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Abstract 
A novel concept of probabilistic f u w  logic is introduced as a 

way of representing and/or modeling existing randomness in 
many real world systems and natural language propositions. The 
approach is actually based on combining both the concepts of 
probability of truth and degree of truth in a unique framework. 
This combination is carried out in both the fuzzy sets and fuzzy 
rules resulting in the new concepts of probabilistic fiw sets and 
probabilistic fuzzy rules, respectively. Having one of these 
probabilistic elements, a probabilistic fuzqv system is then 
introduced as a fuzzy-probabilistic model of a complex non- 
deterministic system. In a simple example, human skepticism 
about the optimal fuzzy rule base is modeled through substituting 
a probabilistic fuzzy rule base for a conventional one. The closed 
loop response of the resulting controller for tank level control is 
shown through simulation and is compared with a conventional 
fuzzy controller, 

1. INTRODUCTION AND MOTIVATION 
Introduction 

One of the main advantages of fuzzy logic systems has been 
their ability for handling and representing one class of 
uncertainties, the non-statistical uncertainty. Moreover, fuzzy 
logic is a framework for representing and manipulating 
linguistic variables and sentences in natural language. This 
feature enables us to incorporate human expert knowledge in 
the form of fuzzy if-then rules and fuzzy membership 
functions. Furthermore, the universal approximation property 
of fuzzy systems guarantees their ability for modeling 
deterministic complex and uncertain systems. These superior 
traits however can be degraded by the existence of randomness 
and probabilistic elements. Randomness is another type of 
uncertainty named statistical uncertainty. In this paper, the 
shortcomings of conventional fuzzy logic systems in some 
particular situations will be first discussed leading to the 
motivations for integrating fuzziness and probability. 
Consequently, a new concept of probabilistic f i z y  logic is 
developed and used to enhance the universal applicability of 
fuzzy systems by bridging the gap between fuzziness and 
probability. The approach is mainly different from the well- 
established concept of fuzzy probabilities. Fuzzy probability is 
a fuzzy approach to probability theory whereas the proposed 
probabilistic fuzzy logic is a combined framework in which 
both probability as well as fuzzy theories co-exist. 

Probability and Fuzziness 

Statistical and non-statistical uncertainties are two 
conceptually different kinds of uncertainty. Non-statistical 
uncertainty is best represented with the concept of fuzziness 
where fuzzy logic is used to describe partial truth and 
approximate reasoning. This type of uncertainty is indeed an 
ambiguity in assigning the degree of compatibility of an 
instance with a semantic concept. Statistical uncertainty, on the 
other hand, may be viewed as a kind of uncertainty concerning 
the occurrence of an event in the future. Statistical uncertainty 
is best represented with probability, which gives us the 

likelihood of an outcome that may or may not happen. 
Probability gives the likelihood of the outcome in a statistical 
manner and tells us about populations not instances. 

The relationship between fizziness and probability has been 
discussed in literature frequently [1][2][3]. Most of the related 
arguments lead us to the final conclusion that fuzziness and 
probability are distinct phenomena and should be treated 
differently. Although it is now commonly accepted that they 
are complementary rather than competitive [ 11, there is not yet 
a unifytng framework for their integration. We believe that 
they should indeed be treated differently but not necessarily 
separately. The need for an integrated framework is best 
revealed in situations where both types of uncertainty exist 
concurrently and where each of the fuzziness and probability 
concepts alone are necessary but not sufficient. As one 
example of such situations, consider the following example: 

Example 1 
Suppose there is a black bpx containing 100 balls having 

different colors. The color of the balls may vary in a broad 
range from completely white to completely black. There are 
two types of uncertainty in description of the actual color of a 
sampled ball randomly picked up from the box. One type of 
uncertainty is the one associated with random selection of the 
ball and can be represented with the probability of selection of  
a desired color (for example black) and the other one is the 
uncertainty or ambiguity in describing the color of the ball 
even after the ball has been selected and is known. Therefore, 
the probability of selection of a black ball as an outcome and 
degree of blackness of that ball may both be used to describe 
the uncertainty about the color of a selected ball. 

