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analyzing the asymptotic property of the perceptron learning using a method in systems science, that is,
calculating the eigenvalues of the system matrix and the corresponding eigenvectors. We also analyzed
the AdaTron learning and the Hebbian learning in the same way and found that the learning curve of the
AdaTron learning is non-monotonic whereas that of the Hebbian learning is monotonic.
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1. Introduction

Statistical mechanical methods can apply to problems in infor-
mation science such as neural networks (Nishimori, 2001), com-
munication theory (Tanaka, 2002), and adaptive filters (Miyoshi
& Kajikawa, 2013). One successful application is the analyses of
the perceptron learning algorithm (Biehl & Schwarze, 1992; Rosen-
blatt, 1961) and its variations (Hara & Okada, 2004; Inoue & Nishi-
mori, 1997; Miyoshi, Hara, & Okada, 2005; Miyoshi & Okada, 2006a,
b; Uezu, Miyoshi, Izuo, & Okada, 2007).

The perceptron learning is an online learning algorithm where
the student updates its weight vector of a linear dichotomy accord-
ing to the teacher’s signal (Rosenblatt, 1961). Biehl and Schwarze
(1992) introduced the statistical mechanics to the analysis of the
perceptron learning and Inoue and Nishimori (1997) applied the
method to the AdaTron learning in unlearnable cases. Hara and
Okada (2004) discussed the perceptron learning with a margin and
Miyoshi and his colleagues extended the analysis to the ensemble
learning and/or noisy cases (Miyoshi et al., 2005; Miyoshi & Okada,
20064, b; Uezu et al., 2007).

In this paper, we consider the case where the teacher has noise
in its output while the student does not. In this case, the learning
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curve, which is defined as the average prediction error, is not
monotonically decreasing but has an overshoot, differently from
other cases analyzed so far (Ikeda, Hanzawa, & Miyoshi, 2013).
Although an analysis for this problem was partially given by some
of the authors (Ikeda et al., 2013), some part was given not theo-
retically but numerically.

This paper gives a theoretically rigorous and complete anal-
ysis above. In addition, we extend the analysis to other online
algorithms for perceptrons, that is, the AdaTron learning and the
Hebbian learning. Our analysis consisted of three steps. In the
first step, we applied the statistical mechanical method to our
problem, i.e., we introduced three order parameters assuming the
thermodynamic limit, and derived a system of differential equa-
tions for the three algorithms. In the second step, we calculated
the ensemble averages that appeared in the differential equations
for each algorithm using Gaussian approximations. Note this had
not been derived analytically yet in Ikeda et al. (2013). In the last
step, we applied an asymptotic analysis to our dynamical system,
i.e.,, we linearized the equations around their convergence point
and analyzed their behaviors by the eigenvalues and eigenvectors
of the state-transition matrix a.k.a. the system matrix. The three
steps elucidated how and why the overshoot phenomenon occurs.

The remainder of this paper is organized as follows. Section 2
formulates the problem we treated. Sections 3-5 are devoted to
the three steps, that is, statistical mechanical analysis, the calcula-
tion of the ensemble averages and the asymptotic analysis of the
system, respectively. We conclude the paper in Section 6.


https://doi.org/10.1016/j.neunet.2018.02.009
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2018.02.009&domain=pdf
mailto:kazushi@is.naist.jp
mailto:arata.honda@excite.jp
mailto:h.hanzawax68@gmail.com
mailto:miyoshi@kansai-u.ac.jp
https://doi.org/10.1016/j.neunet.2018.02.009

22 K. Ikeda et al. / Neural Networks 102 (2018) 21-26

2. Problem statement

Two linear perceptrons are treated: a teacher and a student,
whose connection weights are B = (By,...,By) € RV and ] =
(Ji,...,Jv) € RN, respectively. The initial value of each of the
components is independently drawn from the normal distribution
N(0, 1), that is,

(By) (B:)?) =1, (1
Ui (%) =1, (2)
where (-) denotes the mean of -, as was in Nishimori (2001).
The mth input vector x™ = (xT', ..., x{) € RN is independently
drawn from the N-dimensional normal distribution N(0, I/N) and
the corresponding output y™ of the teacher is produced as

0,
0,

y" = sgn(vpm), m=B-x"4ng, 3)

where nj is an observation noise obeying N(0, 032).

