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a b s t r a c t

Boundary layer flowof amicropolar fluid past a permeable shrinking sheetwith second-order slip velocity
is studied in this paper. The solution is an exact solution of theNavier–Stokes andmicrorotation equations.
Similarity equations are obtained through the application of similarity transformation techniques.
Numerical techniques are used to solve the similarity equations for different values of the shrinking
parameter, suction parameter, material parameter and second-order slip parameters. It is shown that the
solution has two branches (upper and lower) in a certain range of the parameters. A stability analysis has
been also performed to show that the first (upper branch) solutions are stable and physically realizable,
while the second (lower branch) solutions are not stable and, therefore, not physically possible. The effects
of the governing parameters on the skin friction, velocity and microrotation distribution are presented
graphically and discussed. These results clearly show that the second order slip flow model is necessary
to predict the flow characteristics accurately.

© 2014 Elsevier Masson SAS. All rights reserved.
1. Introduction

Eringen [1] is a pioneering researcherwhohas formulated about
four decades ago the theory of micropolar fluids. It is well known
that in many of the real fluids the shear behaviour cannot be
characterized by Newtonian relationships and hence researchers
have proposed diverse non-Newtonian fluid theories to explain the
deviation in the behaviour of real fluids with that of Newtonian
fluids. One such theory is that of micropolar fluids. This the-
ory accounts for the internal characteristics of the substructure
particles with the assumption that they are allowed to undergo
rotation independent of their linear velocity.Micropolar fluids rep-
resent fluids consisting of rigid randomly oriented particles sus-
pended in a viscousmediumwhen the deformation of the particles
is ignored. The theory of the micropolar fluids can be considered
as a generalization of the Navier–Stokes equations. In fact it is a
subclass of microfluids, since it takes into account the microstruc-
ture of the fluid along with the inertial characteristics of the sub-
structure particles, which are allowed to undergo rotation. Using
Eringen’s definition on microfluids, a simple microfluid is a fluid
medium whose properties and behaviour are strongly influenced
by the local motions of the material particles contained in each of
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its volume elements. Themathematical background of themicrop-
olar fluid flow theory is presented in the books by Stokes [2], Erin-
gen [3] and Łukaszewicz [4] and in the review papers by Ariman
et al. [5,6]. It is pointed out that the theory of micropolar fluids
is expected to successfully describe non-Newtonian behaviour of
certain fluids, such as liquid crystals, ferro-liquids, colloidal fluids,
liquids with polymer additives, animal blood carrying deformable
particles (platelets), clouds with smoke, suspensions, slurries, geo-
morphological sediments, haematological suspensions, etc. The re-
search area of micropolar fluids has been of great interest mainly
because the Navier–Stokes equations for Newtonian fluids cannot
successfully describe the characteristics of fluid with suspended
particles. The equations ofmotion characterizing amicropolar fluid
flow are non-linear in nature (as in the case of Newtonian viscous
fluids) and are constituted by a coupled system of vector differen-
tial equations in velocity and micro-rotation. Hoyt and Fabula [7]
have shown experimentally that fluids containing minute poly-
meric additives exhibit a considerable reduction in the skin fric-
tion (about 25%–30%), a concept which can be explained very well
by micropolar fluid theory.

It seems that the concept of boundary layer in micropolar
fluids was first introduced by Willson [8] to study the steady,
incompressible laminar flow over two-dimensional bodies. Subse-
quently, the steady boundary-layer flow ofmicropolar fluids at the
stagnation point of a two-dimensional body has been considered
by Peddieson and McNitt [9], Nath [10], etc. Several researchers
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Nomenclature

a First-order velocity slip parameter
b Second-order velocity slip parameter
A, B Constants
c Positive constant
Cf Skin friction coefficient
f (η), g(η) Similarity variables
j Gyration parameter
K Material parameter
Kn Knudsen number
n Constant
N Microrotation velocity vector
p Pressure
Rex Local Reynolds number
s Constant suction/injection parameter
t Time
x Coordinate measured along the surface of the sheet
y Coordinate measured normal to the surface of the

sheet
u Velocity component along the x-axis
uslip Slip velocity along the sheet
uw(x) Stretching/shrinking velocity
ue(x) External flow velocity
V Velocity vector
v Velocity component along y-axis
v0 Constant mass flux velocity

