
249

ISSN 1060-992X, Optical Memory and Neural Networks, 2017, Vol. 26, No. 4, pp. 249–256. © Allerton Press, Inc., 2017.

3D Crystal Structure Identification
Using Fuzzy Neural Networks

D. V. Kirsha, b, *, O. P. Soldatovaa, A. V. Kupriyanova, b, I. A. Lyozina, and I. V. Lyozinaa

aSamara National Research University, Samara, 443086 Russia
bImage Processing Systems Institute—Branch of the Federal Scientific Research Centre “Crystallography and Photonics” 

of the Russian Academy of Sciences, Samara, 443001 Russia
*e-mail: kirshdv@gmail.com

Received July 10, 2017; in final form, September 5, 2017

Abstract⎯The problem of recognizing nano-scale images of lattice projections comes down to iden-
tification of crystal lattice structure. The paper considers two types of fuzzy neural networks that can
be used for tackling the problem at hand: the Takagi-Sugeno-Kang model and Mamdani-Zadeh
model (the latter being a modification of the Wang-Mendel fuzzy neural network). We offer a three-
stage neural network learning process. In the first two stages crystal lattices are grouped in non-over-
lapping classes, and lattices belonging to overlapping classes are recognized at the third stage. In the
research, we thoroughly investigate the applicability of the neural net models to structure identifica-
tion of 3D crystal lattices.
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INTRODUCTION
Being the fundamental concept of crystallography and having Angstrom-order sizes, Bravais lattices

are building blocks for all crystals. Every crystal is constructed of these lattices in various modifications.
At the same time, different crystals can have the same lattices. There is a total of 14 such lattices. Depend-
ing on special symmetry, all crystals are distributed among seven lattice systems: triclinic, monoclinic,
tetragonal, orthorhombic, trigonal, hexagonal, and cubic systems [1]. Figure 1 presents the general
arrangements of Bravais lattices (smallest structural cells) for each lattice system.

The type of a lattice system is determined by six parameters of a Bravais lattice: the lengths of the three
edges and three angles between them (see Table 1).

The task of recognizing nano-scale images, which are projections of crystal lattices, can be reduced to
the structure identification problem. Among basic lattice structure identification methods are: the com-
parator of the National Institute of Standards and Technology [2], packing efficiency-based identification
[3] and isosurface-based identification [4].

Table 1. Parameters of Bravais unit cells of basic lattice systems

Name Lengths of edges Values of angles

Triclinic (aP)

Monoclinic (mP)

Trigonal (hR)

Hexagonal (hP)

Orthorhombic (oP)

Tetragonal (tP)

Cubic (cP)

1 2 3l l l≠ ≠ 1 2 3α ≠ α ≠ α

1 2 3l l l≠ ≠ 1 2 390α = α = ° ≠ α

1 2 3l l l= = 1 2 3 90α = α = α ≠ °

1 2 3l l l= ≠ 1 2 3120 ; 90α = ° α = α = °

1 2 3l l l≠ ≠ 1 2 3 90α = α = α = °

1 2 3l l l= ≠ 1 2 3 90α = α = α = °

1 2 3l l l= = 1 2 3 90α = α = α = °
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However, these approaches have some drawbacks that restrict their use: the tricky process of crystal
preparation (the need for accurate polishing and mounting), low efficiency of comparison of similar lat-
tices, high sensitivity to minor distortions of lattice node coordinates.

The major difficulty here is the ambiguity in choosing a two-dimensional basic cell for a particular pro-
jection (Fig. 2) [5].

Papers [6, 7] give a careful investigation of this problem representing a Bravais lattice as a unique fea-
ture space allowing the resolution of any nano-scale images in elementary structures.

One of possible approaches to the determination of crystal lattice type is offered in [8] where previously
estimated lattice parameters are compared with predefined reference lattice parameters. The lattice is
considered to belong to a particular type if its parameters have the closest match with the parameters of
the reference lattice of this type.

Another solution to the problem is given in paper [9]. The relationship between the number of equal
distances and inter-particle distances and angles of observation in the projection of the lattice is used to
classify a Bravais lattice. A classifier consisting of 15 neural nets, which allow for all possible pairwise per-
mutations of elementary Bravais lattices, is offered for classification of Bravais lattices. Each network can
recognize two classes. The result of the classification is a class that receives the greatest number of votes
in pair comparison. The architecture with two hidden layers and a sigmoidal activation function is taken
for each of the neural networks.