The learning rule is either the standard perceptron learning
(Biehl & Schwarze, 1992; Nishimori, 2001; Rosenblatt, 1961),
the AdaTron learning (Nishimori, 2001), or the Hebbian learn-
ing (Nishimori, 2001). In the perceptron learning, given the mth
input vector x™, the student updates its weight vector J™ as

]m+1 :Jm +mem, (4)

[T =ny"e(=y"J" - x"), (5)

where 7 is a learning coefficient and @(-) is the Heaviside function,
1 t>0,

o) = {o t=<0. ©®)

This means that it updates its weight vector when its output does
not coincide with the teacher’s one.

In the AdaTron learning and the Hebbian learning, the update
functions f™ are changed to

T =ny" "o (=y"" - x"), (7)
fm=mny", (8)
respectively.

As the learning proceeds and m increases, the weight vector,
J™, of the student approaches the teacher’s one, B. The problem of
learning curves is to evaluate how fast the covariance coefficient
between J™ and B,

B-Jm
R"= ——, 9
IBIHU™ I ®)

approaches unity in noiseless cases and another value in noisy
cases (0.70 in Fig. 1, for example).

3. Statistical mechanical analysis
3.1. Theory

The method to derive the learning curve of the student is essen-
tially the same as Nishimori (2001). We introduce auxiliary order
parameters, R™ in (9) and

™ = |™I/vN, (10)

and consider the thermodynamic limit, N, m — ocoand m/N =t.
Then,

IBll = VN, IJ°I = VN,

hold and the random vector of the inner products, (u, v), where

X"l = 1, (11)

um™m =Jm . x™ (12)
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Fig. 1. Dynamics of R. 07 = 1.0,N = 10%,n = 0.1, ...,
lines: theory (modified from Ikeda et al., 2013).

2.0, plots: experiments,

obeys the two-dimensional normal distribution N(0, X') where

1 R™
= ). (13)
By self-averaging and omitting the step index m in (4) hereafter,
we get the simultaneous differential equations of the order param-

eters,
2
= (fu) + (f > (14)
5 (fv) — (fu> R
k= l “ae ) (13)

where (-) expresses the average over (u, v) and ng ~ N(O, (r,f)
(Nishimori, 2001).

3.2. Experiments

To confirm the validity of the theory above, we conducted
some computer simulations of the perceptron learning under the
condition in Section 2. The experimental values of R coincided well
with the theoretical values for any learning coefficient, n (Fig. 1).

As a result of the experiments, the value of R converged to 0.70
for any n due to the noise on the teacher’s output. One notable
property was that R was not monotonically increasing but had an
overshoot. This overshoot phenomenon does not occur in other
cases analyzed so far (Hara & Okada, 2004; Inoue & Nishimori,
1997; Miyoshi et al., 2005; Miyoshi & Okada, 2006a; Nishimori,
2001).

A quantitative analysis of this phenomenon is given using an
asymptotic dynamical system theory in Section 5.

4. Calculation of ensemble averages

The ensemble averages (fv), (fu) and (f2) in (14) and (15) are
difficult to calculate analytically, in general. In fact, we calculated
those for the perceptron learning numerically (Ikeda et al., 2013).
However, we theoretically derived the ensemble averages for the
perceptron learning. In addition, we also calculated those for the
AdaTron learning and the Hebbian learning, which will be given
below.

The ensemble averages (fv), (fu) and (fz) for the perceptron
learning are expressed as

(fv) = u(v + ng))sgn(v + ng)v)

—n/ dnB/ dv/ duP(u, v)P(ng)v
—ng
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_,,/ dnB/ dv/ duP(u, v)P(ng)v, (16)
(fu) = (nO(—u(v + np))sgn(v + ng)u)

- / dnB/ dv/ duP(u, v)P(ng)u

_”f dnB/_anv/ duP(u, v)P(n)u, (17)
(f*) = (n*e(—u v+n3

_ d v/ duP(u, v)P(np)

/ ng d
—ng

—ng

+n / dnB/ dvf duP(u, v)P(ng), (18)

respectively, where P(u, v) and P(ng) are Gaussian distributions
and erf (x) and erfc (x) are defined as

