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Abstract Queueing theory is a useful tool in design of computer networks and
their performance evaluation. The literature concerning this subject is abundant.
However, it is in general limited to the analysis of steady states. It means that flows of
customers considered in models are constant and obtained solutions do not depend
on time. It is in glaring contrast with the flows observed in real networks where
the perpetual changes of traffic intensities are due to the nature of users, sending
variable quantities of data, cf. multimedia traffic, and also due to the performance
of traffic control algorithms which are trying to avoid congestion in networks, e.g.
the algorithm of congestion window used in TCP protocol which is adapting the rate
of the sent traffic to the observed losses or transmission delays. We discuss here the
means used to analyse transient states in queueing models. In computer applications
a mathematical model is useful only when it furnishes quantitative results. Therefore
practical issues related to numerical side of models are of importance and are here
discussed. We present three approaches—Markov models solved numerically, fluid
flow approximation and diffusion approximation. A particular importance is given
to the latter as the author has here over 20year experience in development and
application of this method. He is also convinced of the qualities of this approach—
its flexibility to treat various variants of queueing models. Traffic intensity observed
in computer networks have a complex stochastic nature that influences the network
performances. We discuss also this side of implemented queueing models.

1 Introduction

Queueing theory has many applications but performance evaluation of computer
networks and computer systems seems to be the most important one. The origins of
queueing theory were also related to the transmission of information: first queueing
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models were proposed a hundred years ago by Agner Krarup Erlang to evaluate the
performance of Copenhagen telephone exchange [1, 2] and by Tore Olaus Engset,
traffic analyst and then director of Norvegian Televerket (now Telenor Group) [3].
Both of them were studying—already in these days of human operators and cord
boards used to switch telephone calls by means of jack plugs—how many circuits
were needed to provide an acceptable telephone service or how many telephone
operators were needed to handle a given volume of calls. Their analysis was based
on Markov models, they assumed that the new connection demands made Poisson
process and the duration of connections was given by a negative exponential distri-
bution.

In a generic queueing model customers arrive to a service system at random
intervals and are served during a random time: if the server is busy serving other
customers, the arriving ones are queued. The model is expected to determine the
distribution—or at least the mean value—of the number of customers in the system
and their waiting time. If the number of customers that may be present in the system
is limited, we are also interested in probability of rejection of an arriving customer.

Kendall’s notation [4] is used to classify standard queueing nodes: in “A/B/c”
A denotes the type of distribution of interarrival times, B—the type of service time
distribution, and c the number of parallel servers. The symbol M (memoryless) on
the place of A or B means that the corresponding distribution is exponential, Er ,
Hr Cr denote Erlang, hyperexponential, and Cox distributions of order r , D means
deterministic, G is for general distribution, etc. The notation has since been extended
to A/S/c/N/H/R where N is the capacity of the queue, H is the size of the customer
source (if there are n customers present in a queueing system, it means that H −n may
still arrive), and R is the queueing discipline, e.g. FIFO (First-in-First-out) means
that the customers are served following the order of their arrival; when the final three
parameters are not specified, it is assumed that N = ∞, H = ∞ and R = F I F O ,
see e.g. [5].

Following this notation, Erlang considered M/M/c/c model to obtain probabil-
ity that all c parallel channels are occupied and the new calls are rejected, so called
Erlang B formula for blocking probability, and M/M/c model to determine proba-
bility that calls are queued (Erlang C formula) if their queueing is possible. Engset
used M/M/c/c/H model with finite populaton of users. These formulae are still in
common use in telecommunication, see e.g. [6] even it their assumptions on expo-
nential distributions between arrivals and connection duration are not well fitting the
reality.

Then many mathematicians, e.g. Kolmogorov, Khinchin, Crommelin, Palm,
Takács contributed to the development of queueing theory and their models found
many applications. Apart from the obvious—where clients are people and service
points are real-life locations such as post office counters or supermarket checkouts—
there are many other interpretations; the “clients” might be ships docking at ports
(here, “service time” is the unloading time), parcels sent to warehouses (storage
time), or vehicles arriving at junctions (the time taken to cross).

The era of computer systems opened new perspectives. Processes executed in
a computer system are queued waiting for system resources and the time they use
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them is the service time. Maybe the first queueing model of a computer system was
presented by Sherr [7], where M/M/1/N/N machine-repairman model considered
by Khinchin [8] was applied, only its interpretation was changed. The original model
referred to a pool of working machines: the time between failures was the customers’
interarrival time and the server represented a workshop where the machines were
repaired, the time of repair being the service time. In the new model the machines
were replaced by terminals, the time between failures became users’ thinking time
and the time of processing the task by the computer system was interpreted as the
service time. The very good accordance of the model results (mean response time
of the system as a function of the number of active users) with measurements gave
a boost to the development of next queueing models of computer systems. The first
monographs appeared in the United States, e.g. [5, 9, 10], and Europe, e.g. [11].

Then came the era of computer networks and their models. Vast volumes of data
organized into packets and supervised by communications protocols are constantly
flowing across telecommunications networks, usually via intermediate nodes. At
nodes, the incoming packets are queued to be sent according to network availability.
The total transmission time is composed of signal propagation time between nodes
which is constant and determined by the length of links and the speed of light in
the link and of the waiting time at each node which is unknown and depends on the
highly irregular current load of the network.

Estimation of this waiting time is important, since users need the transmission
time to be as short and repeatable as possible. Reliability of transmission is equally
important; when a packet queue is full, further incoming packets will not be saved.
Network operators must seek a compromise: on one hand, it is important that a
network be used to the best of its capacity; on the other, the more a network is being
charged, the more the quality of service may drop. These issues are studied with the
use of queueing theory. Here customers represent packets, the queues are at routers,
and the service time is the time to sent a packet, bit-by-bit through an output gate of
a router, hence it is proportional to the size of the packet.

The community of researchers studying these problems is vast and organised in
academic as well as in telecommunication research centres. The constant develop-
ment of computer networks and of Internet in particular gives new problems to be
studied. Some of topical issues at the moment are e.g. the design of “green”, i.e.
energy saving (economical) networks, performances of various topologies of optical
networks, modelling wireless networks with mobile customers.

However, queueing models are usually limited to steady-state analysis, as mod-
elling of transient states is difficult. It limits the quality and applicability of queueing
models, as real traffic intensity is constantly varying, see a typical example in Fig. 1.
Moroever, the change of time scale does not change the variability of the traffic—a
feature which is called “self-similarity” of the process and is related to its long-
range autocorrelation. This feature, noticed in network traffic only at 90-ties [12],
influences greatly the queue lengths and loss probabilities and should be reflected in
queueing models.

