Predictive modeling on seismic performances of geosynthetic-reinforced soil walls

K.Z.Z. Lee a,*, N.Y. Chang b

aGeotechnical Engineering Group, Technical Service Center, U.S. Bureau of Reclamation, Denver Federal Center, Building 67, Denver, CO 80225, USA
bDepartment of Civil Engineering, University of Colorado Denver, 1200 Larimer Street, Room NC3027, Denver, CO 80217, USA

1. Introduction

The state-of-practice design of geosynthetic-reinforced soil (GRS) wall follows the limit equilibrium design approach (e.g., Elias et al., 2001). In the pseudo-static analysis of GRS walls, only the factors of safety against various modes of failure or collapse of the wall could be estimated, and wall deformation could not be estimated directly from the pseudo-static analysis. This is a common deficiency in all of the limit equilibrium analyses. Indirect methods were developed to estimate the horizontal wall movements (or the time-deformation response of the wall system) to accompany the seismic stability analysis. The widely accepted approach is the Newmark sliding block method (Newmark, 1965). In Newmark’s double-integration displacement method applied to retaining wall structure, the total displacement is termed unsymmetrical displacement, since the permanent displacement only accumulates in one direction (outward direction). The calculation of displacement is based on the assumption that the moving mass displaces as a rigid-plastic block with shear resistance mobilized along a potential sliding surface. Permanent displacement of the rigid-plastic block is said to have occurred whenever the forces acting on the soil mass (both static and seismic forces) overcomes the available shear resistance along the potential sliding surface. The permanent displacements are assumed to accumulate each time the ground acceleration exceeds the critical acceleration.

Cai and Bathurst (1996a) had identified three seismic induced sliding mechanisms in a GRS wall, and they are (1) external sliding along the base of the entire wall structure, (2) internal sliding along a reinforcement layer and through the facing column, and (3) block interface shear between facing column units. The displacements are estimated using the conventional sliding block method, and both horizontal acceleration coefficient k_h and vertical coefficient k_v are used to calculate dynamic active forces and are assumed to remain constant throughout the entire wall structure. The vertical inertial force is assumed to act upward to produce the most critical factors of safety for the horizontal sliding mechanisms. Another sliding block method proposed by Siddharthan et al. (2004) was based on seismic centrifuge test results of mechanically stabilized earth (MSE) walls, where a rigid-plastic multi-block computational method was developed to predict the permanent displacement of MSE wall subjected to seismic loading. The failure mechanism is comprised of three rigid blocks and possesses a bi-linear failure plane; the top two blocks are rectangular, and the bottom block is triangular.

* Corresponding author. Tel.: +1 303 445 3022; fax: +1 303 445 6472.
E-mail address: KLee@usbr.gov (K.Z.Z. Lee).
Ling et al. (1996), on the other hand, suggested the two-part wedge mechanism, which has been used to determine the reinforcement length based on tieback/compound failure or direct sliding failure of a vertical wall. The two-part wedge mechanism was further considered in determining the seismic induced permanent displacement of a reinforced steep slope by Ling et al. (1997) and Leshchinsky (1997). The displacement evaluation procedure is similar to the base sliding approach proposed by Cai and Bathurst (1996a), in which the reinforced soil zone is treated as a rigid-plastic block. The displacement of the rigid-plastic block is induced when the factor of safety against direct sliding is less than unity. Huang et al. (2003) introduced the ‘multi-wedge method’ (e.g., three-wedge method) to account for the contribution of facing component and the connecting reinforcement force at the facing-backfill interface in evaluating the seismic displacements of GRS walls, where the three-wedge mechanism was considered to be more appropriate for describing the observed failure patterns. The three-wedge method calculates both the horizontal and vertical displacements utilizing the Newmark slidding block theory. Huang et al. (2003) reported that the calculated displacements using the three-wedge method were comparable with the measured values from the Chi-Chi, Taiwan earthquake.

Newmark’s double-integration method in finding the seismic induced permanent displacement requires the ground motion time history to be known. In absence of the ground motion time history, several empirical methods have been developed to predict the seismic induced permanent displacement of earth structures (e.g., Whitman and Liao, 1984; Cai and Bathurst, 1996b; Huang and Wu, 2006; Anderson et al., 2008). Newmark’s sliding block theory has been used as the basis for developing the empirical methods, where the total permanent displacement determined by Newmark’s double-integration method is correlated with input ground motion parameters, such as peak ground acceleration, peak ground velocity, and critical acceleration ratio.

The seismic responses of GRS wall can be examined by means of physical model tests or through a numerical modeling study. It is, however, uneconomical and impractical to examine the seismic responses of GRS wall by conducting a series of full-scale physical tests with different types of soils and reinforcements under various seismic loads. Hence, a more economical and practical approach for examining the seismic responses of GRS wall is to conduct a numerical modeling study, in which the numerical tool would need to be validated from physical model tests under well controlled conditions. A review of numerical simulation on seismic performances of GRS structures is provided in Lee et al. (2010).

This study was performed to examine the seismic performances of free-standing simple GRS walls with uniform reinforcement spacing and constant reinforcement length under real multidirectional seismic shaking through numerical simulation. The validated numerical tool with proven predictive capability was used to perform a parametric study, where design parameters, such as wall height, wall slant angle, soil friction angle, reinforcement spacing, and reinforcement stiffness, were evaluated. The results of the numerical parametric study were compared with values determined from the Federal Highway Administration (FHWA) allowable stress design methodology (Elias et al., 2001), and discrepancies between the two were identified. The results of the numerical parametric study provided the data needed to develop seismic performance prediction equations. Prediction equations for wall facing horizontal displacement, wall crest settlement, and reinforcement tensile load were developed based on multivariate regression analysis. The prediction equations can provide first-order estimates of the seismic performances in the preliminary analysis of free-standing simple GRS walls.

2. Numerical modeling

The general purpose nonlinear finite element computer program LS-DYNA (Hallquist, 1998) was selected for the numerical analysis. LS-DYNA can be used to analyze large deformation and dynamic response of solids and structures. The program utilizes explicit central difference method to integrate the equations of motion in time. The available elements include 4-node tetrahedron and 8-node solid elements, 2-node beam elements, 3- and 4-node shell elements, 8-node thick shell elements, and rigid bodies. LS-DYNA includes many built-in material models to simulate a wide range of material behaviors including elasticity, plasticity, composites, thermal effects and rate dependence. Also included in LS-DYNA is the contact interface capability. The contact-impact algorithm can solve contact problems, such as frictional sliding with closure and separation, single surface contact, arbitrary mechanical interactions between independent bodies, and in draw beads in metal stamping applications.

In essence, validation of a computer program requires the comparison between the calculated results and the measured data from a physical model test. The shaking table tests performed by Ling et al. (2005a) were selected as the validation experiments, since they were full-scale models and that detail descriptions of backfill, reinforcement, and interface properties were provided. Materials considered in the validation assessment include concrete facing block, expanded polystyrene (EPS) board, geogrid reinforcement, and backfill. Concrete facing blocks and EPS boards were simulated as linear elastic materials. EPS boards were placed in the front end and at the back end of the full-scale shaking table models as dampers. The density ρ of EPS board of 15 kg/m³ was based on ASTM C578 Type I material. The maximum shear modulus of EPS is approximately 2.76 MPa. With an assumed Poisson’s ratio ν of 0.4, the Young’s modulus E of EPS was calculated to be 7.72 MPa. The facing block was assigned with typical concrete elastic properties (E = 2320 kg/m³, E = 25 GPa, ν = 0.15). Geogrid reinforcement and soil are simulated by the plastic-kinematic model and the geologic cap model, respectively; descriptions of these models are presented in the material characterization sections below.