1.1 Natural language 
Fuzzy logic systems have a linguistic structure capable of 

handling and representing linguistic propositions in human 
natural language. However, there are often semantics and 
propositions which cannot be completely represented with 
fuzzy logic alone. Consider the following sentence: 

It is very likely that tomorrow it will rain heavily 

Although “heavily” is a fuzzy concept and can be 
represented with a fuzzy set, the fuzziness is no longer enough 
to describe the weather conditions. A probabilistic element also 
exists in prediction of the weather conditions. In this particular 
example, the probability itself is also specified with a fuzzy 
concept and is, therefore, an example of fuzzy probability as 
well. 

1.2. Statistical diversity in human expert knowledge 
Fuzzy systems are knowledge-based systems which utilize 

human expert opinion as one of its primary resources of 
acquiring this knowledge-base. However, there is not a 
systematic way of ensuring optimality and uniqueness of a 
human expert knowledge. Consequently, it is often necessary 
to collect many experts’ knowledge about the system. The . .  - 
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differing andor conflicting experts’ opinions cannot be 
represented simultaneously within a conventional fuzzy 
framework and are better to be considered in a more general 
statistical framework. For example suppose different experts 
are asked to define the grade of membership of a 26 years old 
person to the fuzzy set old. Since the grade of membership of 
an object in a fuzzy set is a subjective matter, we will get 
different answers from different experts. 

Conventional fuzzy logic has to consider all of the answers 
to reach a fixed and deterministic membership value between 
zero and one. Later in this paper a new concept ofprobabilistic 
fizzy set is introduced in which the membership value for each 
object x, denoted by dx) is a random variable defined with its 
probability density function. Thus, in probabilistic fuzzy logic, 
ktd(26) is defined as a random variable with a known 
probability density function. 

1.3. Probabilistic Versus Deterministic Modeling: 

Many of the real world complex systems may exhibit 
randomness in their behavior. Human control strategy [4] is 
one example of such non-deterministic system. This means a 
human may not necessarily repeat the same action or response 
in various times under the same conditions. Modeling these 
complex systems can be more realistic if their statistical 
properties are also modeled using a probabilistic modeling 
strategy. 

Fuzzy modeling techniques are well established and (due to 
their universal approximation property [5]) are extensively 
used for modeling complex and nonlinear deterministic 
systems [6][7][8]. They are not suitable however, in their 
conventional form, for probabilistic modeling of randomized 
and stochastic systems. Although it is possible to modify 
existing fuzzy modeling techniques to increase modeling 
accuracy of randomized systems [9], the need for a 
probabilistic &zzy modeling approach is inevitable. The 
proposed probabilistic fuzzy logic in this paper leads to 
definition ofprobabilisticjiuzy systems, which can be used as 
a framework for probabilistic fmzy modeling. 

The proposed framework is expected to have more 
capabilities in handling both the statistical and non-statistical 
uncertainty concurrently. 

2 .  PROBABILISTIC Fuzzy LOGIC 

Fuzzy logic, similar to some other brilliant scientific 
theories, is not simply a new theory but also is an extension to 
previous theories, and in particular the conventional Boolean 
logic. Fuzzy logic concerns with the general concept of 
“degree qf truth. ” It is an extension to conventional crisp logic 
in the sense that degree of truth is no longer limited to zero and 
one. Probability, on the other hand concerns with the concept 
of “probability of truth” and gives information about the 
likelihood of an event in the future. As stated before, 
probability and fuzziness are representing two different kinds 
of uncertainty, statistical (or random) and non-statistical 
uncertainty. 

Consequently, the new concept of probabilistic fuzzy logic is 
introduced as an extension to conventional fuzzy logic such 
that the truth value is not only specified with a degree of truth 
between zero and one, but also with a probability of truth in the 
form of a probability number or a probability distribution 
function (pdf). As illustrated in Figure 1, degree of truth and 
probability of truth are simultaneously considered in a 
probabilistic fuzzy logic. Probabilistic fuzzy logic can be also 
interpreted as a special kind of fuzzy logic in which the degree 

of truth is a random variable taking values between zero and 
one (this is the basic issue in probabilistic fuzzy sets). The 
above extension principle also holds here because the 
conventional fuzzy logic is a special case of probabilistic fuzzy 
logic where the probability of truth is either zero or one. 

Degree of truth 

. . . . . .  

Fig. 1. hobabilistic Fuzzy Logic 
Example 2 
Consider the following sentence. 