Since the classes of Bravais lattices are overlap-
ping, our idea is to use fuzzy neural networks. This
kind of networks combines learning and general-
ization abilities of neural nets, fuzzy logic opera-
tions (which allow us to determine the degree of
class inclusion of an object as a real number from 0
to 1), and possibility to classify fuzzy rule-oriented
bases. A class with the highest degree of class inclu-
sion is the result of structure identification.

The determination of classification parameters
from experimental results and expert evaluation of
the parameters are the most popular classification
methods using fuzzy neural nets. Research works
[10–15] consider this kind of neural networks for
solving classification problems using experimental
results. Particularly, the author of paper [15] mod-
ifies Takagi-Sugeno-Kang (TSK) neural network
by introducing the recurrent TSK net. The trick

Fig. 1. The unit cells of seven lattice systems.
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allows the automatic generation of fuzzy rules, but
increases the computational complexity of the
learning algorithm. Paper [16] proposes a fuzzy
TSK neural network for tackling the classification
problem. The net uses the expert evaluation
method to choose the most informative classifica-
tion features and form fuzzy inference rules. In
paper [17] similar approaches are used for learning
the author’s modification of the Wang-Mendel
network. The drawback of the method is the use of
subjective estimations of fairly large number of
experts and necessity to evaluate their consistency.

Conventional fuzzy rule-based neural net mod-
els and modified TSK and Wang-Mendel networks
use the algebraic product or minimum-form logi-
cal product as a fuzzy Boolean conjunction.
Respectively, these models use algebraic sum or
maximum-form Boolean sum as a fuzzy Boolean
disjunction [15, 17–19]. At the same time research
[20] allows a conclusion about the effective use of
fuzzy logical operations used in algebras of Goedel,
Goguen and Lukasiewicz. Paper [21] offers and
investigates modifications of Wang-Mendel net-
works that allows us to operate fuzzy logical opera-
tions defined in these algebras.

The fuzzy TSK neural network model and Wang-Mendel network modification (Mamdani-Zadeh
networks using operations of Goedel algebra) have been investigated using samples of 700 and 7000
parameter sets of Bravais lattices belonging to 7 lattice system classes.

FUZZY NETWORKS MODELS
Figure 3 shows an example of fuzzy TSK multiple-output neural network.
Generalized Gauss function

(1)

is used as a fuzzification function for each variable 
The fuzzy conjunction in the form of algebraic product

(2)

is used to aggregate the condition of the -th rule.
Given  inference rules, the aggregation of the network output is done by formula (3), which can be

represented as

(3)

where  is the aggregation of implication. Weights  in this expression are inter-

preted as components  defined by (2).
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Fig. 3. The structure of fuzzy TSK neural network with
two inputs, three inference rules and two outputs.
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The first layer of the network is responsible for
fuzzification of each variable 

defining the coefficient of belonging  for
each -th inference rule according to the fuzzifi-
cation function used. This is a parametric layer
whose parameters  are subject to
adaptation in learning.

The second layer makes aggregation of partic-
ular variables  defining the resulting coefficient

of belonging  in accordance with for-
mula (2). The third layer is the TSK function gen-

erator that calculates . In
addition, this layer computes the products of sig-
nals  and weights  found in the previous
layer. This is a parametric layer with adaptable
linear weights  

The forth layer has two neuron-adders, one of
which calculates the weighed sum of signals

, and the other sums up the weights 

The fifth layer consists of several output neu-
rons. This is a normalizing layer where the weights

( )1,2,...,jx j N=
( ) ( )i
A jxμ

i

( ) ( ) ( )( ), ,i i i
j j jc bσ

jx
( ) ( )i

i Aw x= μ

( ) 0 1

N
i i ij jj

y x p p x
=

= +∑

( )iy x iw
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( )iy x
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.
M

ii
w

=∑

are normalized according to (3). Output signals  are defined as

(4)

An instance of the structure of Mamdani-Zadeh network, which is a modification of popular Wang-Men-
del network, is shown in Fig. 4.

This is a four-layer structure where the first layer is similar to that of the TSK network. The second
layer performs pairwise aggregation of particular variables  defining the resulting coefficient of belong-

ing  for vector  in accordance with formula (5) – the fuzzy conjunction as minimum. This is
not a parametric layer.

(5)

The third layer is responsible for fuzzy implication in accordance with formula (6) in which variables 
stand for conclusion of inference rules formed in the process of learning. This is a parametric layer.

(6)

The forth layer consists of some output neurons which realize the fuzzy disjunction operation as maxi-
mum (7) where variables  and  are the results of implication the -th and -th rules of inference.

