il-
lustrates how the mean fitness R changes with the parameter c. We solved the
model in the simplest case, when the mutation rule is defined via the nearest
neighbors, using a simple Hamilton-Jacobi equation approach, and the numer-
ics supported our analytical result for the mean fitness, derived with a O(1/L)
relative accuracy. The clonal evolution of cancer not only is strongly nonlinear,
but includes also some logic, swarm intellect. What we have done is to intro-
duce simple modification of the clonal evolution model: when the population
of one Hamming class is smaller than the population of the neighboring class,
then decreases the mutation rate. Our model involves strongly non-linear (non-
analytical) change of the model equations, versus simple analytical change of the
dynamics rules due to population structure in evolution games. In this article
we just considered the conditional mutation rate, but the same mathematical
tools can be applied for the conditional fitness function as well.

Usually it is assumed that the heterogeneity of the population gives an evo-
lutionary advantage in case of changing environments [38]. According to our
results, the modulated mutation rate, directed to increase the population het-
erogeneity, can strongly increase the mean fitness of population as well. Our
result is valid for the general case of the symmetric fitness landscape. We
assume that similar situation (increased heterogeneity, highly complicated dy-
namics) exists in case of evolution models with conditional selection, as well as
in evolutionary games.

The master equation in our case describes the dynamics of the fractions of
population, as 1-dimensional chain of equations. The similar models have been
considered in Parrondo games with capital dependent rules [44]. It is possible
to write the master equation again as a chain of equations for the probabilities
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having different capitals [45], and ,actually, there is a ”period of potential”, a
parameter M in the Parrondo models. In the situation, when the mutation
rule is defined by several M Hamming classes, we have a similar mathematical
problem as in the case of Parrondo games with the parameter M .

One can also consider to introduce the conditional mutation rate in the
mutator model for cancer [46]. It is interesting to find the dynamics of our
model, while it is a much harder problem than the solution of the dynamics of
the Crow-Kimura model [25]. A similar threshold like terms in the dynamics
of the linear simple model bring the dynamics to the rather complex situation,
similar to that in the Kolmogorov-Fisher equation [47].
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Basic Research (RFBR) grant #10-01-00374 (for AB) and the joint grant be-
tween RFBR and Taiwan National Council #12-01-92004HHC-a (for AB).
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