I think it will rain heavily with probabilitv 90%. 
There is a non-statistical uncertainty about the exact amount 

of rain and “heavily” is used as a fuzzy concept to represent 
this uncertainty. However, the probability of truth is also 
included in the sentence to represent human skepticism about 
its truth value (the probability of heavy rain). 

Probabilistic Fuzzy Set 

Probabilistic fuzzy logic leads us to definition of some other 
new concepts such as probabilistic fuzzy set. Unlike the 
conventional fuzzy set, the degree of membership (membership 
value) in a probabilistic fuzzy set dx) is no longer specified 
with a fixed known value for each x .  In fact, the membership 
value is now a random variable and should be specified with its 
discontinuous (or continuous) probability distribution function 
@do. Regardless of its distribution, dx)  should still remain 
between zero and one. Mathematically, a probabilistic fuzzy 
set in the universe of discourse U is defined as follows: 

A = {X> fMx) (P(x)) I x w  (1) 
Where fkx) (Nx)) is the pdf of the random variable p(x) such 
that: 

P(a c c b) = If#(., ( P W )  dP(X) (2) 

fMx) (p(x)) is the continuous probability distribution function of 
the random variable p(x). In the general case, this pdf can be a 
function o f  both the x and p(x), (i.e. f=f& (p(x),x)). 

Example 3 
A probabilistic fuzzy set A has been defined such that its 

membership value is a normal random variable with its mean 
values (E{pA(X))) on a triangular function centered at zero and 
spanned over [-4,4] and its variance defined as in (4). 
Furthermore, PA@) is limited to zero and one. 

E {  @A(x) 1 = ;A (x) 
G{ PA@),’= k(0.5 - 1 z(~)-0.5/)* 

(3) 

(4) 
Where LA (x) is the conventional triangular membership 

function and k > 0 is a weighting factor for variance. 
11.6../11.1r FYII, ..I ,.r., : :[-“-I 

Fig. 2. An example of a probabilistic fuzzy set 
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3. PROBABILISTIC Fuzzy REASONING 
Natural language (NL) has been a good source of inspiration 

for invention of the fuzzy logic and fuzzy reasoning. The 
common aspect of both the reasoning in natural language and 
in fuzzy logic is their approximate nature. This approximate 
nature is because of the generalized modesponens law in fuzzy 
logic. Consider the following sentence: 

Ifit is cloudy today, then it will rain thisafternoon 

In classical logic, the weather is either cloudy or not cloudy 
and the truth-value of the whole sentence can be inferred using 
the modes ponens law of inference. In fuzzy logic, on the other 
hand, cloudy and rainy are fiuzy concepts and generalized 
modes ponens law states that the cloudier the sky is, the 
heavier it will rain this afternoon. This is an example of the 
approximate reasoning in fuzzy logic where partial truth can be 
tolerated. In this way, fuzzy logic extends the scope of 
inference laws from the crisp world of classical logic to the 
real world of uncertainty and fuzziness. 

But the scope of uncertainties in real world is much broader. 
Statistical uncertainty and randomness is another type of 
uncertainty that may not be represented with fuzzy logic. 
Indeed, it has been represented with probability theory and 
random processes. This type of uncertainty exists in natural 
language as well. Consider the following sentence for example: 

rfit is cloudv today, then it will probably rain this afternoon 

Although the exact degree of cloudiness may be known in a 
fuzzy manner, we may not be certain about the result of 
inference because of another existing uncertainty in the form of 
probability and randomness. Since the statistical uncertainty is 
inherently associated with time, we may remain in doubt until 
the afternoon arrives when the statistical uncertainty about the 
result of inference disappears but the uncertainty about the 
compatibility of the weather with the concept “rainy” remains. 
The above reasoning and the associated if-then rule are named 
probabilistic f i z y  reasoning and probabilistic f i z y  rule, 
respectively. In a probabilistic fuzzy rule, quantitative 
representation of both types of uncertainties is possible through 
membership function and probabiliv distribution function, 
respectively. 

Probabilistic fuzzy logic thus involves two types of 
reasoning about the truth-value of a proposition, the reasoning 
about degree of truth and about probability of truth, and hence 
is an extension to both the fuzzy reasoning and probabilistic 
reasoning. 