Greek symbols

δ Molecular mean free path
ε Momentum accommodation coefficient
γ Eigenvalue parameter
η Similarity variable
κ Vorticity viscosity
λ Dimensionless stretching/shrinking parameter
λc Critical value of λ
µ Dynamic viscosity
ν Kinematic viscosity
ρ Fluid density
σ Spin gradient viscosity
τ Dimensionless time
τw Skin friction or shear stress
ψ Stream function

have considered various stretching problems in micropolar flu-
ids. Ishak et al. [11] investigated on heat transfer over a stretching
surfacewith variable surface heat flux inmicropolar fluids. The nu-
merical solution for heat transfer in a micropolar fluid from a non-
isothermal stretching sheet with suction and blowing has been
studied byHassanien andGorla [12], Kelson andDesseaux [13], etc.
MHD flow of a micropolar fluid near a stagnation-point towards a
non-linear stretching surface has been studied by Hayat et al. [14].
Ahmad et al. [15] studied the unsteady three-dimensional bound-
ary layer flow due to a stretching surface in a micropolar fluid.
It should be mentioned to this end that Bhattacharyya et al. [16]
have studied the effects of thermal radiation on the steady flow of
micropolar fluid and heat transfer past a porous shrinking sheet.
Dual solutions of velocity and temperature were obtained for sev-
eral values of the each parameter involved. For increasing val-
ues of the material parameter, the velocity decreases for the first
solution, whereas, for the second solution it increases. Due to in-
crease of thermal radiation, the temperature and thermal bound-
ary layer thickness reduce in both solutions and also the heat
transfer from the sheet enhances with thermal radiation. Also, in a
very interesting recently published note, Turkyilmazoglu [17] has
studied the steady flow of micropolar fluid and heat transfer past
a porous shrinking sheet. He has determined mathematically the
bounds of multiple existing solutions of purely exponential kind.
The presence of dual solutions is proved for the flow field, whose
closed-form formulae are then derived. The energy equation is also
treated analytically yielding exact solutions beneficial to under-
stand the rate of heat transfer. Also, the very interesting papers by
Zheng et al. [18,19] have dealt with dual solutions on micropolar
fluids. It is also worth pointing out the published papers on dual
and simple solutions by Su et al. [20,21].

In all previous investigations on micropolar fluids past shrink-
ing surfaces, the effects of the second-order slip velocity have been
ignored. Therefore, the scope of this paper is to extend the work
done by Fang et al. [22] for the boundary layer flow of a viscous
fluid over a shrinking sheetwith a second-order slip to the case of a
shrinking sheet in a micropolar fluid. The partial differential equa-
tions are transformed into ordinary (similarity) differential equa-
tions, which are then solved numerically. A stability analysis is also
performed to show the physically realizable dual solutions. It is
shown that the reduced skin friction or the surface shear stress,
and the velocity and microrotation profiles due to the shrinking
sheet are strongly influenced by the material, mass transfer and
the slip flow model parameters. We are confident that the paper
is original and the results are completely new and very interest-
ing. It is worth mentioning to this end that, as discussed by Gold-
stein [23], the shrinking sheet flow is essentially a backward flow
and it shows physical phenomena quite distinct from the forward
stretching flow.

2. Basic equations

Consider the two-dimensional boundary layer flow of a viscous
and incompressible micropolar fluid in a quiescent inviscid fluid.
In the absence of body forces and body couple, the governing
equations are described in vectorial form by, see Hayat et al. [14],

∇ · V = 0 (1)

ρ
DV
D t

= −∇p + (µ+ κ)∇2V + κ ∇ × N (2)

ρ j
DN
D t

= σ∇
2N + κ ∇ × V − 2 κ N (3)

where D/Dt is the material derivative, V is the velocity vector, N
is the microrotation velocity vector normal to the plane surface
and the physical meaning of the other quantities is described in
the Nomenclature.