The LS-DYNA validation assessment and quality of simulation have been reported in Lee et al. (2010). As an example, Fig. 1 shows the comparison of the calculated and measured displacement time histories for one of the test walls. Through the validation assessment, it was found that strong inference or high confidence is anticipated for the closely matched responses, such as horizontal wall displacement and lateral earth pressure utilizing the calibrated model. Variability within the measured data is thought to have contributed to some of the comparison discrepancies. With the computer program validated, prediction can thus be made with strong inference. The relationship between validation and prediction pertaining to geotechnical problems has been discussed in Lee et al. (2011). Note that the prediction could not indicate the accuracy of a complex system that has not been validated; rather the accuracy could only be inferred based on the previous quantitative comparison.

2.1. Input ground motions

A total of 20 earthquake records were selected for the parametric study. The earthquake records were obtained from the Pacific Earthquake Engineering Research Center (PEER) Strong Motion Database (http://peer.berkeley.edu/smcat/). The earthquake records for the parametric study were selected primarily based on the peak horizontal acceleration (PHA) as it is the primary design parameter in the seismic design of GRS walls. The PHA’s of the selected records range from 0.114 g to 0.990 g.
The 20 selected records are all free-field motions with the instrumentation located at the ground surface. The geotechnical subsurface characteristics for the 20 records ranged from shallow to deep soil profiles. The ground motion parameters (including duration, peak acceleration, peak velocity, and peak displacement) of the selected earthquake records are summarized in Table 1. Also included in Table 1 are the fault type and the moment magnitude $M_w$ of each earthquake record. The selected records were baseline corrected using the computer program BAP (Converse and Brady, 1992) to eliminate possible drifts. The peak values presented in Table 1 are based on the baseline corrected records. Note that deconvolution of the records from the ground surface to the base of numerical model in the parametric study was not performed, since the depth to the base of the model is considered shallow (i.e., less than 7 m).

Variation of peak vertical acceleration (PVA) with PHA for the 20 records is shown in Fig. 2. As illustrated by Fig. 2, most of the records are bounded between the $1V:1H$ and $1/3V:1H$ slopes. Three of the records have PVA higher than PHA. The fault type associated with each record is also indicated in Fig. 2. The three records having higher PVA than PHA are associated with reverse fault.

2.2. Soil characterization

Granular soils were considered in the parametric study. The friction angle $\phi'$ is of significant importance in describing the
behavior of granular material, thus it was used as the primary parameter for developing other physical properties. The three selected values of $\phi'$ are 32°, 36°, and 40°. The physical properties of the granular material were developed using $\phi'$ based on various references (Peck et al., 1974; Kulhawy and Mayne, 1990; NAVFAC, 1986a,b) and are summarized in Table 2. The relative density $D_r$, where

$$
D_r = \frac{\rho_{soil}}{\rho_{saturated}}
$$

is expressed in percentage. Values of $D_r$ are based on published relationships.

2.2.1. Cap model strength parameters in parametric study

The soil was represented by the geologic cap model. The cap model is situated in the $\sqrt{I_1}$ stress space, where $I_1$ is the first invariant of the stress tensor and $J_2$ is the second invariant of the deviatoric stress tensor (see Fig. 3). Cap model is comprised of a fixed yield surface $f_1$ and a yield cap $f_2$. The fixed yield surface $f_1$ is considered as the failure surface, where region above the failure surface is not permissible. The expression for $f_1$, originally adopted by DiMaggio and Sandler (1971) and later modified by Sture et al. (1979), is given as:

$$
f_1 = J_2 + \gamma \alpha - \beta I_1 - \alpha = 0
$$

where $\alpha$, $\beta$, $\gamma$, and $\theta$ are the material parameters. The yield cap $f_2$ is a moving yield surface. The moving yield cap follows the shape of an ellipse and is represented by:

$$
f_2 = R J_2 + (I_1 - C)^2 = R^2 b^2
$$

where $R$ is termed the shape factor and is the ratio of the major axis to minor axis of the ellipse, and $Rb = (X - C)$. $X$ is the value of $I_1$ at the intersection of the yield cap and the $J_2$ axis, $C$ is the value of $I_1$ at the center of the ellipse, and $b$ is the value of $\sqrt{J_2}$ when $I_1 = C$. $X$ is a hardening parameter that controls the change in size of the moving yield surface and the magnitude of the plastic deformation, and $X$ depends on the plastic volumetric strain $\varepsilon_p$ through:

$$
X = \frac{1}{2K} \ln \left( 1 - \frac{\rho}{W} \right) + X_o
$$

where $D$, $W$, and $X_o$ are the material parameters. Note that $W$ characterizes the ultimate plastic volumetric strain, $D$ denotes the total volumetric plastic strain rate, and $X_o$ determines the initiation of volumetric plastic deformation under hydrostatic loading conditions.

Table 2

|  | $ho$ (kN/m$^3$) | $\gamma_m$ (kN/m$^3$) | USCS w (%) | $\gamma_v$ (kN/m$^3$) | $\varepsilon_p$ (blows/0.3 m) |
|---|---|---|---|---|---|
| 16 | 10 | 18.5 | SW | 12.5 | 20.8 | 2120.3 | 93 |
| 30 | 16 | 18.5 | SW | 12.5 | 20.8 | 2120.3 | 93 |
| 32 | 16 | 18.5 | SW | 12.5 | 20.8 | 2120.3 | 93 |
| 36 | 16 | 18.5 | SW | 12.5 | 20.8 | 2120.3 | 93 |
| 40 | 16 | 18.5 | SW | 12.5 | 20.8 | 2120.3 | 93 |

Fig. 2. Variation of peak vertical acceleration with peak horizontal acceleration for the 20 selected earthquake records.

Table 1

Ground motion parameters of the 20 earthquake records.