Probabilistic Fuzzy Rule (PFR) 
A conventional fuzzy if-then rule with multiple inputs and 

single output can be represented in the following form: 

Ifx,  is A and x2 is B . . . and x,  is C then y is OMFfi) ( 5 )  
Where A, B, ... and C stand for input membership functions 

(fuzzy sets) and OMFfi) is the kh output membership function 
(output fuzzy set). Generalization to MIMO case is simple and 
straightforward. 

In a conventional fuzzy if-then rule structure, for a given 
output variable y ,  a combination of input fuzzy sets is mapped 
into a fixed and known output fuzzy set (linguistic value) and 
thus resulting a deterministic input-output mapping. This 
mapping can be illustrated in a look up table. As a result, the 
consequent part of a conventional fuzzy if-then rule refers to a 
unique output fuzzy set for the given output variable. 

In a probabilisticfizzy rule on the other hand, each possible 
combination of the input sets may be mapped into each of the 
possible output fuzzy sets. The selection probability for all 
output fuzzy sets is known a priori while the actual selected 
output fuzzy set remains unknown until selected by a random 
mechanism based on the associated probabilities of the sets. 
Therefore the consequent part of each probabilistic fuzzy rule 
(PFR) is no longer an index to a particular fuzzy set but is a 
vector of probabilities, P for various output fuzzy sets, each 
element of the vector is the likelihood of selection of that 
particular output fuzzy set as the consequent. The mechanism 
of input-output mapping for each rule is shown in the 
following example. 

Example 4 
Consider a 2-input, l-output fuzzy system having membership 
functions {Al ,  A2, A 3 }  and {B,, B2, B J }  for the first and second 
input variables, respectively. Also having membership 
functions { OMF(1). OMF(2), OMF(3), OMF(4), OMF(5) ] for 
the output variable. 

A sample probabilistic fuzzy rule may be in the following 
form: 

Zfx, is A, and x2 is B2 
& y is 0MF2 ( with probability P2) & y is OMF3 (with 
probability P3) . . . & y is OMF5 (with probability Pj) 

then y is OMF, (with probability P I )  

(6) 

P = [ P l , P 2 , P 3 ,  ..., Pj] ,  P I + P ~ + P ~ +  ...+ Pj=I  (7) 
To investigate the implication and aggregation process in a 

probabilistic f izzy  system, . consider a simple max-min 
Mamdani inference engine. Selection of the proper output 
membership function (fuzzy set) for implication is performed 
using a random selection mechanism such as roulette wheel. 
The below figure illustrates the implication mechanism. 

The output probabilities comprise the weighting coefficients 
in the roulette wheel selection mechanism, which operates each 
time the outputs are evaluated and selects an output 
membership function based on its probability (likelihood) of 
selection 

- - -  

. .  - -  
PIv=OMF,) = P I  

PfV=OMF2 ) = Pz 

PIV=oMFI) = P1 

PIv=OMF.) = P, 

P/v=OMFI) = P I  
_.......... 

.: : . . .  . .  
i . 
+--  i 

Roulette wheel Selection - 
Fig. 3. Implication process in a probabilistic fuzzy rule 

4. PROBABILlSTIC FUZZY SYSTEMS AND PROBABILISTIC FUZZY 
MODELING 

Probabilistic fuzzy sets, probabilistic fuzzy rules or both can 
be used as building blocks of the proposed probabilistic fuzzy 
system resulting a probabilistic framework which exhibit a 
randomized nonlinear fuzzy mapping between inputs and 
outputs. Since a fuzzy system is more dependent on fuzzy rules 
rather than fuzzy membership functions, the random nature of 
the mapping is more significant when probabilistic fuzzy rules 
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are used. To more investigate probabilistic fuzzy systems, 
consider the following example of a probabilistic system with 
probabilistic fuzzy rules defined by a human expert. 

Example 5 
Consider designing a fuzzy controller for liquid level control in 
a tank through its input valve position. A simple fuzzy 
controller may employ Ah and dh/dt as inputs and d d d t  
(changes of input valve position) as the output. Where h is the 
actual liquid level, h d  is desired value of the level, Ah=hd -h is 
the error in level and a is the valve position, a€[O, I ]  

Three Gaussian input membership functions (negative, zero, 
positive) and five triangular output membership functions 
(close-fast, close-slow, no-change, open-slow, open-fast) are used 
for each variable. The following fuzzy rules may be obtained 
using a human expert’s knowledge. 