We assume that the surface of the shrinking sheet is located at
y = 0 with a fixed end at y = 0, where x and y are the Cartesian
coordinatesmeasured along the shrinking surface and in the direc-
tion normal to it, respectively, as shown in Fig. 1. It is assumed that
the surface is shrinked in the x-direction with the velocity uw(x)
and the mass transfer velocity is v0, where v0 < 0 corresponds
to the suction and v0 > 0 to injection or withdrawal of the fluid,
respectively.

Under these assumptions Eqs. (1)–(3) can be written in
Cartesian coordinates x and y as

∂ u
∂ x

+
∂ v

∂ y
= 0 (4)

∂ u
∂ t

+ u
∂ u
∂ x

+ v
∂ u
∂ y

= −
1
ρ

∂ p
∂ x

+


µ+ κ

ρ

 
∂2 u
∂ x2

+
∂2u
∂ y2


+
κ

ρ

∂ N
∂ y

(5)
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Fig. 1. Physical model and coordinate system for the shrinking sheet.

∂ v

∂ t
+ u

∂ v

∂ x
+ v

∂ v

∂ y

= −
1
ρ

∂ p
∂ y

+


µ+ κ

ρ

 
∂2 v

∂ x2
+
∂2v

∂ y2


−
κ

ρ

∂ N
∂ x

(6)

∂ N
∂ t

+ u
∂ N
∂ x

+ v
∂ N
∂ y

=
σ

ρ j


∂2 N
∂ x2

+
∂2N
∂ y2


+
κ

ρ j
∂ v

∂ x
−
κ

ρ j


2N +

∂ u
∂ y


. (7)

We shall solve Eqs. (4)–(7) subject to the following initial and
boundary conditions:

t < 0 : v = 0, u = 0, N = 0 for any x, y,
t ≥ 0 : v = v0, u = uw(x) = λUw(x)+ uslip(x),

N = −n
∂ u
∂ y

at y = 0,

u → 0, N → 0 as y → ∞

(8)

where u and v are the velocity components along x and y axes, λ
is the constant shrinking (λ < 0) parameter and we assume that
Uw(x) = c x. Further, uslip(x) is the slip velocity at the sheet, which
is given by Wu [24] and used also by Fang et al. [22], and Fang and
Aziz [25],

uslip(x) =
2
3


3 − ε l2

ε
−

3
2

1 − l2

Kn


δ
∂ u
∂ y

−
1
4


l4 +

2
K 2
n
(1 − l2)


δ2
∂2u
∂ y2

= A
∂ u
∂ y

+ B
∂2u
∂ y2

. (9)

Here l = min(1/Kn, 1) and ε is the momentum accommodation
coefficient with 0 ≤ ε ≤ 1. Based on the definition of l, it is seen
that for any given value of Kn, we have 0 ≤ l ≤ 1. Since the molec-
ular mean free path δ is always positive it results in that B is a
negative number. Further, we notice that n is a constant such that
0 ≤ n ≤ 1. The case n = 0, called strong concentration by Guram
and Smith [26], indicates that N = 0 near the surface, represents
concentrated particle flows in which the microelements close to
the wall surface are unable to rotate (Jena and Mathur, [27]). The
case n = 1/2 indicates the vanishing of anti-symmetrical part of
the stress tensor and denotes weak concentration (Ahmadi [28]).
The case n = 1, as suggested by Peddieson [29], is used for
the modelling of turbulent boundary layer flows. Following Rees
and Bassom [30] or Rees and Pop [31], we assume that the spin
gradient σ has the form

σ = (µ+ κ/2)j = µ (1 + K/2)j (10)

where K = κ/µ is the material parameter.