<table>
<thead>
<tr>
<th>No.</th>
<th>Earthquake</th>
<th>PEER record</th>
<th>Date</th>
<th>Duration (s)</th>
<th>Peak acc. Hor. (g)</th>
<th>Peak acc. Vert. (g)</th>
<th>Peak velocity Hor. (cm/s)</th>
<th>Peak velocity Vert. (cm/s)</th>
<th>Peak disp. Hor. (cm)</th>
<th>Peak disp. Vert. (cm)</th>
<th>Fault type</th>
<th>$M_w$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Duzce, Turkey</td>
<td>P1557</td>
<td>1999/11/12</td>
<td>30.02</td>
<td>0.114</td>
<td>0.093</td>
<td>11.08</td>
<td>7.66</td>
<td>9.28</td>
<td>8.04</td>
<td>Strike-Slip</td>
<td>7.1</td>
</tr>
<tr>
<td>2</td>
<td>Orovillo</td>
<td>P0115</td>
<td>1975/08/08</td>
<td>13.65</td>
<td>0.168</td>
<td>0.073</td>
<td>3.07</td>
<td>1.67</td>
<td>0.17</td>
<td>0.06</td>
<td>Normal</td>
<td>4.7</td>
</tr>
<tr>
<td>3</td>
<td>Kobe, Japan</td>
<td>P1054</td>
<td>1995/01/16</td>
<td>35.03</td>
<td>0.212</td>
<td>0.059</td>
<td>27.90</td>
<td>6.40</td>
<td>7.71</td>
<td>2.57</td>
<td>Strike-Slip</td>
<td>6.9</td>
</tr>
<tr>
<td>4</td>
<td>Coyote Lake</td>
<td>P0149</td>
<td>1979/08/06</td>
<td>26.815</td>
<td>0.229</td>
<td>0.160</td>
<td>28.75</td>
<td>5.18</td>
<td>4.86</td>
<td>1.26</td>
<td>Strike-Slip</td>
<td>5.7</td>
</tr>
<tr>
<td>5</td>
<td>Kobe, Japan</td>
<td>P1054</td>
<td>1995/01/16</td>
<td>35.03</td>
<td>0.243</td>
<td>0.059</td>
<td>37.76</td>
<td>6.40</td>
<td>8.86</td>
<td>2.57</td>
<td>Strike-Slip</td>
<td>6.9</td>
</tr>
<tr>
<td>6</td>
<td>Coalita</td>
<td>P0246</td>
<td>1983/05/02</td>
<td>40.02</td>
<td>0.282</td>
<td>0.097</td>
<td>40.85</td>
<td>11.38</td>
<td>8.10</td>
<td>4.11</td>
<td>Reverse</td>
<td>6.4</td>
</tr>
<tr>
<td>7</td>
<td>Northridge</td>
<td>P0887</td>
<td>1994/01/17</td>
<td>40.04</td>
<td>0.344</td>
<td>0.552</td>
<td>40.44</td>
<td>17.73</td>
<td>15.06</td>
<td>8.54</td>
<td>Reverse</td>
<td>6.7</td>
</tr>
<tr>
<td>8</td>
<td>Loma Prieta</td>
<td>P0736</td>
<td>1989/10/18</td>
<td>30.01</td>
<td>0.367</td>
<td>0.338</td>
<td>45.00</td>
<td>15.02</td>
<td>20.26</td>
<td>9.03</td>
<td>Reverse-Oblique</td>
<td>6.9</td>
</tr>
<tr>
<td>9</td>
<td>Loma Prieta</td>
<td>P0745</td>
<td>1989/10/18</td>
<td>30.01</td>
<td>0.479</td>
<td>0.455</td>
<td>45.11</td>
<td>17.65</td>
<td>11.26</td>
<td>7.12</td>
<td>Reverse-Oblique</td>
<td>6.9</td>
</tr>
<tr>
<td>10</td>
<td>Northridge</td>
<td>P0883</td>
<td>1994/01/17</td>
<td>40.04</td>
<td>0.514</td>
<td>0.217</td>
<td>52.04</td>
<td>12.29</td>
<td>15.52</td>
<td>5.22</td>
<td>Reverse</td>
<td>6.7</td>
</tr>
<tr>
<td>11</td>
<td>Cape Mendocino</td>
<td>P0810</td>
<td>1992/04/25</td>
<td>40.04</td>
<td>0.549</td>
<td>0.195</td>
<td>41.90</td>
<td>10.54</td>
<td>19.74</td>
<td>7.04</td>
<td>Reverse</td>
<td>6.4</td>
</tr>
<tr>
<td>12</td>
<td>Northridge</td>
<td>P0883</td>
<td>1994/01/17</td>
<td>40.04</td>
<td>0.568</td>
<td>0.217</td>
<td>51.82</td>
<td>12.29</td>
<td>8.86</td>
<td>5.22</td>
<td>Reverse</td>
<td>6.7</td>
</tr>
<tr>
<td>13</td>
<td>Loma Prieta</td>
<td>P0745</td>
<td>1989/10/18</td>
<td>30.01</td>
<td>0.644</td>
<td>0.455</td>
<td>55.29</td>
<td>17.65</td>
<td>10.62</td>
<td>7.12</td>
<td>Reverse-Oblique</td>
<td>6.9</td>
</tr>
<tr>
<td>14</td>
<td>Kobe, Japan</td>
<td>P1054</td>
<td>1995/01/16</td>
<td>35.03</td>
<td>0.694</td>
<td>0.433</td>
<td>67.80</td>
<td>34.76</td>
<td>30.91</td>
<td>11.92</td>
<td>Strike-Slip</td>
<td>6.9</td>
</tr>
<tr>
<td>15</td>
<td>Kobe, Japan</td>
<td>P1054</td>
<td>1995/01/16</td>
<td>35.03</td>
<td>0.712</td>
<td>0.255</td>
<td>49.39</td>
<td>22.02</td>
<td>26.95</td>
<td>19.20</td>
<td>Reverse-Oblique</td>
<td>7.6</td>
</tr>
<tr>
<td>16</td>
<td>Northridge</td>
<td>P0883</td>
<td>1994/01/17</td>
<td>40.04</td>
<td>0.753</td>
<td>0.467</td>
<td>84.47</td>
<td>33.02</td>
<td>18.70</td>
<td>9.74</td>
<td>Reverse</td>
<td>6.7</td>
</tr>
<tr>
<td>17</td>
<td>Northridge</td>
<td>P0105</td>
<td>1994/01/17</td>
<td>40.04</td>
<td>0.838</td>
<td>0.852</td>
<td>166.02</td>
<td>50.63</td>
<td>28.07</td>
<td>11.96</td>
<td>Reverse</td>
<td>6.7</td>
</tr>
<tr>
<td>18</td>
<td>Northridge</td>
<td>P0102</td>
<td>1994/01/17</td>
<td>40.01</td>
<td>0.897</td>
<td>0.586</td>
<td>102.20</td>
<td>34.59</td>
<td>45.12</td>
<td>25.67</td>
<td>Reverse</td>
<td>6.7</td>
</tr>
<tr>
<td>19</td>
<td>Chi-Chi, Taiwan</td>
<td>P1532</td>
<td>1999/09/20</td>
<td>50.015</td>
<td>0.958</td>
<td>0.311</td>
<td>68.60</td>
<td>34.16</td>
<td>32.08</td>
<td>16.70</td>
<td>Reverse-Oblique</td>
<td>7.6</td>
</tr>
<tr>
<td>20</td>
<td>Northridge</td>
<td>P0935</td>
<td>1994/01/17</td>
<td>40.04</td>
<td>0.990</td>
<td>1.048</td>
<td>77.17</td>
<td>73.46</td>
<td>30.21</td>
<td>21.66</td>
<td>Reverse</td>
<td>6.7</td>
</tr>
</tbody>
</table>
The Drucker parameters for the three soils are summarized in Table 3.