The article discusses most useful methods we may apply in practice to analyse in
a quantitative way transient states of queues in presence of time varying input flows,
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Fig. 1 Traffic intensity as a function of time in different time scales (data gathered at IITiS PAN)

namely: numerical solution of Chapman-Kolmogorov equations for continuous time
Markov chains with very large state space, diffusion approximation, and fluid flow
approximation. Markov models are essential for the evaluation of the performance
of computer networks. In Markov chains the sojourn time at each state is exponen-
tially distributed but it does not mean that in queueing models we are restricted to
exponential distributions for interarrival times and service times. These distributions
may be represented by linear combinations of exponentially distributed phases, e.g.
by Cox distribution. However, Markov models are not scalable: the number of states
is increasing rapidly with the complexity of a modelled object.

In diffusion approximation a diffusion equation (second order partial differential
equation) defining the position of a particle in diffuse motion is used to describe the
probability distribution of a queue length. This approach is merging states of the con-
sidered queueing system and needsmuch less computations than theMarkovmodels.
The principles of the approximation were given in [13] and then extended in [14]
to the analysis of transient states with the use of semi-analytical, semi-numerical
approach. Fluid-flow approximation is a simplified version of this method—only
mean values of packet flows, queue lengths and service times are considered.
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Differential equations (first order linear ordinary differential equations) involved
here are simpler, and the computations can be completed in a reasonable time even
for very large network topologies. It is also easier to model mechanisms used to
control queues in nodes.

2 Markov Models

Steady state Markov models having a closed form solution and giving an explicit
formula for state probabilities are limited to so called BCMP model [15]. It includes
a multiclass open and closed network of any topology with four types of service
stations. The types are: FIFO queue, IS (Infinite Server—there is enough parallel
service channels to serve all customers, hence they are not queued), LIFO (Last In
First Out—when a new customer comes, its service is started immediately and the
current service is suspended and resumed when possible), PS (Processor Sharing—
all customers are served in parallel but the service time is proportional to the number
of present customers). In case of FIFO queue, service time distribution is limited to
exponential one, the same for all classes of customers. For other types of stations
it could be a Cox distribution, different for each class of customers. Note that Cox
distribution may approximate any practically encountered distribution with infini-
tesimal error and there are tools able to match a Cox distribution to any empirical
histogram, e.g. [16]. In more complex cases, e.g. M/Cr/1 FIFO queue with Cox
service distribution, the underlying its performance Markov chain should be solved
numerically.

For transient states, analytical solution is known only for M/M/1 and M/M/1/N
single queues and even there it is complex. Transient states of these models were
investigated more than half a century ago. Chapman-Kolmogorov equations (first-
order linear differential equations) define state probabilities p(n, t; n0) of n cus-
tomers present in the system at time t if n = n0 at time t = 0. If we apply the
Laplace transform to make these equations algebraic ones, solve them and then find
the original functions of the solutions in time domain, we obtain [17]:

p(n, t; n0 = i) = e(λ+μ)t [ρ n−i
2 In−n0(at) + ρ

n−n0−1
2 In+n0+1(at)

+ (1 − ρ)ρn
∞∑

j=n+n0+2

ρ
− j
2 I j (at)] (1)

where λ is input flow intensity, μ is service intensity (i.e. 1/μ is mean service time),
ρ = λ/μ is server utilisation factor, a = 2μ

√
ρ and Ik(x) is the modified Bessel

function of the first type and order k. Similarly, transient distributions for the limited
queue M/M/1/N were derived [18, 19]. Some simplifications of the solution (1)
were proposed, e.g. the generating function of the distribution p̄(n, s; n0) may be
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replaced by expressions having simpler original functions in time domain [20] or
Bessel functions may be replaced by easier to compute functions, [21].

These results do not fit well to the problem of modelling network routers, where
the incoming streams are not Poisson and the size of packets is not exponentially
distributed. Note that the solution (1) refers to transient states but it is assumed that
the model parameters, λ in particular, are constant. Hence, in case of time dependent
flows we should make them piecewise constant. We need models treating constantly
changing non-Poisson flows and assuming general distributions of service times. We
need also the possibility to include in these models the description of self-similarity
of flows which enlarges mean queue lengths at buffers and increases packet loss
probability, reducing this way the quality of services provided by a network. The
models should also meet very large topologies characteristic to the Internet.

Markov models are very flexible and may reflect the mechanisms for regulating
the intensity of Internet transmissions and mechanisms to ensure the quality of trans-
mission services; they may also include self-similar flows. Let us summariseMarkov
approach to reflect self-similarity of network flows.

The term self-similar was introduced by Mandelbrot [22] for explaining water
level pattern of river Nile observed by H. Hurst. This term was also known as Hurst
Effect. The degree of self-similarity is expressed by Hurst parameter, denoted by H .

A real valued stochastic process:

X = {X (t)}t∈R

is self-similar with H > 0, if for any a > 0,

{X (at)}t∈R
d= {aH X (t)}t∈R

where
d= denotes equality in finite dimensional distribution sense. This means that

self-similar processes are scale invariant.
Mathematically, the difference between short-range dependent processes and

long-range ones (self-similar) is as follows [23]:
For a short-range dependent process:

• ∑∞
r=0 Cov(Xt , Xt+τ ) is convergent,

• spectrum at ω = 0 is finite,
• for large m, Var(X (m)

k ) is asymptotically of the form Var(X)/m,

• the aggregated process X (m)
k tends to the second order pure noise as m → ∞;

For a long-range dependent process:

• ∑∞
r=0 Cov(Xt , Xt+τ ) is divergent,

• spectrum at ω = 0 is singular,
• for large m, Var(X (m)

k ) is asymptotically of the form Var(X)m−β ,

• the aggregated process X (m)
k does not tend to the second order pure noise as

m → ∞,
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where the spectrum of the process is the Fourier transformation of the autocorrelation
function and the aggregated process X (m)

k is the average of Xt on the interval m:

X (m)
k = 1

m
(Xkm−m+1 + · · · + Xkm) k ≥ 1.

Estimation of Hurst parameter is the most frequently used method to check if a
process is self-similar: for non-self-similar processes H = 0.5; for 0.5 < H < 1
process is self-similar; the closer H is to 1, the greater the degree of persistence of
long-range dependence. Hurst parameter H can be estimated by various methods.
The simplest one is based on the analysis of variance-time plot. The variation of
aggregated self-similar process is equal to:

V ar(X (m)
k ) = V ar(X)m−β

so the log-log plot of
V ar(X (m)

k )

V ar(X)
versus m is a line with slope β.

Since the days the self-similarity of network flows was discovered, several non-
Markovmodels havebeen introduced, e.g.with the use of fractionalBrownianMotion
[24], stable Levy Motion [25] chaotic maps [26], α-stable distribution [27], frac-
tional Autoregressive Integrated Moving Average (fARIMA) [28] and fractional
Levy Motion [29]. The advantage of these models is that they give a good descrip-
tion of the traffic with the use of few parameters. Their drawback consist in the fact
that they cannot be incorporated in Markov queueing models.

