ARTICLE IN PRESS

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118 119

Genetic Testing and Early Onset Colon Cancer

See "Germline genetic features of young individuals with colorectal cancer," by Stoffel EM, Koeppe E, Everett J, et al, on page 000.

A lthough there have been encouraging decreases in the overall incidence of colorectal cancer (CRC) in the United States, a discouraging rise in incidence among those under 50 years has emerged.¹ This increase has ranged from 1.0% to 2.4% annually, and curiously, most of these early onset cases have been localized to the distal colon and rectum. The precise etiologic factors underlying this trend have yet to be elucidated.

Genetic risk factors can predispose to early onset colon cancer, and recognizing these hereditary colon cancer syndromes is critical to the management of affected individuals and their family members. Since the cloning of the APC gene that underlies the familial adenomatous polyposis syndrome in 1991, there has been an explosion in the number of genes (now >20) linked to hereditary colon cancer risk.² The best understood are the high-penetrance genes associated with the classic Mendelian syndromes: Lynch and familial adenomatous polyposis. Many other genes that exhibit moderate penetrance are not as well-understood, and the associated cancer risks remain incompletely defined. On a practical level, most known genes associated with increased CRC risk are now captured on gene "panel" tests, although even more comprehensive panels that include genes associated with all cancer types are also available.

Stoffel et al³ sought to define the frequency of germline genetic alterations in patients diagnosed with CRC <50 years of age by retrospectively reviewing genetic test results at a large academic center. There were 430 individuals who attended a genetics clinic, and 315 underwent routine testing as clinically indicated. The testing strategies included syndrome-specific testing and/or panel testing, and 117 individuals participated in more comprehensive researchbased testing. In aggregate, a germline mutation was identified in 20% of patients (85 of 430). Most mutations were associated with the high-penetrance syndromes: Lynch syndrome (58 of 85 [68%]) and familial adenomatous polyposis/MYH-associated polyposis (20 of 85 [24%]). A handful of mutations (7%) were seen in less common and/ or moderate penetrance CRC genes: TP53 (n = 2), SMAD4 (n = 2), CHEK2 (n = 1), and POLE (n = 1). One mutation (1%) was identified in a non-CRC-related gene (BRCA1).

Of note, a family history of CRC was elicited in only one-half of all mutation carriers. One-fifth of mutation carriers did not meet National Comprehensive Cancer Network clinical criteria for the relevant syndrome.³

This important study reveals that a significant proportion (20%) of individuals with early onset CRC carry a germline cancer predisposition gene. A retrospective review of 193 patients with even younger onset CRC (\leq 35 years) identified a hereditary CRC syndrome in 35%,⁴ and 19% had no family history of CRC. A prospective evaluation of 450 individuals with CRC <50 years of age who all underwent comprehensive gene panel testing identified mutations in 16%.⁵ In this study, 13% were in genes associated with CRC risk, and nearly two-thirds of these were Lynch syndrome genes, 3% were in unexpected genes not traditionally associated with CRC risk, and 33% would not have met established clinical criteria for genetic testing.

The themes that consistently emerge are that genetic mutations are relatively common in early onset colon cancer, most cases are due to Lynch syndrome, and family history and clinical criteria will miss a significant fraction of cases. What are the implications for clinical practice? First, genetic testing is clearly indicated for early onset CRC. Syndrome-specific testing is appropriate if there is a high degree of confidence for a known syndrome based on family history or tumor testing (ie, immunohistochemistry/microsatellite instability for Lynch syndrome screening⁶). Given that clinical criteria are often unreliable, however, using a CRC gene panel would be sensible in many cases. With this strategy, one must recognize that some moderate penetrance genes such as ATM or CHEK2 are included on the panel even though their precise colon cancer risks and optimal surveillance guidelines are not well-defined in the literature.²

Opting for a comprehensive cancer panel instead of a CRC-specific gene panel is reasonable when there are overlapping syndromes under consideration, but unexpected findings become more likely. Among a cohort of 1058 patients with CRC of any age who underwent comprehensive panel testing, 14 (1.4%) had an unexpected mutation in a non-CRC gene such as BRCA1/2, PALB2, or CDKN2A.⁷ This figure was higher (3%) among patients with early onset CRC.⁵ There is general agreement around the value of incidentally discovering a mutation in a clinically actionable gene like BRCA1/2, because cancer risks are well-defined and risk-reducing measures can be effective.⁸

However, unexpected test results can also present significant challenges. When a mutation is identified in the absence of any corroborating family history, it is uncertain whether the cancer risks may indeed be as high as in families who do exhibit classic features. For example, uncovering a CDH1 mutation associated with the rare hereditary diffuse gastric cancer syndrome in a patient with no family history of gastric cancer would force a difficult discussion of whether to proceed with the recommendation for prophylactic total gastrectomy.