Two strength parameters required by the geologic cap model are $\alpha$ and $\theta$, which govern the location of the fixed yield surface $f_1$. Adopting the Drucker–Prager failure criterion and matching the compressive meridian of the Mohr–Coulomb criterion, the strength parameters $\alpha$ and $\theta$ can be related to $c'$ and $\phi'$ through:

$$\alpha = \frac{6c'\cos \phi'}{\sqrt{3(1 - \sin \phi')}}$$

$$\theta = \frac{2\sin \phi'}{\sqrt{3(1 - \sin \phi')}}$$

A minimal value of $c'$ equal to 5 kN/m$^2$ was assumed for all three soils in the parametric study. The small value of $c'$ was added to provide numerical stability during finite element calculations. Cap model failure envelope exponential coefficient $\gamma$ and exponent $\beta$ were further assumed to be zero so that $f_1$ takes the same form as the Drucker–Prager failure criterion. The cap model strength parameters for the three soils are summarized in Table 3.

### 2.2.2. Cap model hardening parameters in parametric study

Determination of cap model hardening parameters required by Eq. (3) followed the procedure provided previously by Lee et al. (2010). The hardening parameters were developed based on the assumed relative densities $D_r$ of the three soils. The cap model hardening parameters for the three soils are summarized in Table 3. The parameters needed to determine mean stress dependent variables such as $K_c$, $C$, and $D$ for the three soils are summarized in Table 4. Variations of mean stress dependent variables $K_c$, $C$, and $D$ with depth for the three soils are shown in Fig. 4. As indicated in Fig. 4, nonlinear response is observed with increasing depth for the mean stress dependent variables. Variation of $R$ with mean stress is provided in Lee et al. (2010).

The stress–strain curves were generated from numerical triaxial test utilizing a single element model under axisymmetric loading condition. The single element model was first subjected to hydrostatic compression pressure $p_3$ (or mean stress $p$) and subsequently subjected to the application of deviatoric stress $\Delta \sigma$. The loading condition was consistent with the consolidated–drained conventional triaxial compression test. Fig. 5 shows the stress–strain curves of the three soils at the same confining pressure of 70 kPa. Stiffer stress–strain response is observed for the soil with $\phi' = 40^\circ$, and during shearing, the $\phi' = 40^\circ$ soil also contracts less in volumetric strain than the $\phi' = 32^\circ$ soil. The pattern is consistent with realistic soil behavior with the notion that stiffer response is associated with the higher strength soil.

### 2.3. Geosynthetic reinforcement characterization

Three geogrid reinforcements were devised for the parametric study. The tensile load–strain responses of the three geogrids were estimated based on results of various geogrid tensile load tests as shown in Fig. 6, and the three geogrids were termed accordingly based on their stiffness characteristics. The high strength geogrid exhibits the near upper-bound tensile load–strain response, whereas the low-strength geogrid reflects closely the lower-bound tensile load–strain response. The medium strength geogrid is

### Table 3

Cap model parameters for the three soils of parametric study.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>$\phi' = 32^\circ$</th>
<th>$\phi' = 36^\circ$</th>
<th>$\phi' = 40^\circ$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk modulus, $K_i$ (MPa) (see Fig. 4)</td>
<td>Vary with $p$</td>
<td>Vary with $p$</td>
<td>Vary with $p$</td>
</tr>
<tr>
<td>Shear modulus, $C$ (MPa) (see Fig. 4)</td>
<td>Vary with $p$</td>
<td>Vary with $p$</td>
<td>Vary with $p$</td>
</tr>
<tr>
<td>Failure envelope parameter, $a$ (kPa)</td>
<td>5.9</td>
<td>5.8</td>
<td>5.6</td>
</tr>
<tr>
<td>Failure envelope linear coefficient, $\theta$</td>
<td>0.2477</td>
<td>0.2814</td>
<td>0.3149</td>
</tr>
<tr>
<td>Failure envelope exponential coeff., $\gamma$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Failure envelope exponent, $\beta$ (kPa)$^{-1}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Shape factor, $R$ (see Lee et al., 2010)</td>
<td>Vary with $p$</td>
<td>Vary with $p$</td>
<td>Vary with $p$</td>
</tr>
<tr>
<td>Hardening law exponent, $D$ (see Fig. 4)</td>
<td>Vary with $p$</td>
<td>Vary with $p$</td>
<td>Vary with $p$</td>
</tr>
<tr>
<td>Hardening law coefficient, $W$</td>
<td>0.0401</td>
<td>0.0277</td>
<td>0.0189</td>
</tr>
<tr>
<td>Hardening law exponent, $X_i$ (kPa)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
**Table 4** Parameters for finding mean stress dependent variables $K$, $G$, and $D$ for the three soils of parametric study.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>$\phi = 32^\circ$</th>
<th>$\phi = 36^\circ$</th>
<th>$\phi = 40^\circ$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative density, $D_i$ (%)</td>
<td>44</td>
<td>65</td>
<td>80</td>
</tr>
<tr>
<td>Initial tangent bulk modulus, $K_1$ (kPa)</td>
<td>6089</td>
<td>8982</td>
<td>11,049</td>
</tr>
<tr>
<td>Asymptotic total volumetric strain, $(\upsilon_v)_a$</td>
<td>0.0445</td>
<td>0.0307</td>
<td>0.0209</td>
</tr>
<tr>
<td>Ultimate total volumetric strain, $(\upsilon_v)_u$</td>
<td>0.0423</td>
<td>0.0222</td>
<td>0.0199</td>
</tr>
<tr>
<td>Ultimate tangent bulk modulus, $(K_V)_u$ (MPa)</td>
<td>2436</td>
<td>3593</td>
<td>4419</td>
</tr>
<tr>
<td>Ultimate elastic volumetric strain, $(\epsilon_v)_e$</td>
<td>0.0021</td>
<td>0.0015</td>
<td>0.001</td>
</tr>
<tr>
<td>Ultimate plastic volumetric strain, $(\epsilon_v)_p$</td>
<td>0.0401</td>
<td>0.0277</td>
<td>0.0189</td>
</tr>
</tbody>
</table>

viewed as having the average load–strain response. The three geogrids were assumed to have a constant thickness of 1.5 mm. The geogrids were simulated by the plastic-kinematic model, which describes a bilinear stress–strain response. Description of the bilinear stress–strain model was provided in Lee et al. (2010). The slope of tensile load–strain curve is the product of modulus (e.g., Young’s modulus $E$ or tangent modulus $E_t$) and thickness of the geogrid. The tensile load is expressed in units of force per unit width of the reinforcement. Inversely, modulus was calculated by dividing the slope of the tensile load–strain curve by the geogrid thickness. Similarly, the yield stress $\sigma_y$ for the bilinear model was found by dividing the yield tensile load by the thickness of geogrid. The model parameters for the three geogrids are summarized in Table 5. It should be noted that no failure criterion is implemented in the plastic-kinematic model, thus a geogrid rupture failure cannot occur. Reinforcement tensile load at 5% strain ($T_{5\%}$) was selected to represent the stiffness characteristic, since $T_{5\%}$ is readily available from product specifications (e.g., IFAI, 2011). Values of $T_{5\%}$ for the three geogrids adopted in the study are included in Fig. 6.