A way to create a Markov model of a self-similar source is to use a Markov-
modulated Poisson processes (MMPP) the parameter of which depends on a state
of a separate Markov chain (modulator). In the simplest form we use a two state
modulator. The superposition of MMPP’s is also an MMPP which is a special case
of Markov Arrival Process (MAP).

AMAP is defined by two square matrices D0 and D1 such that Q = D0 +D1 is an
irreducible infinitesimal generator for the continuous-time Markov chain (CTMC)
underlying the process, and D0(i, j) (respectively D1(i, j)) is the rate of hidden
(respectively observable) transitions from state i to state j [30]. Two-state MAP is a
Markovian arrival process with square matrices as follows:

D0 =
[−σ1 λ1,2

λ2,1 −σ2

]
, D1 =

[
μ1,1 μ1,2
μ2,1 μ2,2

]

where λi, j ≥ 0, μi, j ≥ 0, for all i, j . The diagonal elements of matrix D0 are
σ1 = λ1,2 + μ1,1 + μ1,2 > 0 and σ2 = λ2,1 + μ2,2 + μ2,1 > 0 such that underlying
continuous-time Markov chain Matrix Q has no absorbing states.

Following the model proposed in [31], a LRD process can be modelled as the
superposition of d two-state MMPPs. The i th MMPP (1 ≤ i ≤ d) can be parame-
terized by two square matrices:
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Di
0 =

[−(c1i + λ1i ) c1i

c2i −(c2i + λ2i )

]
, Di

1 =
[

λ1i 0
0 λ2i

]

The element c1i is the transition rate from state 1 to 2 of the i th MMPP and c2i is the
rate out of state 2 to 1. λ1i and λ2i are the traffic rate when the i th MMPP is in state 1
and 2 respectively. The sum of D0

i and D1
i is an irreducible infinitesimal generator

Qi with the stationary probability vector:

−→π i =
(

c2i

c1i + c2i
,

c1i

c1i + c2i

)

The superposition of these two-state MMPPs is a new MMPP with 2d states and
its parameter matrices, D0 and D1, can be computed using the Kronecker sum of
those of the d two-state MMPPs [32]:

(D0, D1) =
(
⊕d

i=1D0
i ,⊕d

i=1D1
i
)

A procedure for fitting moments computed from the model and from measured
data gives us the model parameters, [31]. We may also use an approach based on
hidden Markov chains to model self-similar traffic [33].

The main disadvantage of Markov approach is its lack of scalability. Markov
chains to be used become intractable because of the number of stateswhich is growing
very rapidly with the complexity of a modelled object (so called state explosion).
Each state of theMarkov chain corresponds to one state of the system. It is necessary
to construct and solve the system of equations defining the probability of states—the
number of equations equals the number of states. The existing solvers as e.g. Markov
solver in QNAP [34], XMARCA [35], PEPS [36], PRISM [37] consider only steady
state Markov chains and solve algebraic systems of equations.

Theoretically, for any continuous time Markov chain the Chapman-Kolmogorov
equations with transition matrix Q

dπ(t)

dt
= π(t)Q, (2)

have the analytical transient solution:

π(t) = π(0)eQt , (3)

where π(t) is the probability vector and π(0) is the initial condition. However, it is
not easy to compute the expression eQt where Q is a large matrix, see e.g. [38]. It
may be done by its expansion to Taylor’s series

e Qt =
∞∑

k=0

( Qt)k

k! . (4)
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but the task is numerically unstable, especially for large Q. Additionally, to con-
sider λ(t), we should make the parameters of the model piecewise constant in small
intervals and apply the solution (3) at each of these intervals.

In IITiS we are developing our own package Olymp [39]. It is a library generat-
ing transition matrices of continuous time Markov chains (CTMC), solving them.
Olymp uses Java language to define network nodes and the interactions between
them. Due to the potentially very large sizes of the models’ transition matrices, their
generation is parallelized, and they can be compressed on-the-fly using a dedicated
compression based on finite-state automata. Olymp has a quite different approach to
represent CTMC in the comparison to typical model checkers. A move to another
state involves a transfer of a token. A node that sends the token initiates the move
asynchronously, in moments of time that adhere to an exponential distribution. A
node that receives the token can accept it validating the move. The negotiation can
be thought of as for example an agreed transfer of a packet between these two nodes
or as a synchronisation on a signal, distributed to the network by a clock node. At
the moment we are able to generate and solve Markov chains of the 150 million of
states. The method of solution used is one of projection methods based on Krylov
subspace with Arnoldi process to project the exponential of a large matrix approx-
imately onto a small Krylov subspace, see [35]; the transition matrix is then small
and the computation of the expression (3) with the use of uniformization method
and Padé approximations is much easier, [40–43]. This approach is supplemented by
direct numerical solution of large systems of ordinary differential equations (ODE)
using uniformization, i.e. discretization of the CTMC, that is replacing the CTMC
by a DTMC (a discrete-time Markov chain) and a Poisson process.

We are increasing the size of tractableMarkov chains by several orders through the
use of a GPU-CPU (graphical processing unit) and a better design of computational
algorithms for parallel computing and optimization of memory usage, [44]. GPU
capabilities go far beyond the computer graphics. It is well known that a potential
computational power of GPUs is much greater than that of contemporary CPUs
(in a sense of the performance measured by number of floating point operations per
second). Thus, it is possible to shorten the time of computations. Due to the enormous
amount of the data to be processed, methods must be developed to store vectors and
matrices with intelligent management of memory.

3 Diffusion Approximation

3.1 Diffusion Approximation of Single G/G/1, G/G/1/N
Queues

This approach is merging states of the considered queueing system and thus needs
much less computations than the Markov models. We present here the principles of
the method following [13] where steady-state solution of a single G/G/1/N model
was given and then extended to the network of queues in [45]. We supplemented



60 T. Czachórski

these results with semi-analytical, semi-numerical transient state solution [14] given
for constant model parameters but it could be applied also in case of time-dependent
parameters if we only make them constant within small intervals.

Let A(x), B(x) denote the interarrival and service time distributions at a service
station and a(x) and b(x) be their density functions. The distributions are general but
not specified, themethod requires only the knowledge of their two first moments. The
means are denoted as E[A] = 1/λ, E[B] = 1/μ and variances are Var[A] = σ 2

A,
Var[B] = σ 2

B . Denote also squared coefficients of variation C2
A = σ 2

Aλ2, C2
B =

σ 2
Bμ2. N (t) represents the number of customers present in the system at time t .
Diffusion approximation, replaces the process N (t) by a continuous diffusion

process X (t), the incremental changes d X (t) = X (t + dt) − X (t) of which are
normally distributed with themean βdt and variance αdt , where β, α are coefficients
of the diffusion equation

∂ f (x, t; x0)

∂t
= α

2

∂2 f (x, t; x0)

∂x2
− β

∂ f (x, t; x0)

∂x
. (5)

This equation defines the conditional pdf of X (t):

f (x, t; x0)dx = P[x ≤ X (t) < x + dx | X (0) = x0].