7= [[ew -y (19)

erffc(x) =1 —erf(x), (20)

erf (x) =

respectively (Ikeda et al., 2013). Then, (16) is analytically calculated
as

(fv) =

n 1 00 o] 0
dnB/ dvf du
2wA/1 — R? /27.[0.5 /;oo —ng —o0
ox u? +v? — 2Ruv ex n2
v - - e __B
P 2(1-R?) P 203
N veeed RIS
— dng dv du
2m/1—R? 27[0.52 —00 —00 0
u? +v? — 2Ruv nj
vexp| ————— | exp| ——= 21
p( 2(1-R?) p( 2032) =
o]
= iU / dnB
27'[0'3 —00

n2 (1402 Rn
exp (_B(B) erfc _73
2

205 (1-R)
nR /""
— ng
2108 J_oo
2
exp (—%) erfe [ ——" (22)
205 2(1-R)
n Ui
=— "1 R4 (23)
N

using erf (—oo) = —1, erf (c0) = 1, erfc (—o0) = 2 and erfc (00)
= 0. In the same way, (17) is calculated as
n n
(fu) = R— , (24)
2t (1+07) V27

which is also a linear function of R. However, (18) cannot analyti-
cally be calculated but can be rewritten as

%) = d f d
U ) 271'03 _/ U s
exp (—%) erf

ng + Ru
2(1-R)

M
(2) @

which is approximately calculated using the Taylor expansion of
erfc (-) with respect to u around zero up to the ninth order, that is,

2 2R
(f2>%%— (1_}:2_'_ )1/2
N 7’]2R3 3 TIZRS
3n(1-R+02)”*  5r(1-R+02)"
N n2R7 B n2R9
Tn(1-R+02)” 9n(1-R +02)""
5 n,2p2n—1
- % +; n— 1)( (11)_R2R+ )(211 n2° (26)

In the same way, the ensemble averages for the AdaTron learn-
ing and those for the Hebbian learning are calculated as

(fv) = (=nuO(—u(v + ng))v) (27)
_n_ (-RYy
IS I
nRZ( op ) (1—R?)
+ = +R , 28
T 1+032 /1_R2+032 ) (28)
5
n ( 1)"7]R2" 1
(fuy ~ == — T
2 ;(Zn—l) (1-R+07)2
_p2
L R(1 —R?)
T 1-R +o}
3 2
+ﬂ( % ) (1-r (29)
T \1+o0j} 1_R2+(732
{f?)=—n (), (30)
and
(fv) = (nsgn(v + np)v)
R 31)
2w (l—i—aB)
)= — 21 g (32)
2w (1+UB)
) =n". (33)
respectively.

In order to confirm the validity of the derived equations for
the perceptron learning, we compared the experimental values of
(fv) and (fu) with the theoretical values when og = 1 for the
perceptron learning (Fig. 2). Note the experimental values were
used in Ikeda et al. (2013). In addition, we confirmed the validity of
the other equations for AdaTron learning and the Hebbian learning
in the same way.

5. Asymptotic analysis of dynamical system

To see how the nonmonotonicity of the learning curves in Fig. 1
appears, we analyzed the behaviors of the nonlinear differential
equations (14) and (15) for the perceptron learning when t —
oo. Later, the same analysis method was applied to the AdaTron
learning and the Hebbian learning.

In the following, we set o = 1 and calculate the values
numerically because the ensemble average of f2 for the perceptron
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Fig. 2. The values of (fv) and (fu) by our theory and experiments in the perceptron
learning.

learning is not given analytically. For aBz = 1,(14) and (15) for the
perceptron learning are reduced to

—0.247°R + 0.5

] =0.28nR—0.4
n n+ T

, (34)

. 0.28n(1—R? R

R 02O ZR) R 2R+ 0.502), (35)
l 22

respectively, using the results in the previous section. Although

the dynamical system is nonlinear, its asymptotic behavior can be

analyzed by linearization around the equilibrium of the system.
Hence, we first transformed their variables R and [ to
e=(1—R)—0.30, d=1/1-1.23/n, (36)

so that the equilibrium becomes the origin, where R in the equilib-
rium does not depend on 5. Then,

é = 0.1162n%d? 4+ 0.14285d — 0.593542ned — 0.605574e
— 0.082n%ed? — 0.01494ne*d + 0.163172¢* — 0.125%e%d?,

(37)
d = —0.408nd> — 0.250699d — 0.16241ned* + 0.144509ed
e
— 0.1665%d> + 0.200152— — 0.12n%ed>, (38)
n
which is linearized around the origin to
e\ _(—0.606 0.1437) (e
(éi) = (0-200/n —0.251) (d) (39)
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Fig. 3. Eigenvectors and traces of (e, d). 03> = 1.0 of the perceptron learning. The
difference of the eigenvalues and the direction of the corresponding eigenvectors
induce the curves.