### 2.4. Development of model dimensions

Free-standing simple GRS wall was considered in the parametric study. The models in the parametric study were developed based on dimensions defined in Fig. 7. The length of the retained earth behind the reinforced soil mass was extended beyond the theoretical static passive slip plane. Similarly, the length of the foundation soil in front of the wall was also extended beyond the static passive slip plane emanating from the lower left boundary of the model. The extent of the boundaries alongside the model was adopted in order to minimize interference between the model boundary and the potential formation of slip surfaces. For comparison, the extents of numerical models from other research studies are summarized in Table 6.

The depth of the foundation soil was selected to be 0.75 of the wall height as it is the minimum boring depth required for a subsurface investigation (Arman et al., 1997). It was further assumed that competent bedrock underlies the foundation soil. This minimal foundation soil depth conforms to the assumption that the wall is situated in a competent site, where problematic foundation soils that might lose their strengths when subjected to seismic loads do not exist (e.g., liquefiable soils). The groundwater table was assumed to be below the bottom of the foundation soil, and the deep groundwater table does not affect the seismic performance of the wall. In the parametric study, granular soil was assumed as the backfill for the reinforced soil mass. In addition, it was assumed that on-site material was used to construct the wall; hence all soils including the reinforced soil, retained earth, and the foundation soil would exhibit similar behavior. Only one soil type was specified in each numerical wall model.

The effect of lateral extent of the vertical side boundaries on the seismic response of GRS wall was evaluated. The evaluation was conducted on a 6 m high, 10° wall facing batter, 0.4 m reinforcement spacing, and $\phi = 36^\circ$ wall. The depth of foundation soil was kept constant at 0.75 of the wall height, while the extent of the vertical side boundaries was changed to 0.5 and 1.5 times of the proposed extent. The three models were subjected to the same Northridge earthquake shaking (i.e., No. 12, P0883, ORR090) with peak horizontal and vertical accelerations of 0.568 g and 0.217 g, respectively. The calculated maximum horizontal displacement...
profiles are presented in Fig. 8. As indicated in the figure, the model with 0.5 times the proposed extent experienced the least amount of horizontal displacement, and the models of the proposed extent and 1.5 times the proposed extent experienced larger horizontal displacements. However, the variation in horizontal displacement is minimal between the proposed extent and that of the 1.5 times the proposed extent. The results indicated that the interference of vertical side boundaries to the response of the model diminishes with the distance beyond the proposed extent of the vertical side boundaries. The proposed boundary extent was thus considered adequate and was adopted in the parametric study.

3. Parametric study program

The purposes of the parametric study were to examine the parameters that could affect the seismic responses of GRS walls and to determine the extent of influence a particular parameter might have on the seismic responses. The parameters considered include (1) wall height $H$, (2) wall batter angle $\phi'$, (3) soil friction angle $\phi$, (4) reinforcement spacing $S_r$, and (5) reinforcement stiffness $T$. These parameters are basic features and components in the construction of a GRS wall, which are also considered as the primary parameters in the design of such wall system. The parametric study program is shown schematically in Fig. 9. A total of 11 models were developed for the parametric study.

For each of the parameters examined, the baseline case was encompassed by a lower value and a higher value. The selected parameter values are typical of free-standing GRS wall having simple wall geometry. Generic facing block dimension was used, where the width and the height of block were conveniently assumed to be 0.3 m and 0.2 m, respectively. For all 11 models, a uniform reinforcement length of 0.7 times the wall height was specified as the ratio of 0.7 is recommended in the FHWA design guidelines. Although the ratio of 0.7 may not yield the most cost...

![Fig. 5. Triaxial compression stress–strain curves of three granular soils at confining pressure of 70 kPa.](image5)

![Fig. 6. Comparison of tensile load test results between idealized geogrids and typical geogrids Bathurst and Cai, 1994; Cazzuffi et al., 1993; Hirakawa et al., 2003; Lee et al., 2002..](image6)

![Fig. 7. Numerical model dimensions adopted in the parametric study.](image7)

![Table 5 Plastic—kinematic model parameters for geogrid reinforcements.](table5)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>High stiffness</th>
<th>Medium stiffness</th>
<th>Low stiffness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density, $\rho$ (kg/m³)</td>
<td>1030</td>
<td>1030</td>
<td>1030</td>
</tr>
<tr>
<td>Young’s modulus, $E$ (MPa)</td>
<td>1155.6</td>
<td>533.3</td>
<td>160</td>
</tr>
<tr>
<td>Poisson’s ratio, $\nu$</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Yield stress, $\sigma_y$ (MPa)</td>
<td>34.7</td>
<td>21.3</td>
<td>8</td>
</tr>
<tr>
<td>Tangent modulus, $E_t$ (MPa)</td>
<td>656.4</td>
<td>266.7</td>
<td>35.6</td>
</tr>
</tbody>
</table>

![Table 6 Summary of numerical model boundary extents from wall facing adopted by various researchers ($H$ = wall height).](table6)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Front of wall</th>
<th>Back of wall</th>
<th>Foundation depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bathurst and Hatami (1998)</td>
<td>0.375$H$</td>
<td>6.667$H$</td>
<td>0.167$H$</td>
</tr>
<tr>
<td>Hatami and Bathurst (2000)</td>
<td>0.272$H$</td>
<td>6$H$</td>
<td>0.111$H$</td>
</tr>
<tr>
<td>Ling et al. (2005b)</td>
<td>1.667$H$</td>
<td>3.38$H$</td>
<td>0.5$H$</td>
</tr>
<tr>
<td>Liu et al. (2011)</td>
<td>1.875$H$</td>
<td>3.125$H$</td>
<td>0.625$H$</td>
</tr>
<tr>
<td>Rowe and Ho (1998)</td>
<td>2.5$H$</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Rowe and Skinner (2001)</td>
<td>2.263$H$</td>
<td>1.863$H$</td>
<td>1.263$H$</td>
</tr>
<tr>
<td>This study</td>
<td>1.65$H$</td>
<td>2.7$H$</td>
<td>0.75$H$</td>
</tr>
</tbody>
</table>
model can be thought of as an extremely large scale shaking table test. Similar to a shaking table test, buffer material that has the same material properties of EPS was placed in the front and at the back of the model. The EPS material was also modeled with the solid elements.

In the numerical model, gravity was simulated as a body load and was applied at the onset of the analysis (i.e., gravity turn-on method). The body load takes the form of a step function and was maintained at the constant gravitation acceleration throughout the duration of seismic loading. Note that a quiet period of 12 s was sustained after the application of gravity load before the beginning of seismic loading in order to damp the model and to reach quasi-static condition. The seismic loading was simulated by prescribing the horizontal and vertical acceleration time histories to the vertical side boundary nodes and nodes at the base of the model. Another quiet period of 12 s was added at the end of seismic loading to again bring the model to a stable condition.

Contact interfaces were specified between two distinct parts within the model. By including the thickness of geogrid reinforcement in the model, element incompatibility occurs in the backfill of the model. The “tied-surface-to-surface” contacts were used to tie the incompatible backfill elements. The contact interface is defined by the coefficient of friction $\mu$ and $\mu$ for contacts with soil was estimated using $\mu = 2/3 \tan \phi'$. Values of $\mu$ adopted in the parametric study are summarized in Table 7. Note that as a dry stack modular block wall, no mechanical connections were used to connect the facing block and the reinforcement; connection was based solely on the interface frictional resistance.