(7)

THE LEARNING TECHNIQUE
The data of generated unit cells of 7 different types were used for learning the neural networks. The data

were generated using the crystal lattice modeling method described in [22, 23] under the following con-
ditions:

(1) The number of lattices per each lattice system is 100 and 1000.
(2) The minimum admissible difference between “unequal” cell edges is 0.050 angst;
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Fig. 4. The structure of fuzzy Mamdani-Zadeh inference
neural network with two inputs, four inference rules and
two outputs.
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(3) The minimum admissible difference between “unequal” cell angles is 0.02 rad;
(4) The maximum admissible difference between the reference and estimated values of cell edges is

0.010 angst;
(5) The maximum admissible difference between the reference and estimated values of cell angles is

0.010 rad.
The parameters of unit cell generation are:
(1) The minimum edge lengths are 1.000 angst, 1.000 angst, 1.000 angst;
(2) The maximum edge lengths are 5.000 angst, 5.000 angst, 5.000 angst;
(3) The minimum angle values 0.175 rad, 0.175 rad, 0.175 rad;
(4) The maximum angle values 1.571 rad, 1.571 rad, 1.571 rad.
The size of lattice in each direction was taken equal to three nodes. The G6-space notation [24] was

used to bring the parameters of unit cells to a common value range. The data files holding parameters of
generated cells are arranged as shown in Table 2.

The preliminary examination of original data allowed us to divide 7 lattice types in 4 groups according
to the quantity and ordinal numbers of non-zero columns in data files. The grouping of crystal lattices is
given in Table 3.

After that the TSK and Mamdani-Zadeh neural nets were subjected to learning and tested in three
stages:

(1) Pair training and testing of neural nets for recognition of 2 lattice types;
(2) Training and testing of neural nets for recognition of all 7 lattice types;
(3) Training and testing of neural nets for recognition of lattice types in subgroups 1 and 4.

DETERMINING THE CRYSTAL LATTICE TYPE
The relative error of structure identification in all experiments was calculated as a percentage of iden-

tification failures over the whole test lattice collection. At the first stage 6-dimensional vectors comprising
of learning data of two types were fed to the TSK and Mamdani-Zadeh neural nets. The output layer held
two neurons according to the number of classes being recognized. The results are similar for both network
models (see Tables 4 and 5).

Table 2. Instance of file arrangement holding lattice cell parameters for various lattice systems

15.417 6.500 8.780 0 0 1.429
13.301 13.301 1.447 13.301 0 0
15.417 6.775 8.780 0 0 1.429
22.243 12.462 3.224 0 0 0
19.193 19.193 19.193 15.583 15.583 15.583
15.506 8.734 6.428 5.871 0.342 2.438

2
1l

2
2l

2
3l 2 3 12 cosl l α 1 3 22 cosl l α 1 2 32 cosl l α

Table 3. Grouping of lattice system types

Lattice system type Subgroup no.

Triclinic (aP) x x x x x x 1
Trigonal (hR) x x x x x x 1
Hexagonal (hP) x x x x 0 0 2
Monoclinic (mP) x x x 0 0 x 3
Orthorhombic (oP) x x x 0 0 0 4
Tetragonal (tP) x x x 0 0 0 4
Cubic (cP) x x x 0 0 0 4

2
1l

2
2l

2
3l 2 3 12 cosl l α 1 3 22 cosl l α 1 2 32 cosl l α
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Better identification results for the 700-lattice sample can be explained by the insufficient size of the
learning sample: the chance of finding two similar (in the terms of G6 parameters) lattices becomes lower
with the decreasing size of the learning sample. For this reason, the largest sample of 7000 lattices looks
preferable.

It is also worth noticing that the neural nets could not discriminate triclinic lattices (in fact, arbitrary
lattices) from trigonal lattices (three equal edges and three equal angles). The reason is that the placing of
these two lattice types in a single subgroup is not entirely correct: triclinic lattices are described by six inde-
pendent parameters (six non-zero columns), and trigonal lattices by two independent parameters (also six
non-zero columns). So, we put these two lattice types in one subgroup “formally” rather than “physi-
cally”.

Let us compare our results with the classification of crystal lattices into three groups according to the
number of equal translations and inter-translation angles given in paper [9]. The neural nets discriminate
low-ranking lattice types (triclinic and trigonal lattices) quite readily (the identification failure rate is
10%).