3. Steady-state flow case

We look for a similarity solution of Eqs. (4)–(7) of the form

ψ = (c ν)1/2 x f (η), N = c (c/ν)1/2 x g(η),

η = (c/ν)1/2 y
(11)

where ψ is the stream function which is defined in the usual way
as u = ∂ ψ/∂ y and v = −∂ ψ/∂ x. Thus, we have

u = cxf ′(η), v = −
√
cν f (η) (12)

where prime denotes differentiation with respect to η. The
pressure term can be obtained from Eq. (6) and is given by

p
ρ

=
µ+ κ

ρ

∂ v

∂ y
−
v2

2
−
κ

ρ
c


g(η)dη + constant. (13)

Substituting (11) into Eqs. (5) and (7), the following set of ordinary
differential equations results in

(1 + K) f ′′′
+ f f ′′

− f ′2
+ K g ′

= 0 (14)

(1 + K/2) g ′′
+ f g ′

− f ′ g − K (2 g + f ′′) = 0 (15)

subject to the boundary conditions

f (0) = s, f ′(0) = λ+ a f ′′(0)+ b f ′′′(0),

g(0) = −n f ′′(0),

f ′(η) → 0, g(η) → 0 as η → ∞

(16)

where s = −v0/
√
c ν is the constant parameter of suction (s > 0)

or injection (s < 0), a is the first order velocity slip parameter
with a = A

√
c/ν > 0, b is the second order slip velocity with

b = B c/ν < 0 and we take j = ν/c.
The quantity of physical interest is the skin friction coefficient

Cf , which is defined as

Cf =
τw

ρ U2
w

(17)

where τw is the skin friction or the shear stress along the surface
and is given by

τw =


(µ+ κ)

∂ u
∂ y

+ κ N

y=0

. (18)

Substituting (11) into (18) and using (17) we obtain

Re1/2x Cf = [1 + (1 − n) K ] f ′′(0) (19)

where Rex is the local Reynolds number which is defined as Rex =

Uw(x) x/ν.
It is worth mentioning that for K = 0 and λ = −1 (shrinking

sheet), Eq. (14) becomes identical with Eq. (7) from the paper by
Fang et al. [22]. In fact, for a shrinking sheet in a viscous fluid
(K = 0) in the absence of the first order (a = 0) and second-order
(b = 0) slip velocity parameters, Eq. (14) reduces to

f ′′′
+ f f ′′

− f ′2
= 0 (20)

along with the boundary conditions

f (0) = s, f ′(0) = λ, f ′(η) → 0 as η → ∞. (21)
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The exact solution of the boundary value problem (20) and (21) is
given by (Vajravelu and Rollings [32] or Cortell [33]),

f (η) = s + α (1 − e−β η), (β = s + α > 0) (22)

where α β = λ, from the boundary condition f ′(0) = λ. The value
β (>0) is given by the quadratic equation

β2
− sβ − λ = 0 (23)

and then

β =
s ±

√
s2 + 4 λ
2

. (24)

Thus, we have

f ′′(0) = −
λ

2
(s ±


s2 + 4 λ) (25)

so that it gives, as it is expected, λc = −s2/4 < 0. Further,
we notice that when K = 0 (viscous fluid), λ = 1 (stretching
sheet) and s = 0 (impermeable surface), we get from (25) that
f ′′(0) = −1, which is in agreement with the value first reported
by Crane [34].

4. Flow stability

Following Weidman et al. [35] or Roşca and Pop [36], we
introduce the new dimensionless time variable τ = c t . The use
of τ is associated with an initial value problem and is consistent
with the question of which solution will be obtained in practice
(physically realizable). Using the variables τ and (11), we have

ψ = (c ν)1/2 x f (η, τ ), u = cx
∂ f
∂η
(η, τ ),

v = −
√
cνf (η, τ ),

N = c (c/ν)1/2 x g(η, τ ), η = (c/ν)1/2 y, τ = c t

(26)

so that Eqs. (5) and (7) can be written as

(1 + K)
∂3f
∂ η3

+ f
∂2f
∂ η2

−


∂ f
∂ η

2

+ K
∂ g
∂ η

−
∂2f
∂ η ∂ τ

= 0 (27)

(1 + K/2)
∂2g
∂ η2

+ f
∂ g
∂ η

−
∂ f
∂ η

g − K

2 g +

∂2f
∂ η2


−
∂ g
∂ τ

= 0 (28)

subject to the boundary conditions

f (0, τ ) = s,

∂ f
∂η
(0, τ ) = λ+ a

∂2f
∂η2

(0, τ )+ b
∂3f
∂η3

(0, τ ),

g(0, τ ) = −n
∂2f
∂η2

(0, τ ),

∂ f
∂η
(η, τ ) → 0, g(η, τ ) → 0 as η → ∞.