As an example, the model geometry and the locations where performances were recorded for the baseline model are shown in Fig. 10a, and the corresponding finite element mesh is shown in Fig. 10b. Note that embedment depth at the toe of the wall was not considered. The minimum wall embedment depth of 0.5 m is suggested in the FHWA design methodology. Stability of the wall model is expected to increase if the embedment depth is incorporated in the model. The results without considering the embedment depth would thus be more conservative.

### 4. Results of parametric study

Results of parametric study were analyzed through statistical means to determine relationships between the seismic performances of free-standing simple GRS walls and the various design parameters. Multivariate linear regression analysis was performed to determine prediction equations of seismic performances. The regression analysis utilized the curve-fitting technique, where the best-fit prediction equations were developed using the least squares method based on the available finite element model (FEM) data. The least squares solution requires that the sum of squared deviations of the predicted values from the actual observed values is at a minimum. In this study, the seven design parameters, including (1) the peak horizontal acceleration PHA, (2) peak vertical acceleration PVA, (3) wall height $H$, (4) wall batter angle $\alpha$, (5) effective soil friction angle $\phi'$, (6) reinforcement spacing $S_o$, and (7) effective wall system, it is anticipated that a significant reduction of the ratio could possibly result in wall instability and lead to adverse performances.

The modeling procedure for the parametric study is identical to the procedure described previously in Lee et al. (2010). Same as the validation process, the parametric numerical models were analyzed under plane strain condition. Two types of elements were used to discretize the numerical models. The facing blocks, reinforced soil, retained earth, and foundation soil were discretized with 8-node constant stress solid elements. The geogrid reinforcements were discretized with 4-node Belytschko–Tsay shell elements, and one integration point was assigned in the shell element that allows no bending resistance. The numerical effective soil friction angle $\phi'$.

### Table 7

<table>
<thead>
<tr>
<th>Contact</th>
<th>$\phi' = 32^\circ$</th>
<th>$\phi' = 36^\circ$</th>
<th>$\phi' = 40^\circ$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete–soil</td>
<td>0.42</td>
<td>0.48</td>
<td>0.56</td>
</tr>
<tr>
<td>Concrete–concrete</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Geogrid–concrete</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Geogrid–soil</td>
<td>0.42</td>
<td>0.48</td>
<td>0.56</td>
</tr>
<tr>
<td>EPS–soil</td>
<td>0.42</td>
<td>0.48</td>
<td>0.56</td>
</tr>
</tbody>
</table>

### Table 7

Summary of coefficient of friction for contact interfaces.

<table>
<thead>
<tr>
<th>Effect of wall height:</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Wall height = 6 m</td>
</tr>
<tr>
<td>* Wall batter angle = 10°</td>
</tr>
<tr>
<td>* Soil friction angle = 36°</td>
</tr>
<tr>
<td>* Reinforcement spacing = 0.4 m</td>
</tr>
<tr>
<td>* Reinforcement stiffness = medium ($T_{eq} = 36$ kN/m)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effect of wall batter angle:</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 3 m</td>
</tr>
<tr>
<td>* 9 m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effect of soil friction angle:</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 32°</td>
</tr>
<tr>
<td>* 45°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effect of reinforcement spacing:</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 0.2 m</td>
</tr>
<tr>
<td>* 0.6 m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effect of reinforcement stiffness:</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Low stiffness ($T_{eq} = 12$ kN/m)</td>
</tr>
<tr>
<td>* High stiffness ($T_{eq} = 72$ kN/m)</td>
</tr>
</tbody>
</table>

![Fig. 8. Effect of lateral boundary extent on wall displacement.](image)

![Fig. 9. Parametric study program.](image)
reinforcement stiffness \(T_{5\%}\) are considered as the independent variables (or predictor variables). The dependent variables are the FEM calculated seismic performances, such as (1) the maximum horizontal displacement \(D_h\), (2) maximum crest settlement \(D_v\), and (3) maximum reinforcement tensile load \(T_{\text{total}}\).

The results indicated that all seismic performances show nonlinear relationship with design parameter PHA. The nonlinear response is expected given nonlinear material behavior, contact interface interaction, and complex loading pattern simulated in the numerical model. The observed nonlinear response can readily be described by the exponential function. As such, it is then appropriate to take the natural logarithm of the seismic performances to be the values of dependent variables in the multivariate linear regression analysis. The multivariate linear regression equation with transformed dependent variable, \(Y\), \(X_1\), \(X_2\), ..., \(X_7\) = independent variables, \(b_0\) = constant, and \(b_1\), \(b_2\), ..., \(b_7\) = regression coefficients. Eq. (6) can be expressed in terms of design parameters as:

\[
\ln(Y) = b_0 + b_1 \text{PHA} + b_2 \text{PVA} + b_3 H + b_4 \phi' + b_5 S_v + b_7 T_{5\%}
\]

(7)

The prediction equation, which is an exponential function, is found by taking the inverse of the natural logarithmic function of Eq. (7) as:

\[
Y = \exp(b_0 + b_1 \text{PHA} + b_2 \text{PVA} + b_3 H + b_4 \phi' + b_5 S_v + b_7 T_{5\%})
\]

(8)

The exponent of the prediction equation consists of a linear combination of the independent variables with coefficients resulted from the regression analysis. The results of regression analysis, including \(R^2\) value, for predicting seismic performances of GRS walls are summarized in Table 8. The units of predictors PHA, PVA, \(H\), \(\omega\), \(\phi'\), \(S_v\), and \(T_{5\%}\) are \(g\) (gravitational acceleration), \(\text{g}\), \(\text{meter}\).
degree, degree, meter, and kN/m, respectively. Units of seismic performances  $\Delta_h$, $\Delta_v$, and $T_{\text{total}}$ are millimeter, millimeter, and kN/m, respectively.

The prediction equations established using the exponential function do not pass through the origin, since a zero intercept violates the exponential function. Use of the exponential function inevitably introduces finite amount of response at very low values of PHA. However, the exponential correlations were considered representative of the FEM results within the range of conditions evaluated in the parametric study.

4.1. Effects of wall height

Three wall heights of 3 m, 6 m, and 9 m were evaluated in the parametric study. The seismic responses of maximum horizontal displacement and maximum reinforcement tensile load for the three wall heights are compared in Figs. 11 and 12, respectively. As indicated by these figures, it is apparent that all seismic responses increase in magnitude with increasing wall height in both the FEM results and the FHWA analysis values. Note that the displacement contours presented in the comparisons were calculated with PVA assumed to be to 1/3 of PHA in order to show the trends of the prediction equations.

As indicated by the regression curves in Figs. 11 and 12, the rates of increasing responses for the 9 m wall are higher than those of the 3 m wall. This suggests that tall walls are more susceptible to higher PHA than the short walls. The horizontal displacement contours at the end of the analysis for the 9 m wall subjected to the most severe seismic loading out of the 20 earthquake records (i.e., No. 20, P0935, TAR360) is presented in Fig. 13. Top portion of the wall tended to be less stable with decreasing wall batter angle (e.g., near vertical wall facing).