The both processes X (t) and N (t) have normally distributed changes; the choice
β = λ − μ, α = σ 2

Aλ3 + σ 2
Bμ3 = C2

Aλ + C2
Bμ ensures that the parameters of these

distributions increase at the same rate with the length of the observation period. In
the case of G/G/1/N station, the process evolves between barriers placed at x = 0
and x = N where barriers with instantaneous jumps are placed, [13]. When the
diffusion process comes to x = 0, it remains there for a time exponentially distributed
with a parameter λ0 and then it returns to x = 1. The time when the process is at
x = 0 corresponds to the idle time of the system. When the process comes to the
barrier at x = N , it stays there for a time which is exponentially distributed with a
parameterμ0 which corresponds to the timewhen the system is full and do not accept
new customers (the completion time of current service from the moment when the
queue becomes full). The assumption on exponential sojourn times in barriers will
be dropped below where transient model is presented. Diffusion equation becomes
and is supplemented by balance equations for probabilities p0(t) and pN (t) of being
at the barriers

∂ f (x, t; x0)

∂t
= α

2

∂2 f (x, t; x0)

∂x2
− β

∂ f (x, t; x0)

∂x
+ λ0 p0(t)δ(x − 1) + λN pN (t)δ(x − N + 1),

dp0(t)

dt
= lim

x→0
[α
2

∂ f (x, t; x0)

∂x
− β f (x, t; x0)] − λ0 p0(t),

dpN (t)

dt
= lim

x→N
[−α

2

∂ f (x, t; x0)

∂x
+ β f (x, t; x0)] − λN pN (t), (6)
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where δ(x) is Dirac delta function.
In stationary state, Eq. (6) become ordinary differential ones and their solution,

if ρ = λ/μ 	= 1, may be expressed as, see [13]:

f (x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λp0
−β

(1 − ezx ) for 0 < x ≤ 1,

λp0
−β

(e−z − 1)ezx for 1 ≤ x ≤ N − 1,
μpN

−β
(ez(x−N ) − 1) for N − 1 ≤ x < N ,

(7)

where z = 2β
α

and p0, pN are determined through normalization

p0 = lim
t→∞ p0(t) = {1 + ρez(N−1) + ρ

1 − ρ
[1 − ez(N−1)]}−1, (8)

pN = lim
t→∞ pN (t) = ρp0ez(N−1). (9)

The model may include classes of customers, each having its interarrival and
service time distributions and routing probabilities, [45]. When the input stream λ is
composed of K classes of customers and λ =∑K

k=1 λ(k) (all parameters concerning
class k have an upper index with brackets) then the joint service time pdf is defined
as

b(x) =
K∑

k=1

λ(k)

λ
b(k)(x) ,

hence

1

μ
=

K∑

k=1

λ(k)

λ

1

μ(k)
, and C2

B = μ2
K∑

k=1

λ(k)

λ

1

μ2
(k)

(C (k)
B

2 + 1) − 1. (10)

We assume that the input streams of different class customers are mutually inde-
pendent, the number of class k customers that arrived within sufficiently long time

period is normally distributed with variance λ(k)C (k)
A

2
; the sum of independent ran-

domly distributed variables has also normal distribution with variance which is the
sum of component variances, hence

C2
A =

K∑

k=1

λ(k)

λ
C (k)

A

2
. (11)

The above parameters yield α, β of the diffusion equation; function f (x) approx-
imates the distribution p(n) of customers of all classes present in the queue:
p(n) ≈ f (n) and the probability that there are n(k) customers of class k is
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pk(n
(k)) =

N∑

n=n(k)

⎡

⎣p(n)

(
n

n(k)

)(
λ(k)

λ

)n(k) (
1 − λ(k)

λ

)n−n(k)
⎤

⎦ k = 1, . . . , K .

(12)
Our transient solution of Eq.6 is based on the representation of the density func-

tion f (x, t; x0) of the diffusion process with barriers with jumps by a superposition
of the density functions φ(x, t; x0) of diffusion processes with absorbing barriers at
x = 0 and x = N , which has the following form, see [46]

φ(x, t; x0) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

δ(x − x0) for t = 0
1√
2
αt

∞∑

n=−∞

{
exp

[
βx ′

n

α
− (x − x0 − x ′

n − βt)2

2αt

]

− exp

[
βx ′′

n

α
− (x − x0 − x ′′

n − βt)2

2αt

]}
for t > 0,

(13)
where x ′

n = 2nN , x ′′
n = −2x0 − x ′

n . If the initial condition is defined by a function
ψ(x), x ∈ (0, N ), limx→0 ψ(x) = limx→N ψ(x) = 0, then the pdf of the process
has the form φ(x, t;ψ) = ∫ N

0 φ(x, t; ξ)ψ(ξ)dξ .
The probability density function f (x, t;ψ) of the diffusion process with elemen-

tary returns is composed of the function φ(x, t;ψ)which represents the influence of
the initial conditions and of a spectrum of functions φ(x, t −τ ; 1), φ(x, t −τ ; N −1)
which are pd functions of diffusion processes with absorbing barriers at x = 0 and
x = N , started at time τ < t at points x = 1 and x = N − 1 with densities g1(τ )

and gN−1(τ ):

f (x, t;ψ) = φ(x, t;ψ) +
t∫

0

g1(τ )φ(x, t − τ ; 1)dτ

+
t∫

0

gN−1(τ )φ(x, t − τ ; N − 1)dτ. (14)

Densities γ0(t), γN (t) of probability that at time t the process enters to x = 0 or
x = N are

γ0(t) = p0(0)δ(t) + [1 − p0(0) − pN (0)]γψ,0(t) +
t∫

0

g1(τ )γ1,0(t − τ)dτ

+
t∫

0

gN−1(τ )γN−1,0(t − τ)dτ,
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γN (t) = pN (0)δ(t) + [1 − p0(0) − pN (0)]γψ,N (t) +
t∫

0

g1(τ )γ1,N (t − τ)dτ

+
t∫

0

gN−1(τ )γN−1,N (t − τ)dτ, (15)

where γ1,0(t), γ1,N (t), γN−1,0(t), γN−1,N (t) are densities of the first passage time
between corresponding points, e.g.