(29)

To test stability of the steady flow solution f (η) = f0(η) and
g(η) = g0(η) satisfying the boundary-value problem (14)–(16),
we write (see Weidman et al. [35] or Roşca and Pop [36]),

f (η, τ ) = f0(η)+ e−γ τ F(η, τ ),

g(η, τ ) = g0(η)+ e−γ τG(η, τ )
(30)
where γ is an unknown eigenvalue parameter, and F(η, τ ) and
G(η, τ ) are small relative to f0(η) and g0(η). Substituting (30) into
Eqs. (27) and (28), we obtain the following linearized problem

(1 + K)
∂3F
∂ η3

+ f0
∂2F
∂ η2

+ (γ − 2f ′

0)
∂F
∂ η

+ f ′′

0 F

+ K
∂ G
∂ η

−
∂2F
∂ η ∂ τ

= 0 (31)

(1 + K/2)
∂2G
∂ η2

+ f0
∂ G
∂ η

+ (γ − f ′

0)G + g ′

0F − g0
∂ F
∂ η

− K

2G +

∂2F
∂ η2


−
∂ G
∂ τ

= 0 (32)

subject to the boundary conditions

F(0, τ ) = 0,

∂F
∂η
(0, τ ) = a

∂2F
∂η2

(0, τ )+ b
∂3F
∂η3

(0, τ ),

G(0, τ ) = −n
∂2F
∂η2

(0, τ ),

∂F
∂η
(η, τ ) → 0, G(η, τ ) → 0 as η → ∞.

(33)

As suggested byWeidman et al. [35],we investigate the stability
of the steady flow and heat transfer solution f0(η) and g0(η) by
setting τ = 0 and hence F = F0(η) and G = G0(η) in (31) and
(32) to identify initial growth or decay of the solution (30). To test
our numerical procedure we have to solve the linear eigenvalue
problem

(1 + K) F ′′′

0 + f0 F ′′

0 + (γ − 2f ′

0)F
′

0 + f ′′

0 F0 + K G′

0 = 0 (34)
(1 + K/2)G′′

0 + f0 G′

0 + (γ − f ′

0)G0 + g ′

0F0 − g0 F ′

0

− K ( 2G0 + F ′′

0 ) = 0 (35)

and the boundary conditions (29) become

F0(0) = 0, F ′

0(0) = a F ′′

0 (0)+ b F ′′′

0 (0),

G0(0) = −n F ′′

0 (0),

F ′

0(η) → 0, G0(η) → 0 as η → ∞.

(36)

It should be mentioned that for particular values of K , s, n, a, b
and λ the stability of the corresponding steady flow solution f0(η)
and g0(η) is determined by the smallest eigenvalue γ . According
to Harris et al. [37], the range of possible eigenvalues can be
determined by relaxing a boundary condition on F0(η) and G0(η).
For the present problem, we relax the condition that G0(η) → 0 as
η → ∞ and for a fixed value of γ we solve Eqs. (34) and (35) along
with the new boundary condition (36) and G′

0(0) = 1.

5. Numerical method

Following Roşca and Pop [36] numerical solutions to the nonlin-
ear ordinary differential equations (14) and (15)with the boundary
conditions (16) are obtained using the function bvp4c fromMatlab
for different values of thematerial parameter K , suction s, and sev-
eral values of the constants n, a (first-order) and b (second-order)
slip velocity parameters when λ < 0 (shrinking sheet). The code
bvp4c is based on a three-stage collocation at Lobatto points, hence
it is equivalent to the three-stage Lobatto IIIA method. Lobatto IIIA
methods have been considered for boundary value problems due
to their very good stability properties and they have fourth-order
accuracy over the whole interval. In this approach, the differen-
tial equations are first reduced to a system of first-order equations
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Table 1
Comparison of f ′′(0) for several values of s, a and bwhen K = 0 and λ = −1 (shrinking sheet).

s a b Present study Fang et al. [22]
Upper branch Lower branch Upper branch Lower branch

2

0.5 −1 0.3412 0.3159 0.3412 0.3159
0.5 −2 0.2038 0.2656 0.2038 0.2656
1 −1 0.2905 0.2565 0.2905 0.2565
1 −2 0.1846 0.2257 0.1847 0.2257

3

0.5 −1 0.2627 0.2413 0.2629 0.2413
0.5 −2 0.1470 0.2173 0.1469 0.2173
1 −1 0.2320 0.2022 0.2317 0.2022
1 −2 0.1369 0.1869 0.1371 0.1868
Fig. 2. Variation of Re1/2x Cf with s for several values of K when n = 0.2, a = 1, b =

−1, λ = −1.