4.2. Effects of wall batter angle

Three wall batter angles of $5^\circ$, $10^\circ$, and $15^\circ$ were evaluated in the parametric study. The seismic responses of maximum horizontal displacement for the three wall batter angles are compared in Fig. 14. As indicated by the results, all the responses increase in magnitude with decreasing wall batter angle in both the FEM results and the FHWA analysis values. The results imply that GRS wall tends to be less stable with decreasing wall batter angle (e.g., near vertical wall facing).

![Fig. 11. Effect of wall height on maximum horizontal displacement.](image1)

![Fig. 12. Effect of wall height on maximum reinforcement tensile load.](image2)
4.3. Effects of soil friction angle

Three soil friction angles of 32°, 36°, and 40° were evaluated in the parametric study. The seismic responses of maximum horizontal displacement for the three soil friction angles are compared in Fig. 15. The results indicate that the magnitudes of seismic responses increase with decreasing friction angle as the stiffness of the soil is directly proportional to friction angle (see Fig. 5 for soil behavior). The calculated displacements and settlements are in agreement with the notion that a GRS wall built using higher friction angle backfill would be more stable than that of a lower friction angle backfill. Note also that the maximum reinforcement tensile loads calculated by FEM follow the trend where the tensile load increases with decreasing friction angle, which is in agreement that reinforcement tensile loads are expected to be higher for the case with a lower friction angle backfill.

4.4. Effects of reinforcement spacing

Three reinforcement vertical spacings of 0.2 m, 0.4 m, and 0.6 m were evaluated in the parametric study. The seismic responses of maximum crest settlement and maximum reinforcement tensile load for the three reinforcement spacings are compared in Figs. 16 and 17, respectively. The FEM results indicate that uniform reinforcement spacing with value between 0.2 m and 0.6 m enables a coherent composite to be created, and that the maximum horizontal displacement is not significantly affected by the reinforcement spacing. It should be noted that small reinforcement spacing, however, has added benefits to the wall system, such as better quality control of backfill compaction (i.e., due to smaller lift thickness) and more tolerable against potential creep of geosynthetics.

Based on the FEM results, effect of spacing is more pronounced in wall crest settlement and reinforcement tensile load than the horizontal displacement. Magnitudes of wall crest settlement and reinforcement tensile load are proportional to the reinforcement spacing. Small reinforcement spacing of 0.2 m is an effective method in reducing crest settlement and reinforcement tensile load. The reinforcement tensile loads calculated by FEM are lower than the FHWA analysis values for spacings of 0.4 m and 0.6 m; FEM results are higher than the FHWA values for spacing of 0.2 m for PHA greater than approximately 0.5 g (see Fig. 17).

4.5. Effects of reinforcement stiffness

Three geogrids with tensile loads at 5% axial strain of 12 kN/m, 36 kN/m, and 72 kN/m were evaluated in the parametric study. The three tensile loads at 5% strain reflect the stiffnesses of the reinforcement (see Fig. 6 for reinforcement behavior), where reinforcements with $T_{5\%}$ of 12 kN/m, 36 kN/m, and 72 kN/m are...
4.6. Distribution of reinforcement tensile load

Reinforcement tensile load is needed in the evaluation of GRS wall internal stability. In the parametric study, the maximum reinforcement tensile loads calculated by FEM are in general lower than the FHWA analysis values. This section presents the distribution of tensile load within the reinforced soil mass. In the FHWA methodology, a linear slip surface based on Coulomb’s active failure wedge is assumed to pass through the reinforced soil mass. FHWA methodology further assumes that the slip surface coincide with the line of maximum reinforcement tensile load. The anticipated tension distribution along a reinforcement layer takes the shape of a bell curve with the maximum value anchored at the intersection of slip surface and the reinforcement layer; tensile load decreases at increasing distance away from the intersection. The tensile load contours from the load distribution assumed by FHWA methodology will result in a “ridge” within the reinforced soil mass that slopes downward toward top of the wall along the slip surface.

The baseline model analyzed using the Northridge earthquake record (No. 12, P0883, ORR090) with PHA of 0.568 g was processed to generate reinforcement tensile load distribution plots. The effect of seismic shaking is illustrated in the maximum tension lines and the contours plots shown in Fig. 19. Under static condition, the tensile load is concentrated near the wall facing for the top 3/4 of the reinforcements, and the maximum tension line bulges into the reinforced soil mass for the bottom 1/4 of the reinforcements (see Fig. 19a); top reinforcements experienced near zero tension toward the back of the wall (see Fig. 19b). Under seismic condition, all reinforcements experienced higher tensile load than the static condition. The pattern of tension distribution is similar to the static condition, where tensile load is concentrated near the wall facing for the top 3/4 of the reinforcements. However, the maximum tension line for the bottom 1/4 of the reinforcements shifted further inward the reinforced soil mass as compared to the static condition (see Fig. 19a). High reinforcement tensile loads in the bottom 1/4 of the reinforcement indicate that the reinforcements restrain the backfill from lateral translation; stated differently, the reinforcements prevent the backfill from kicking outward. Also, an increase in tensile load in the top reinforcements toward the back of the wall was observed between the static and seismic cases indicating that these reinforcements contribute to the seismic stability of the wall even though the reinforcements have near zero tension under static condition (see Fig. 19c).

Both the maximum tension line and the contours of tensile load are different between the FHWA methodology and those calculated by FEM. A distinct linear maximum tension line is not substantiated by the FEM results. In addition, the tensile load contours based on FEM results are very different and are more complex than the simple “ridge” suggested by the FHWA methodology. If one were to apply the “ridge” analogy to the FEM results, there could be multiple slip surfaces within the reinforced soil mass.

4.7. Design considerations

The prediction equations provided herein (see Table 8) are considered as alternatives to the FHWA methodology for assessing seismic performances of free-standing simple GRS walls. The prediction equations are applicable for conditions similar to those considered in the parametric study and when PHA is greater than the limit of 0.29 g set forth by the FHWA methodology. The earthquake induced maximum horizontal displacement $D_h$ and the maximum crest settlement $D_s$ are most likely to take place near the top of the wall and close to the wall facing, respectively. The maximum reinforcement tensile load $T_{total}$ is associated with the lower most layer and is located near the mid-length behind the wall facing.
Fig. 19. Distribution of FEM reinforcement tensile load: (a) along individual layer, (b) contours of static tensile load, and (c) contours of seismic tensile load.
Using the prediction equations, seismic performances can be computed rapidly for evaluation in both the ultimate limit state design and the serviceability limit state design. For the serviceability limit states design, deformation tolerance expressed in terms of horizontal displacement-to-wall height ratio (or verticality) from the various guidelines were summarized by Bathurst et al. (2010) and Huang et al. (2009). A value of 5% has been suggested by Koseki et al. (1998) and Huang et al. (2009) as the limiting verticality. The limiting facing displacement could also be governed by the required clearance to the adjacent structures found at the project site. With the prediction equations, it is possible to correlate the maximum reinforcement tensile load with the maximum horizontal displacement. A designer could use the prediction equations to estimate the maximum reinforcement tensile load within the GRS wall when the required horizontal displacement or limiting verticality is given from the project site.