Because of the significant medical and emotional impact that such test results can have on patients and their families, genetic testing is best accompanied by formal genetic counseling. Such services are not widely available, and, even

Q2

Gastroenterology 2018;∎:1-2

EDITORIAL

Colorectal Cancer Genes	Syndrome
High penetrance	
APC	Familial adenomatous polyposis,
	attenuated familial
	adenomatous polyposis
MSH2, MLH1,	Lynch syndrome
PIVISZ, MISHO,	
MI ITYH (biallelic)	MUTYH-associated polyposis
SMAD4. BMPR1A	Juvenile polyposis
STK11	Peutz-Jeghers syndrome
PTEN	Cowden disease
TP53	Li-Fraumeni syndrome
POLE, POLD1	Polymerase proofreading-associated
	polyposis
Moderate penetrance	
AAINZ CDH1	
CHEK2	
GALNT1	
GREM1	
MSH3	
MUTYH (monoallelic)	
NTHL1	
^a These genes are commo	nly included on commercial gene
panel tests.	ing mended on commencial gen
•	
when they are, rates of r	eferral as well as rates of atten
dance are suboptimal. In	a screening program for Lyncl
syndrome, baseline attend	ance rates at a genetic counseling
session were as low as 3	2%. ³ Overcoming this barrier i
essential for the success	ful integration of genetics inte
clinical care.	
The number of new ge	netic risk factors for colon cance
continues to grow, ^{10,11} an	d the size of gene panel tests wil
similarly enlarge. Efforts	to precisely define the clinica
significance of these disco	veries are necessary and ongoing
In the meantime, it is lik	ely that the most common color
cancer syndromes that a	e highly penetrant have already
been identified. Prompt	recognition of these syndrome
through state-of-the-art ge	enetic testing is feasible, standard

166 _{Q5} DANIEL C. CHUNG

167 Gastroenterology Division 168

morbidity and mortality.

- Center for Cancer Risk Analysis 169 Massachusetts General Hospital
- 170 Harvard Medical School
- 171 Boston, Massachusetts
- 172

165

- 173 174
- 175
- 176
- 177 178

2

	Deferrences		
	References	17	9
1.	Siegel RL, Fedewa SA, Anderson WF, et al. Colorectal	18	0
	cancer incidence patterns in the United States,	18	1
	1974-2013. J Natl Cancer Inst 2017;109(8).	182	2
2.	Gupta S, Provenzale D, Regenbogen SE, et al. NCCN	18.	3
	Guidelines Insights: Genetic/familial high-risk assess-	184	4
	ment: colorectal, version 3.2017. J Natl Comp Canc	18:	5
-	Netw 2017;15:1465–1475.	18	6
3.	Stoffel EM, Koeppe E, Everett J, et al. Germline genetic	18	7
	features of young individuals with colorectal cancer.	18	8
	Gastroenterology 2018;154:000–000.	18	9
4.	Mork ME, You YN, Ying J, et al. High prevalence of heredi-	19	0
	tary cancer syndromes in addressents and young adults	19	1
5	Beerlman B. Frankel WI. Swanson B. et al. Broyelence	192	2
5.	and spectrum of germline cancer suscentibility gene	193	3
	mutations among patients with early-onset colorectal	194	4
	cancer, JAMA Oncol 2017:3:464–471.	19:	5
6	Adar T Bodgers I H Shannon KM et al A tailored	190	5
0.	approach to BRAF and MI H1 methylation testing in a	19	/
	universal screening program for Lynch syndrome. Mod	193	8
	Pathol 2017;30:440–447.	19	9
7.	Yurgelun MB. Kulke MH. Fuchs CS. et al. Cancer sus-	200	1
	ceptibility gene mutations in individuals with colorectal	20	1
	cancer. J Clin Oncol 2017;35:1086-1095.	202	2
8.	Domchek SM, Friebel TM, Singer CF, et al. Association	20.	3 1
	of risk-reducing surgery in BRCA1 or BRCA2 mutation	204	4
	carriers with cancer risk and mortality. JAMA 2010;	20:) (
	304:967–975.	200	0 7
9.	Heald B, Plesec T, Liu X, et al. Implementation of uni-	20	/ 0
	versal microsatellite instability and immunohistochem-	200	8 0
	istry screening for diagnosing Lynch syndrome in a large	20:	9
	academic medical center. J Clin Oncol 2013;	210	1
	31:1336–1340.	21	ו ר
10.	Gala MK, Mizukami Y, Le LP, et al. Germline mutations in	212	2
	oncogene-induced senescence pathways are associated	21.	ر 4
	with multiple sessile serrated adenomas. Gastroenter-	21-	т 5
	ology 2014;146:520–529.	21.	6
11.	Bellido F, Sowada N, Mur P, et al. Association between	21	7
	germine mutations in BRFT, a subunit of the RNA poly-	21	8
	rectal cancer. Castroenterology 2018:154:181-194	219	9
	Teolai Calleer. Castioenterology 2010,134.101-194.	220	Ó
		22	1
Rep	rint requests	22	2
Addr	ess requests for reprints to: Daniel C. Chung, MD, Gastroenterology	22	3
Harv	ard Medical School, GRJ 704, 50 Blossom Street, Boston,	224	4
Mass	sachusetts 02114. e-mail: chung.daniel@mgh.harvard.edu.	22:	5
		22	6
Cont	flicts of interest	22	7
Ine	author discloses no conflicts.	223	8
	© 2018 by the AGA Institute	22	9
	0010-5083/\$36.00 https://doi.org/10.1053/j.gastro.2018.02.002	23	0
		23	1
		232	2
		233	3
		234	4
		23:	5
		23	6
		23	7

238