Fig. 3. Variation of Re1/2x Cf with λ for several values of s when K = 0.5, n =

0.2, a = 1, b = −1.

by introducing new variables. The mesh selection and error con-
trol are based on the residual of the continuous solution. The rel-
ative tolerance was set to 10−7 and the boundary layer thickness
η = η∞ has to be determined in order to apply the far field bound-
ary conditions (16). It is found that the value η = η∞ = 20 for
the upper branch solution and η = η∞ in the range 40–120 for the
lower branch solution are adequate for all velocity and microro-
tation velocity profiles to satisfy the infinity boundary conditions
(16) asymptotically. Examples of solving boundary value problems
by bvp4c code can be found in the book by Shampine et al. [38] or
through online tutorial by Shampine et al. [39].
Fig. 4. Variation of Re1/2x Cf with λ for several values of K when n = 0.2, a = 1, b =

−1, s = 3.

Fig. 5. Variation of Re1/2x Cf with K for several values of swhen n = 0.2, a = 1, b =

−1, λ = −1.

6. Results and discussion

Table 1 shows the comparison values of f ′′(0) obtained solving
numerically Eq. (14) with those reported by Fang et al. [22] for
some values of s, a and b when K = 0 (classical viscous fluid) and
λ = −1 (shrinking sheet). It is seen that the comparison is in very
good agreement, and thus gives confidence to the accuracy of the
numerical results.

Further, the values of the local skin friction coefficient Re1/2x Cf
are shown in Figs. 2–8 for some values of the suction parame-
ter s (>0), material parameter K and for some values of a and b
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Fig. 6. Variation of Re1/2x Cf with K for several values of awhen n = 0.2, b = 0, s =

3, λ = −1.

Fig. 7. Variation of Re1/2x Cf with K for several values of bwhen n = 0.2, a = 0, s =

3, λ = −1.

Fig. 8. Variation of Re1/2x Cf with K for several values of nwhen a = 1, b = −1, s =

3, λ = −1.

when λ < 0 (shrinking sheet) and n = 0.2. It is seen that dual
solutions of Eqs. (14)–(16) exist, first (upper branch) and second
Table 2
Smallest eigenvalues γ at several values of s, K and λ when n = 0.2, a = 1 and
b = −1.

s K λ Upper branch γ Lower branch γ

2

0.3

−2.10 0.3580 −0.3326
−2.20 0.2642 −0.2508
−2.30 0.1015 −0.0995
−2.31 0.0660 −0.0651

0.5

−1.60 0.3714 −0.3375
−1.70 0.2747 −0.2569
−1.80 0.1064 −0.1034
−1.81 0.0700 −0.0685

3

0.5

−6.00 0.5772 −0.5517
−6.20 0.4057 −0.3934
−6.30 0.2825 −0.2766
−6.39 0.0603 −0.0600

1

−3.40 0.5442 −0.5119
−3.50 0.4412 −0.4203
−3.60 0.3037 −0.2939
−3.69 0.0137 −0.0140

(lower branch) solutions. The value of g(0) will not be given be-
cause g(0) = −n f ′′(0). It is to be noticed from Fig. 2 that the val-
ues of Re1/2x Cf , increase as both suction parameter s (>0) and the
material parameter K increase. The suction parameter is very sig-
nificant inmaintaining the steady boundary layer near the sheet by
delaying the separation. In accordance with the results presented
in the paper by Fang et al. [22] for a permeable shrinking sheet, dual
solutions occur only when the suction parameter s takes moderate
values, namely s ≥ 1.3073 for the present problem and it results
in a critical value s = sc(K). There are two solutions when s > sc ,
one solution when s = sc and no solution when s < sc , where
sc the critical value of s for which the solution exists. It should be
mentioned that for s < sc the ordinary differential equations (14)–
(16) have no solutions and the full Navier–Stokes and microrota-
tion equations should be solved.