γ1,0(t) = lim
x→0

[α
2

∂φ(x, t; 1)
∂x

− βφ(x, t; 1)]. (16)

For absorbing barriers

lim
x→0

φ(x, t; x0) = lim
x→N

φ(x, t; x0) = 0,

hence γ1,0(t) = limx→0
α
2

∂φ(x,t;1)
∂x . The functions γψ,0(t), γψ,N (t) denote densities

of probabilities that the initial process, started at t = 0 at the point ξ with density
ψ(ξ) will end at time t by entering respectively x = 0 or x = N .

Finally, wemay express g1(t) and gN (t)with the use of functions γ0(t) and γN (t):

g1(τ ) =
τ∫

0

γ0(t)l0(τ − t)dt, gN−1(τ ) =
τ∫

0

γN (t)lN (τ − t)dt, (17)

where l0(x), lN (x) are the densities of sojourn times in x = 0 and x = N ; the
distributions of these times are not restricted to exponential ones as it is in Eq. (6).

The above equations are transformed by the Laplace transform, and the transform
of f (x, t, x0) is obtained analytically and then its original is computed numerically
using e.g. Stehfest algorithm [47].

In case of unlimited queue of G/G/1 type we just remove the barrier at x = N
and related to it terms and equations.

3.2 Open Network of G/G/1, G/G/1/N Queues, Steady State
and Transient Solution

The steady-state open networks models of G/G/1 queues were studied in [45]. Let
M be the number of stations and suppose at the beginning that there is one class of
customers. The throughput of station i is, as usual, obtained from traffic equations
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λi = λ0i +
M∑

j=1

λ j r ji , i = 1, . . . , M, (18)

where r ji is routing probability between station j and station i ; λ0i is external flow
of customers coming from outside of network.

Second moment of interarrival time distribution is obtained from two systems of
equations; the first defines C2

Di as a function of C2
Ai and C2

Bi ; the second defines C2
Aj

as another function of C2
D1, …, C2

DM :
(1) The formula (19) is exact for M/G/1, M/G/1/N stations and is approximate

in the case of non-Poisson input [48]

di (t) = ρi bi (t) + (1 − ρi )ai (t) ∗ bi (t), i = 1, . . . , M, (19)

where * denotes the convolution operation. From (19) we get

C2
Di = ρ2

i C2
Bi + C2

Ai (1 − ρi ) + ρi (1 − ρi ). (20)

(2) Customers leaving station i according to the distribution Di (x) choose station
j with probability ri j : intervals between customers passing this way has pdf di j (x)

di j (x) = di (x)ri j + di (x) ∗ di (x)(1 − ri j )ri j

+ di (x) ∗ di (x) ∗ di (x)(1 − ri j )
2ri j + · · · (21)

hence

E[Di j ] = 1

λi ri j
, C2

Di j = ri j (C
2
Di − 1) + 1. (22)

E[Di j ], C2
Di j refer to interdeparture times; the number of customers passing from

station i to j in a time interval t has approximately normal distribution with mean
λi ri j t and variation C2

Di jλi ri j t . The sum of streams entering station j has normal
distribution with mean

λ j t = [
M∑

i=1

λi ri j + λ0 j ]t and variance σ 2
Aj t = {

M∑

i=1

C2
Di jλi ri j + C2

0 jλ0 j }t,

hence

C2
Aj = 1

λ j

M∑

i=1

ri jλi [(C2
Di − 1)ri j + 1] + C2

0 jλ0 j

λ j
. (23)

Parameters λ0 j , C2
0 j represent the external stream of customers.

For K classes od customers with routing probabilities r (k)
i j (let us assume for

simplicity that the customers do not change their classes) we have
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λ
(k)
i = λ

(k)
0i +

M∑

j=1

λ
(k)
j r (k)

j i , i = 1, . . . , M; k = 1, . . . , K , (24)

and

C2
Di = λi

K∑

k=1

λ
(k)
i

μ
(k)
i

2 [C (k)
Bi

2 + 1] + 2ρi (1 − ρi ) + (C2
Ai + 1)(1 − ρi ) − 1 . (25)

A customer in the stream leaving station i belongs to class k with probability λ
(k)
i /λi

and we can determine C (k)
Di

2
in the similar way as it has been done in Eqs. (21)–(22),

replacing ri j by λ
(k)
i /λi :

C (k)
Di

2 = λ
(k)
i

λi
(C2

Di − 1) + 1; (26)

then

C2
Aj = 1

λ j

K∑

l=1

K∑

k=1

r (k)
i j λi

[(
λ

(k)
i

λi
(C2

Di − 1)

)
r (k)

i j + 1

]
+

K∑

k=1

C (k)
0 j

2
λ

(k)
0 j

λ j
. (27)

Equations (20), (23) or (25), (27) form a linear system of equations and allow us
to determine C2

Ai and, in consequence, parameters βi , αi for each station.
In our approach to transient analysis, the time axis is divided into small intervals

(equal e.g. to the smallest mean service time) and at the beginning of each interval the
Eqs. (18), (20) and (23) are used to determine the input parameters of each station
based on the values of ρi (t) obtained at the end of the precedent interval. As the
values of parameters are changed at each interval, also externel flows λ

(k)
0 j (t) may be

controlled following any, possibly self-similar process.

3.3 G/G/c/c and G/G/c/c/H Stations

We come here back to mentioned in the introduction Erlang and Engset models
playing historical role in telecommunication. We show their more general diffusion
version including any interarrival and service time distributions. In case of multi-
ple service channels as in G/G/c/c and G/G/c stations, the output flow is state-
dependent, and in case of finite population G/G/c/c/H model also the input flow
is state-dependent.

In G/G/c/c we distinguish c subintervals: if n − 1 < x < n, it is supposed that
n channels are busy (n customers inside the system), hence we choose
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Fig. 2 Acomparison of the distribution p(n) at aM/M/20/20model and its diffusion approximation
(Eq.29), λ = 25, μ = 1 and a corresponding G/G/20/20 model with C2

A = C2
B = 5

αn = λC2
A + nμC2

B, βn = λ − nμ for n − 1 < x < n, n = 1, 2, . . . , c. (28)

Jumps are performed from x = 0 to x = 1 with intensity λ and from x = c to
x = c − 1 with intensity cμ. The solution is

f1(x) =

⎧
⎪⎨

⎪⎩

λp(0)

−β1

(
1 − ez1x)

2λp(0)

−α1
x

for β1 	= 0,
for β1 = 0,

0 < x ≤ 1 ,

fn(x) =
{

fn−1(n − 1)ezn(x−n+1)

fn−1(n − 1)
for βn 	= 0,
for βn = 0,

n − 1 ≤ x ≤ n ,

n = 2, . . . , c − 1 ,

fc(x) =

⎧
⎪⎨

⎪⎩

μp(c)

−βc

[
ezc(x−c) − 1

]

−2μp(c)

αc
(x − c)

for βc 	= 0,
for βc = 0,

, c − 1 ≤ x < c .