in matrix form, as is done in systems science. This matrix is
called the system matrix and its eigenvalues and the corresponding
eigenvectors determine the behaviors of the dynamics, which were

explicitly calculated as
_ n
h= (—0.43) : (40)

= <3.7)7> ' (41)

The state vector, (e, d), converges to the origin because A; <
A2 < 0 and the component along u;, decreases more slowly than
that along uy. In addition, u; is in the first/third quadrant of the
(e, d)-plane while u; is in the second/fourth quadrant. This means
that the points in the fourth (lower-right) quadrant move to the
third quadrant once and then go to the origin along u, (Fig. 3). Since
R = 0.70 — e, the above explains how the overshoot of R appears
in the perceptron learning.

In the same way, we can reduce (14) and (15) for the AdaTron
learning with o7 = 1to

A =—0.67,

Ay = —0.18,

é = 0.07011225d* + 0.138224nd — 0.3208ned — 0.6e

— 0.0104n%ed? — 0.41ne*d — 0.2055%e*d?, (42)
d = —0.5008nd? — 0.5008d — 0.82ned”> — 0.82ed
— 0.12527%d® — 0.205n%ed’, (43)

by transforming the variables R and I to

e=(1—R)— 0.4, d=1/1-2.0/n, (44)

so that e,d — 0 ast — oo. Since the eigenvalues and the
corresponding eigenvalues of the system matrix are

= (5) , (45)

A2 = —0.5008, Uy = (1'391332"> . (46)

These values and the orientations mean the AdaTron learning has
the same property as the perceptron learning (Fig. 4). In fact, the
AdaTron learning has a learning curve with an overshoot (Fig. 5).
In the case of the Hebbian learning, the nonmonotonicity does
not appear (Fig. 6). The reason is elucidated by the theoretical
analysis below. We can explicitly rewrite (14) and (15) for the
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Fig. 4. Eigenvectors and traces of (e, d). 03> = 1.0 of the AdaTron learning. The
difference of the eigenvalues and the direction of the corresponding eigenvectors
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Hebbian learning to

2n n” 5 n o, 0,
= ———=de+ —d* + —de” — —d°e, 47
JRlet gt sl (47)
2
. n o ) N s
d= -y e " p 48
T T 2 (48)
by transforming the variables R and [ to
e=1-R, d=1/I, (49)

sothate,d — Oast — oo.

The system matrix becomes null since the right-hand sides of
(47) and (48) have no first order terms of e and d. This means
that our systems scientific method is not applicable. Instead, these
differential equations are explicitly solvable in the asymptotic of
e,d — 0in the same way as Nishimori (2001). The lowest order
of (14) and (15) are the second ones. Hence, they are simplified in
the asymptotic as

2 2
o= —T;de n %dz, (50)
d= —%d{ (51)

0.03 ;
0.025 R
0.02 | 1

= 0015} W

0.005 | e
Nn=0.4 Experiment +

Nn=0.4 Theory
0.006

0 0.002 0.004

€
Fig. 6. Eigenvectors and traces of (e, d). 03> = 1.0 of the Hebbian learning. In

this case, (e, d) converges to the origin linearly and hence the error does not have
nonmonotonicity.

respectively. (51) is easily solved and d is expressed as

d= t (52)
n
By substituting d in (50) with (52), we get
e=—2tle gﬁ, (53)
which leads to
T

= —t . 54

e=> (54)

These theoretical values matched the simulation results (Fig. 6).
6. Conclusions

In this paper, we analyzed convergence properties of the per-
ceptron learning, the AdaTron learning and the Hebbian learning,
when the teacher was noisy. The learning curves in these cases
were analytically derived using a statistical mechanical method
and were consistent with the experimental results in our simula-
tion. Our analyses showed that the learning curves of the percep-
tron learning and the AdaTron learning have an overshoot, that is,
the covariance coefficient R of the teacher and the student exceeds
the convergence value once. However, the Hebbian learning does
not have this property. We showed that these phenomena result
from the difference of the eigenvalues and eigenvectors of the
system matrix using the asymptotic analysis of dynamical systems.
This result may give a method for controlling the learning coeffi-
cient n to achieve a faster convergence speed and a lower residual
error in the future.
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