5. Conclusions

Seismic performances of free-standing simple GRS walls were evaluated using a validated FEM computer program. A parametric study program was performed to assess the effectiveness of different design parameters (viz., PHA, PVA, $H$, $\phi$, $S_v$, and $T_{55}$). Seismic performances evaluated include wall facing maximum horizontal displacement, maximum wall crest settlement, and maximum reinforcement tensile load. Each case in the parametric study was subjected to 20 free-field earthquake records with PHA ranging from 0.114 g to 0.990 g and PVA ranging from 0.093 g to 1.048 g. Results of parametric study were then compared against the corresponding values determined using the FHWA design methodology.

Multivariate regression analysis was performed using the results of the FEM parametric study to determine prediction equations of the seismic performances based on the design parameters. The prediction equations are applicable to conditions similar to those considered in the parametric study and can provide the first-order estimates of the seismic performances given the various design parameters. In addition, the prediction equations allow seismic performances to be estimated for PHA beyond the limitation of FHWA methodology (i.e., 0.29 g). In applying the prediction equations and when PVA is not available, one could assume PVA to be equal to 1/3·PHA to 2/3·PHA in order to capture the effects of realistic seismic loading.

The relationships between increases in the design parameters and the resulting seismic responses of GRS walls are summarized in Table 9. In Table 9, an upward pointing arrow (↑) indicates increase in value, and a downward pointing arrow (↓) indicates decrease in value. Also included in Table 9 is the order of significance (or extent of influence) of the design parameter to the individual seismic response ranging from 1 to 6. A number 1 in parenthesis indicates the most significant design parameter that could affect the seismic response, whereas a number 6 in parenthesis indicates the design parameter of least significance. Note that PHA is not included in Table 9 as it is the primary design parameter, and the wall responses are always proportional to PHA. Table 9 could assist a designer for selecting appropriate design parameters based on project's need.

The findings and conclusions drawn from this study include:

1. Failure of GRS walls due to toppling of top facing blocks is more likely than other failure modes. Seismic stability of GRS walls can be improved by joining the top two or three courses of facing block with grout or using other mechanical stabilization mechanisms.

2. In the numerical models, failure wedges were noted in the horizontal displacement contours in the retained earth behind the reinforced soil mass, and the pattern is consistent with the two-part wedge failure observed in the physical model tests.

3. GRS walls are less stable at a small batter angle (e.g., near vertical wall).

4. Wall crest settlement and reinforcement tensile load are positively related to the reinforcement spacing. Small reinforcement spacing of 0.2 m is an effective method in reducing crest settlement and reinforcement tensile load.

5. An increase in tensile load in the top reinforcements toward the back of the wall was observed between the static and seismic conditions indicating that these reinforcements contribute to the seismic stability of the wall.

6. Although reinforcement maximum tension line under static condition is not exactly identical to the maximum tension line under seismic condition, both are close to the wall facing. The maximum tension line, in general, is located close to the facing blocks for the top 3/4 of the reinforcements. The maximum tension line shifts toward the mid-length of the reinforcement for the bottom 1/4 of the reinforcements, which results in the high reinforcement tensile load mounded at the toe of the wall.

7. The reinforcement tensile loads calculated by FEM are, in general, lower than the FHWA analysis values. The reinforcement stiffness was incorporated in the prediction equation for estimating maximum reinforcement tensile, which is not considered in the FHWA design methodology.

8. The linear slip surface that passes through the reinforced soil mass assumed by the FHWA methodology could not be substantiated with the FEM results. The assumption that the maximum tension line coincides with the linear slip surface is also not supported by the FEM results. In other words, a distinct linear slip surface could not be identified from the FEM results. As suggested by the FEM results, multiple slip surfaces may exist within the reinforced soil mass.

9. In light of maximum tension line being close to the wall facing, connection strength is the prevalent failure mode in the internal stability evaluation.

Acknowledgements

This academic research work was performed during the first writer’s Student Career Experience Program (SCEP) with the U.S. Bureau of Reclamation. The career opportunity is gratefully acknowledged. The writers also wish to thank the anonymous reviewers for their critical comments and suggestions.

Nomenclature

| $A_p$ | peak horizontal acceleration coefficient |
| $A_n$ | design acceleration coefficient |
| $b$ | minor axis radius of moving yield cap (kN/m²) |
| $b_0$ | regression constant |
| $b_1...b_7$ | regression coefficients |
C  cap center stress along I1 axis (kN/m2)
c'  drained cohesion (kN/m2)
D  hardening law exponent (m2/MN)
D1  relative density
E  Young's modulus (MN/m2)
E1  tangent modulus (MN/m2)
f1  fixed yield surface or failure envelope
f2  elliptical yield cap
G  shear modulus (MN/m2)
H  wall height (m)
I1  first invariant of stress tensor (kN/m2)
I2  second invariant of deviatoric stress tensor ([kN/m2]2)
Ki  initial bulk modulus (MN/m2)
Kl  tangent bulk modulus (MN/m2)
(Kl)ult  ultimate tangent bulk modulus (MN/m2)
kh  horizontal acceleration coefficient; same as A
kv  vertical acceleration coefficient
L  reinforcement length (m)
Mr  moment magnitude
N  standard penetration number (blows/0.3 m)
PHA  peak horizontal acceleration (gravitational acceleration g)
PVA  peak vertical acceleration (gravitational acceleration g)
p  mean stress (kN/m2); same as σ3
R  shape factor or cap axis ratio
RC  relative compaction (%)
Sv  reinforcement vertical spacing (m)
total  maximum reinforcement tensile load (kN/m)
T 0x  reinforcement tensile load at 5% strain (kN/m)
W  moisture content
W  hardening law coefficient
X  cap tip (vertex) stress along I1 axis (kN/m2)
X0  preconsolidation hydrostatic pressure (kN/m2)
X1  , X2  independent (or predictor) variable
Y  dependent variable
α  failure envelope parameter
β  failure envelope exponent (m2/kN)
Δh  maximum wall facing horizontal displacement (mm)
Δv  maximum wall crest settlement (mm)
Δσ  deviatoric stress (kN/m2)
γ  failure envelope exponential coefficient (kN/m2)
γd  dry unit weight of soil (kN/m3)
γm  moist unit weight of soil (kN/m3)
if  axial strain
v  total volumetric strain
p  plastic volumetric strain
(εv)asy  asymptotic total volumetric strain
(εv)ult  ultimate total volumetric strain
(εp)ult  ultimate plastic volumetric strain
(εp)ult  ultimate plastic volumetric strain; same as W
θ  failure envelope linear coefficient
μ  coefficient of friction
ν  Poisson's ratio
p  mass density (kg/m3)
ψ  drained soil friction angle (degree)
σ3  confining stress (kN/m2); same as p
σy  yield stress (MN/m2)
ω  wall batter angle (degree)

Abbreviation
EPS  expanded polyurethane
FEM  finite element model
FHWA  Federal Highway Administration
GRS  geosynthetic-reinforced soil
MSE  mechanically stabilized earth
PEER  Pacific Earthquake Engineering Research

USCS  Unified Soil Classification System

References