(29)

where zn = 2βn
αn

, and p(0), p(c) come from normalisation. Figures2 and 3 show the
accuracy of this approach in case of heavy and light load by comparing the Markov-
ian model with its diffusion approximation and demonstrates how non-exponential
distributions influence the results. In case of G/G/c system the barrier at x = c is
removed and the last interval with parameters βc, αc is extended: x ∈ (c − 1,∞).
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Fig. 3 Acomparison of the distribution p(n) at aM/M/20/20model and its diffusion approximation
(Eq.29), λ = 10, μ = 1 and a corresponding G/G/20/20 model with C2

A = C2
B = 5

In case of G/G/c/c/H system with finite population,

βn = (H − n + 1)ν − nμ, αn = (H − n + 1)νC2
A + nμC2

B, 1 ≤ n ≤ c,

βn = (H − n + 1)ν − cμ, αn = (H − n + 1)νC2
A + cμC2

B, n ≥ c.

where ν and C2
A refer to the sojourn time in the pool, and the solution is analogous

to (29).
For the overflow traffic description we may use probabilities p(n), n ≥ c given

by G/G/c or G/G/c//H models to extend Riordan formulae but it would be more
natural to compute the characteristics of the flow in terms of diffusion models. If
the pdf f A(x) of interarrival times mean 1/λ and variance σ 2

A (squared coefficient
of variation C2

A and p(c) is the blocking probability, then the interevent density
foverflow(x) of times between events in the overflow traffic is

foverflow(x) = f A(x)p(c) + f A(x) ∗ f A(x)(1 − p(c))p(c) + · · ·

giving mean 1/[λp(c)] and squared coefficient of variation C2
overflow = p(c)(

C2
A − 1

) + 1. These parameters may be used while splitting and merging traffic
flows in the same way as it is done in network diffusion models [45].

Similarly, the pdf facc(x) of interevent times at the accepted traffic is

facc(x) = f A(x)(1 − p(c)) + f A(x) ∗ f A(x)p(c)(1 − p(c)) + · · · .
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There is no probability transfer between intervals in steady-state solution but we
should take it into account in transient solution of G/G/c/c and G/G/c/c/H
models. Inside each of c intervals of unitary length, the diffusion equation is solved
assuming that the barriers at its left and right side act as absorbing ones. The density
function φ(x, t; x0) of a diffusion process limited by two absorbing barriers has
the same form as we used previously in G/G/1/N model. To balance probability
flows between neighbouring intervals having different diffusion parameters, we put
imaginary barriers between these intervals and suppose that the diffusion process
which is entering a barrier at x = n, n = 1, 2, . . . , c − 1, from its left side (the
process is increasing) is absorbed and immediately reappears at x = n+ε. Similarly,
a process which is decreasing and enters the barrier from its right side reappears at
its other side at x = n − ε. The value of ε should be small, for example of the order
of 2−10, but we checked that it has no significant impact on the solution.

The density functions fi (x, t;ψi ), i = 1, . . . , c, for the intervals x ∈]i −1, i[ are
as follows:

f1(x, t;ψ1) = φ1(x, t;ψ1) +
t∫

0

g1−ε(τ )φ1(x, t − τ ; 1 − ε)dτ,

fn(x, t;ψn) = φn(x, t;ψn) +
t∫

0

gn−1+ε(τ )φn(x, t − τ ; n − 1 + ε)dτ

+
t∫

0

gn−ε(τ )φn(x, t − τ ; n − ε)dτ, n = 2, . . . c − 1,

fc(x, t;ψc) = φc(x, t;ψc) +
t∫

0

gc−1+ε(τ )φc(x, t − τ ; c − 1 + ε)dτ (30)

The relationships between the probability mass flows entering the barriers and reap-
pearing at regeneration points are:

γ R
n (t) = gn−ε(t), γ L

n (t) = gn+ε(t), n = 1, . . . , c − 1 (31)

with two exceptions concerning flows coming from barriers at x = 0 and x = c:
g1+ε(t) = γ L

1 (t) + g1(t), gc−1−ε(t) = γ R
c−1(t) + gc−1(t).

The densities g1(t), gN−1(t) are the same as in G/G/1/N model, and densities
γ R

n (t), γ L
n (t) are obtained as

γ0(t) = p(0)(0)δ(t) + γψ1,0(t) +
t∫

0

g1−ε(τ )γ1−ε,0(t − τ)dτ,
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γ L
1 (t) = γψ1,1(t) +

t∫

0

g1−ε(τ )γ1−ε,1(t − τ)dτ,

γ L
n (t) = γψn ,n(t) +

t∫

0

gn−1+ε(τ )γn−1+ε,n(t − τ)dτ

+
t∫

0

gn−ε(τ )γn−ε,n(t − τ)dτ, n = 2, . . . N − 1

γ R
n (t) = γψn+1,n(t) +

t∫

0

gn+ε(τ )γn+ε,n(t − τ)dτ

+
t∫

0

gn+1−ε(τ )γn+1−ε,n(t − τ)dτ, n = 1, . . . c − 2

γ R
c−1(t) = γψc,c−1(t) +

t∫

0

gc−1+ε(τ )γc−1+ε,c−1(t − τ)dτ

γc(t) = p(c)(0)δ(t) + γψc,c(t) +
t∫

0

gc−1+ε(τ )γc−1+ε,c(t − τ)dτ , (32)

where γi, j (t) are the densities of first passage times between points i, j .
This system of equations is transformed with the use of Laplace transform and

solved numerically to obtain the values of f̄n(x, s;ψn). Then we use the Stehfest
inversion algorithm [47] to compute fn(x, t;ψn); for a specified t .

The parameters of the above model do not vary with time. However, we are
interested in time-dependent input stream, hence the model is applied to small time-
intervals, typically of one time-unit length, where the parameters are constant and
the solution at the end of each interval gives the initial conditions for the next one.

Example 3.1 (extended Erlang model) Consider single M/M/20/20 and
G/G/20/20 stations, at each channel μ = 1. At t = 0 the system is empty. Dur-
ing the period t ∈ [0, 20] the intensity of the input stream λin(t) = 10, then for
t ∈ [20, 50] λin(t) = 25, and for t ∈ [50, 80] again λin(t) = 10.

Figure4 presents the mean number of occupied channels as a function of time,
for exponential (C2

A = C2
B = 1) and non-exponential (C2

A = C2
B = 5) distributions,

the impact of the variances of both considered distributions is visible.

Example 3.2 (extended Engset model) During the period t ∈ [0, 20] there is a finite
population of H = 20 connections, the activation intensity of each connection is
ν = 1. As previously, we consider a M/M/20/20 station, at each channel μ = 1,
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Fig. 4 Example 3.1 (infinite population): mean number of occupied channels as a function of time,
C2

A = C2
B = 1 and C2

A = C2
B = 5,

and t t = 0 the system is empty. Then in t ∈ [20, 50] the population is H = 40 and
for t ∈ [50, 80] the size of the pool is again H = 20.