Figs. 3 and 4 illustrate the variation of Re1/2x Cf with λ < 0,
while Figs. 5–8 show the variation of Re1/2x Cf with K for several
values of the parameters s, n, a and b. These figures also show
that the dual (upper and lower branch) solutions to the similarity
equations (14)–(16) depend on the parameters K , s, n, a and b. As
for the classical fluids (K = 0) the critical values |λc | increase as
s and K increase. Further, it can be seen that there exist values
Kc(>0) of K up to which dual solutions occur. The values of Kc
increase when the parameters s, n, a and b increase. For K > Kc
the ordinary differential equations (14)–(16) have no solutions
and the full Navier–Stokes and microrotation equations have to be
solved. From the stability analysis presented, it can be seen that
the upper branch solutions are stable and physically realizable,
while the lower branch solutions are unstable and, therefore, not
physically realizable. The smallest eigenvalues γ at several values
of the parameters K , s, n, a, b and λ are given in Table 2.

Finally, the effects of the parameters K , s and λ on the velocity
f ′(η) and microrotation g(η) profiles are presented in Figs. 9–
14. Similar to Figs. 2–8, the far field boundary conditions (16)
are satisfied asymptotically, which supports the validity of the
numerical results obtained. It is observed fromFigs. 9–14 that there
are two profiles for particular values of the parameters K , s and
λ, while the other parameters are fixed. Further, it is clearly seen
from these figures that for the velocity and microrotation profiles,
the first solutions display a thinner boundary layer thickness
compared to the second solutions. Therefore, it is supported the
validity of the numerical results obtained and the existence of
the dual solutions given in Figs. 2–8. It is also worth mentioning
that for several values of the suction parameter s, the velocity
f ′(η) and microrotation g(η) profiles given in Figs. 9 and 10 are
similar with the ones illustrated in Fig. 2((a), (b)) in the paper by
Turkyilmazoglu [17].



N.C. Roşca, I. Pop / European Journal of Mechanics B/Fluids 48 (2014) 115–122 121
Fig. 9. Dimensionless velocity f ′(η) profiles for several values of K when n =

0.2, a = 1, b = −1, s = 3, λ = −1.

Fig. 10. Dimensionless microrotation g(η) profiles for several values of K when
n = 0.2, a = 1, b = −1, s = 3, λ = −1.

Fig. 11. Dimensionless velocity f ′(η) profiles for several values of s when K =

0.5, n = 0.2, a = 1, b = −1, λ = −1.
Fig. 12. Dimensionless microrotation g(η) profiles for several values of s when
K = 0.5, n = 0.2, a = 1, b = −1, λ = −1.

Fig. 13. Dimensionless velocity f ′(η) profiles for several values of λ when K =

0.5, n = 0.2, a = 1, b = −1, s = 3.

Fig. 14. Dimensionless microrotation g(η) profiles for several values of λ when
K = 0.5, n = 0.2, a = 1, b = −1, s = 3.
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7. Conclusions

A theoretical study has been presented for the boundary layer
flow of a micropolar fluid over a permeable shrinking sheet under
the second-order slip velocity condition. By means of such a treat-
ment, it is shown to be possible to explore the physical features of
the flow andmicrorotation characteristics. By solving two coupled
similarity equations (14) and (15) subject to the boundary condi-
tions (16), it is found that no solution or at most two (dual, upper
and lower branch) solutions may exist depending on the working
parameters considered in the physical model, namely, shrinking
parameter λ (<0), suction parameter (s > 0), material parameter
K and second-order slip parameters a (>0) and b (<0). The range
of critical values sc increases with the increase of K for which the
solutions exist. The material parameter K increases the range of
the critical parameter |λc | for which the solutions exist. The val-
ues of K increase the skin friction coefficient Re1/2x Cf for the upper
branch solutions, while K decreases Re1/2x Cf for the lower branch
solutions.
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