R1. If Ah is zero then valve is no-change 
R2. If Ah is positive then valve is open-fast 
R3. If Ah is negative then valve is close-fast 
R4. If Ah is zero and dh/dt is positive then valve is close-slow 
R5. If Ah is zero and dh/dt is negative then valve is open-slow 

In order to model the existing skepticism of humans’ opinion 
in defining the optimal rule set, we may substitute each 
conventional rule with a probabilistic fuzzy rule with output 
probability vector P defined such that the only output sets of 
the conventional fuzzy rules are the most probable output sets 
of the probabilistic fuzzy rules. Also the neighboring fuzzy sets 
in the PFR have smaller probabilities and the other fuzzy sets 
have zero probabilities. For example rule RI in the above rule 
set may be modified as follows: 

R I .  If Ah is zero then valve is no-change with probability 80% 
and valve is close-slow with probability 10% and valve is 
open-slow with probability 10% 

The consequent part of the PFR can be thus expressed in a 
compact form using the output probabilities vector P. Here is a 
sample probabilistic fuzzy rule set: 
R I .  I f& iszero P= [O.O 0.1 0.8 0.1 0.01 
R2. IfAh ispositive P=  [O.O 0.0 0.0 0.2 0.81 
R3. I f  Ah is negative P= [0.8 0.2 0.0 0.0 0.01 
R4. If Ah iszero and dh/dt ispositive, P= [0.1 0.8 0.1 0.0 0.01 
R5. If Ah is zero and dh/dt is negative, P= CO.0 0.0 0.1 0.8 0.11 

Step responses of both the initial conventional and the new 
probabilistic controllers are shown in Figure 4. It should be 
noted that this is only a model of the human skepticism and is 
not an optimal controller for the system. 

The extra parameters of a probabilistic fuzzy system such as 
output probability vector in probabilistic fuzzy rules and 
variance factor in the previously defined probabilistic fuzzy set 
are classified as statistical parameters. Statistical parameters 
determine degree of randomness in a probabilistic fuzzy 
system. It is always possible to interpret a conventional fuzzy 
system as a probabilistic one in which the statistical parameters 
are selected such that degree of randomness tends to zero (For 
example zero probabilities for all except one output 
membership functions in a PFR). 
Another possible way of designing a probabilistic fuzzy system 
may be to use an automatic learning algorithm such as 
evolutionary learning methods to determine the parameters of 
the system. This learning may be done through observation 
while using a similarity measure to measure the fidelity 

---.....-- ..-.I---“.- 
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Fig. 4. Conventional (a) and probabilistic (b) fuzzy controller step responses 

between a set of observed input-output data-pairs of the real 
system to be learned and the probabilistic fuzzy model. 

5 .  SUMMARY 

There is very little absolute knowledge in the real world. 
Inquiry must be a process of removal of doubt and 
skepticism or representing it properly. One of the main 
aspects of this skepticism has been identified as fuzziness, 
which is well represented with conventional fuzzy logic. 
Another aspect of the existing skepticism is uncertainty 
about the future of random processes and probabilistic 
events. Many of the real world systems, although may not 
have a random nature, may seem random to us due to 
insufficient knowledge and should be modeled accordingly. 
Although these two aspects have, up until now, been studied 
separately, the new concept of probabilistic fuzzy logic tries 
to merge them in a unifying framework. 

Probabilistic Jiczzy logic is a new approach for 
incorporating probability in fuzzy logic in order to better 
represent non-deterministic real world systems. It has not 
only the advantages of the approximate reasoning property 
of fuzzy systems, but also can be regarded as an extension to 
conventional one in the sense that the latter is a special case 
of the former with zero degree of randomness. 

The existing randomness in a probabilistic fuzzy system 
can be interpreted as: 
1. Probabilistic nature in some of the natural language 

propositions and human reasoning as well as the statistical 
differences and variety of different human experts’ knowledge. 

2. Existing randomness in many of the real world systems, which 
is required to be modeled, including human skepticism in 
defining the filzn knowledge base. 
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