Figure5 presents probabilities p(c) for the both examples (Erlang and Engset
models), for exponential and non-exponential distributions. The influence of large
variations is more important in finite population model. During peak load
(t ∈ [20, 50] it is 70% greater for C2

A = C2
B = 5 then for C2

A = C2
B = 1 in

case of Engset model and 32% greater in case of Erlang model. During low traffic
periods the relative difference of p(c) in Markov and non-Markov models is much
more distinct, as the value of p(c) is closed to zero.

We do not compare here the approximate resultswith simulation but in general, the
accuracy of these results is acceptable, see a discussion of diffusion approximation
errors in [49].

3.4 Diffusion Approximation of Preemptive—Resume Priority
System

This paragraph introduces a diffusion model of a single server with priority
preemptive—resume queuing discipline, cf. [50]. Customers arriving to the sys-
tem are divided into a number K classes. Each class is distinguished by its index
k, k = 1, . . . , K , and has its own priority. The lower the number of the index, the
higher the priority of the class. When a customer of class k is being served and a
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Fig. 5 Blocking probabilities as a function of time for both Examples 3.1, 3.2: finite and infinite
population, C2

A = C2
B = 1 and C2

A = C2
B = 5

customer of class l, l < k arrives, the current service is suspended and the service
of the newcomer begins. After completion of this service and the service of other
more privileged than class k customers who have arrived meanwhile, the interrupted
service is resumed at the point of suspension. Customers of the same priority class
are served in the order of arrival. The presence of lower class customers is transpar-
ent to customers of a given class. The interarrival times in the particular stream are

characterized by parameters λ(k), σ (k)2

A having the same meaning as λ, σ 2
A in the case

of one-class system. The service time of customers of class k has mean value 1/μ(k)

and variance σ
(k)2

B .
Following exactly the same procedure as for the FIFO system, there are two

streams defined: input process E (K )(t) as the total number of customers of all K
classes who arrived to the system during the time period [0, t], and the output process
H (K )(t) as the number of customers of all K classes who left the system in [0, t].
Applying the central limit theorem and using the same arguments as for the first-
come-first-served discipline it can be proven that these processes have approximately
normal distributions if the period [0, t] is sufficiently long and within a busy period
of the server. The total number of customers of classes 1, ..., K present in the system

N (K )(t) = E (K )(t) − H (K )(t)

is changing and its changes during the time period [0, t] have the mean β(K )t and
the variance α(K )t :
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β(K ) =
K∑

k=1

λ(k) −
K∑

k=1

((1 − p(k−1)
0 (t))μ(k−1) + p(k−1)

0 (t)μ(k)),

α(K ) =
K∑

k=1

λ(k)C (k)2

A +
K∑

k=1

((1 − p(k−1)
0 (t))μ(k−1)C (k−1)2

B + p(k−1)
0 (t)μ(k)C (k)2

B ),

C (k)2

A = λ(k)2σ
(k)2

A , C (k)2

B = μ(k)2σ
(k)2

B , p(0)
0 (t) = 1, μ(0) = 0

and are approximately normally distributed. Probability p(k−1)
0 (t) for classes 2, ..., K

is the probability, that there are no customers of all higher priority classes
(1, ..., K − 1) present in the system. Diffusion approximation method replaces the
discrete-state process N (K )(t) by the continuous-state process X (K )(t)whose infini-
tesimal changes have normal distributionwith themeanβK dt and the varianceαK dt .
Solving the diffusion equation with the same type of boundary conditions as defined
in earlier chapters with the intensity of jumps from x = 0: �(K ) =∑K

k=1 λ(k) gives
the density function f (K )(x, t; x0) for all classes considered together.

This approach studies the diffusion processes corresponding to each class cus-
tomers together, taking into account the influence of higher classes on the queues of
lower classes through the probability that the system is occupied by higher classes
and thus is not able to serve the lower ones.

For example, in the case of two classes, the first diffusion process corresponding to
the priority class has parametersβ(1) = λ(1)−μ(1) andα(1) = σ

(1)2
A λ(1)3+ σ

(1)2
B μ(1)3

and the second one, corresponding to both higher and lower classes, where lower
priority is served only in absence of the higher class, has the parameters

β(2) = λ(1) + λ(2) − (1 − p(1)(0, t))μ(1) − p(1)(0, t)μ(2)

α(2) = σ
(1)2
A λ(1)3 + σ

(2)2

A λ(2)3 + (1 − p(1)
0 (t))σ (1)2

B μ(1)3

+ p(1)
0 (t)σ (2)2

B μ(2)3 .

Example 3.3 Consider a server with two priority levels. In the first example, the pri-
ority customers come with intensity λ(1) = 0.4 during intervals t ∈ [0, 10], [20, 30],
[40, 50], . . ., otherwise λ(1) = 0. The intensity of non-priority customers is constant,
λ(2) = 0.4. The queue capacities are limited to N (1) = N (2) = 20. The results of
the diffusion model are validated by comparison with the exact ones obtained with
OMNeT++ discrete network simulator. Poisson input streams and exponential ser-
vice time distributions for both types of customers are assumed: μ(1) = μ(2) = 1.
Figure6 displays the mean number of customers of each class as a function of time,
given by diffusion model and by the corresponding simulation result and Fig. 7 com-
pares the total number of customers of both classes.
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Fig. 6 Example 3.3: mean queue lengths of priority (P0) and non-priority (P1) classes

Fig. 7 Example 3.3: total mean queue length of both priority classes

4 Fluid-Flow Approximation

In this method, already adapted to model Internet transmissions [51–53], only the
mean values of flow changes are considered and for this reason it should introduce
larger errors than the diffusion approach which is a second order approximation.
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The fluid approximation uses first-order ordinary linear differential equations to
determine the dynamics of the average length of node queues and the dynamics of
TCP congestion windows in a modelled network. The changes of a queue length at
a station j , dq j (t)/dt , Eq. (33), are defined as the intensity of the input stream, i.e.
the sum of all flows i = 1, . . . , K traversing a particular node, minus the constant
intensity of output flow C j , i.e. the number of packets sent further in a time unit:

dq j (t)

dt
=

K∑

i=1

Wi (t)

Ri (q(t))
− 1(qv(t) > 0) C j . (33)

A router allows reception of traffic from K TCP flows (K � N ), where N is
the entire number of flows in the network. Following the TCP congestion avoidance
principles, each flow i (i = 1, ..., N ) is determined by its time varying congestion
window size Wi giving the number of packets that may be sent without waiting
for acknowledgement of reception of previous packets. The window size, Eq. (34),
increases by one at each RTT (round trip time) in the absence of a packet loss and
decreases by half of its current value after every packet loss occurring in nodes
on the flow path (the latter decision is taken after the time τ ). Its size divided by
RTT represents the flow intensity. The amount of loss for the entire TCP connection
is defined as flow throughput intensity multiplied by total drop probability—the
probability which specifies that the loss occurs in nodes on the route. It is based on
a matrix B that stores drop probabilities in each router in all flows in the network.

dW i (t)

dt
= 1

Ri (q(t))
− Wi (t)

2
· Wi (t − τ)

Ri (q(t − τ))
·
⎛

⎝1 −
∏

j∈Vi

(1 − Bi j )

⎞

⎠ . (34)

The values Bi j give drop probability ploss at node j for packets of connection i ;
Vi is the set of nodes belonging to this connection, and q(t) is the vector of queues
at these nodes. Delays Ri in the above formulas determine the time needed for the
information on congestion and packet loss to propagate through the network back to
the sender of a flow i , it consists of queue delays at all nodes j , defined as q j (t)/C j

along this connection and the propagation delay T pi :

Ri (q(t)) =
M∑

j∈Vi

q j (t)

C j
+ T pi . (35)

The drop probability ploss j (x j ), Eq. (36), in a single node is determined accord-
ing to RED mechanism, e.g. [53] as a function on the moving average queue length
x j (t) which is the sum of current queue q j (t) taken with a weight parameter w and
previous average queue taken with (1 − w) weight parameter,
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ploss j (x j ) =

⎧
⎪⎪⎨

⎪⎪⎩

0, 0 � x j < tmin j
x j − tmin j

tmax j − tmin j

pmax j , tmin j � x j < tmax j

1, tmax j � x j .

(36)

We used already fluid flow approximation to investigate other than RED algo-
rithms in router queues, [54–56].

4.1 Comparison of Fluid Flow Approximation and Diffusion
Approximation

We have already reported the ability to build and compute large network models,
containing hundreds of thousands nodes in case of fluid flow and thousands of nodes
in case of diffusion approximation, [57]. Here, we compare in a simple one-node
model the errors of both approaches, cf. [58]. The examples differ in the choice of
buffer length, input stream, and RED parameters. The numerical comparisons were
conducted in a single node in two phases. The first one (Example 4.1) included the
analysis of queue length given by the both methods when the traffic was a prede-
fined function of time, the same for both methods, and the second one (Example
4.2) included the elements of congestion window size mechanism. The results of the
approximations were compared to simulations obtained with the use of OMNET++
package [59] adapted by us to simulate transient states (automatic repetition of simu-
lation runs 500,000 times, collection of histograms for a set of defined timemoments,
parameters of random number generators defined as functions of time). The number
of simulation repetitions was sufficient to consider its results as almost accurate,
the confidence intervals were negligible compared to the values of obtained queue
lengths.

Example 4.1 The considered time-dependent input flow is presented in Fig. 8. The
classical diffusion approximation model determines a router queue with the drop-tail
(passive) algorithm. To compare this approach with the fluid flow approximation, we
decided to disable the window mechanism in fluid flow node and by the choice of
RED parameters—thresholds tmin = 0 packets, tmax = 20 packets and pmax = 0.
The buffer length in both cases was set to 20 packets and the service intensity was
μ = C = 1.5 packets per time-unit.

The mean queue lengths given by approximation and simulation are displayed in
Fig. 9. The diffusion approach ismuchmore accurate than fluid flowand its results are
practically the same as simulations, whereas in fluid flow only the general tendency
of the queue changes is preserved.

Example 4.2 The fluid flow approximation assumes that the input traffic at a node
is defined by congestion window size and RTT time of the flow which traverses
that node, whereas in the diffusion model it is given explicitly. To compare the both
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Fig. 8 Input stream as a
function of time in Example
4.1—no window mechanism

Fig. 9 Example 4.1:
Comparison of the mean
queue at a single node as a
function of time for both
approximations and
simulation, results in case of
disabled window mechanism

models, the time-dependent input stream as shown in Fig. 10 obtained from the fluid
flow model where it was defined by the congestion window, was also given as the
input flow to the diffusion model. The service intensity, C in fluid flow and μ in
diffusion model, were set to the same value of 0.75 packets per time unit. The buffer
size was set to 5 packets and RED linear increase range was tmin = 0.75, tmax = 2.5
packets, pmax = 0.1. The inclusion of the congestion window mechanism makes
the generated fluid flow characteristics closer to the results obtained by diffusion
approximation and the simulation. However, the error is still important (Fig. 11).

The obtained results demonstrate that the fluid flow method which is frequently
used in modelling because of its simplicity generates much larger errors compared to
the diffusion results. However, the diffusion calculations are more time-consuming
and have also precision limits in its numerical computations that makes impossible
to analyse this way networks with large buffers at nodes. Fluid flow model provides
only a rough characteristics of network dynamics but can be used to model very large
network.
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Fig. 10 Example 4.2: Input
stream as a function of time
for both models in case of
window mechanism

Fig. 11 Example 4.2
Comparison of the mean
queues as a function of time
for both approximations and
simulations results in case of
window mechanism

5 Conclusions

The size and complexity of models which may be analysed by diffusion and fluid
flow approximations are much larger than in case of traditional Markovian models.
Diffusion and fluid approximations are useful approaches that are complementary
to Markov models if we do not need a detailed description including all events
concerning singular packets and occurring in a real system. We investigated the
limitations of the use of both approximations in the transient analysis of IP router
queues in presence of input floworiginating fromTCP congestionwindow algorithm.
Fluid flow approximation generates much larger errors but is very fast and may be
applied to larger networks.Diffusion approximation ismore accurate andmay furnish
not only the mean values of queues but also their distributions, therefore it is better
adapted to estimate the packet losses. However, the calculations are more complex.
An alternative to analytical models is discrete event simulation—also used here to
evaluate results of diffusion and fluid flow approximations. We have developed an
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extension of OMNET++ (a popular simulation tool written in C++, [59]) allowing
simulation of transient state models. In this case a simulation run should be repeated
a sufficient number of times (e.g. 500 thousands in our examples) and the results for a
fixed time should be averaged. Itmakes transient simulationmodels time-consuming.

We have developed our own tools for the three analytical methods and we are
testing their possibilities. The models based on Markov chains are still essential in
performance evaluation and supporting the design of new communication protocols,
mechanisms for regulation of the intensity of Internet transmissions andmechanisms
to ensure the quality of transmission services. However, they should be limited to
small network configurations. The tools based on approximations are able to treat
very large (up to millions of nodes) networks giving a software testbed to consider
modifications of protocols or the choice of network topologies.

Acknowledgments This work was supported by Polish project NCN nr 4796/B/T02/2011/40
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