The middle-ranking lattice types (hexagonal and monoclinic ones) can also be discriminated quite
easily by the both network models (the identification failure rate is 15%). Separating them from high-
ranking lattices (tetragonal and orthorhombic types) causes much difficulty (the identification failure rate
is over 40%), which naturally follows from the similarity of their edges. The high-ranking lattices them-
selves (orthorhombic, tetragonal and cubic types) are discerned by the both neural network models quite
successfully (the identification failure rate is about 12%).

At the second stage of the investigation, the data collection presenting all the seven lattice types was
used to train the both neural nets. Six-dimensional vectors made up of this data were fed to the TSK and
Mamdani-Zadeh neural nets. According to the number of classes to be recognized, the output layer had
seven neurons. The experimental results show that the both network models recognize hexagonal- and
monoclinic-type lattices (subgroups 2 and 3) without failure. It is because the learning data for these lat-
tice types has different combinations of zero and non-zero columns than that for other lattice types. In
other words, the neural nets recognize the lattices of hexagonal and monoclinic type as non-overlapping
classes.

Additionally, the third stage of experiments was carried out to recognize lattice types belonging to sub-
groups 1 and 4. The TSK and Mamdani-Zadeh neural nets with 6 inputs and 2 outputs were used to deal
with lattices of subgroup 1. The same nets with 3 inputs corresponding to non-zero columns of initial data
and 3 outputs were engaged to process subgroup 4. The identification failure rate of the TSK neural net

Table 4. Relative errors of crystal lattice structure identification in pair learning of the TSK network using a 700-lattice
sample

hR (1) hP (2) mP (3) oP (4) tP (4) cP (4)

Triclinic (aP) 0 0 1 1 0 0
Trigonal (hR) 0 2 0 0 0
Hexagonal (hP) 0 0 0 0
Monoclinic (mP) 4 2 0
Orthorhombic (oP) 12 2
Tetragonal (tP) 6

Table 5. Relative errors of crystal lattice structure identification in pair learning of the TSK network using a 7000-lattice
sample

hR (1) hP (2) mP (3) oP (4) tP (4) cP (4)

Triclinic (aP) 10 0 0 0 1 1
Trigonal (hR) 0 0 0 0 2
Hexagonal (hP) 15 15 43 12
Monoclinic (mP) 42 16 10
Orthorhombic (oP) 16 8
Tetragonal (tP) 12



OPTICAL MEMORY AND NEURAL NETWORKS  Vol. 26  No. 4  2017

3D CRYSTAL STRUCTURE IDENTIFICATION USING FUZZY NEURAL NETWORKS 255

was 6%/10% (in the case of 700/7000 lattice sample, respectively) for subgroup 1, and 18%/25% for sub-
group 4. With the Mamdani-Zadeh neural net this rate was 24%/4% for lattices from subgroup 1 and
18%/12% for subgroup 4.

The results confirm the supposition that the amount of 700 lattices is not sufficient for a learning sam-
ple. The covering density grows with the size of a learning sample. As a result, a network begins “recog-
nizing” not only non-zero columns, but also the matching of values in columns 1–3 and 4–6 of trigonal
lattices.

It is very interesting to compare our values of the relative errors with the results presented in [25, 26]
where the recognition of lattice types was done with the aid of parametric identification methods. By way
of example let us look at the best result of structure identification obtained in comparative estimation of
Bravais cell parameters and Wigner-Seitz cell volumes (Table 6).

The comparison shows that the use of neural nets makes it possible to significantly decrease the struc-
ture identification failure rates for the following lattice types:

⎯trigonal and cubic types from 26 to 2%;
⎯orthorhombic and tetragonal types from 34 to 16%;
⎯tetragonal and cubic types from 26 to 12%;
⎯orthorhombic and cubic types from 15 to 8%.
On the other hand, when discriminating monoclinic and hexagonal lattices from lattices of subgroups

3 and 4, the neural nets give much worse results than parametric identification methods. Particularly, in
separation of hexagonal lattices from tetragonal ones the relative error has grown from 0 to 43%.

As for subgroup 4, here the low results are due to the geometric overlapping of classes. A set of cubic-
type lattices (white diagonal in Fig. 5) lie in the same line in the three-dimensional space. This line is in
the plane containing tetragonal-type elements (the dark-grey layer in Fig. 5). The plane lies in turn inside
the parallelogram formed by orthorhombic-type elements (the light-grey cube in Fig. 5).

CONCLUSIONS

We have offered a three-stage learning technique for neural
networks. Crystal lattices are divided into non-overlapping
classes in the first two stages. Crystal lattices belonging to over-
lapping classes are recognized at the last stage.

The investigation showed that the Mamdani-Zadeh neural
net is particularly sensitive to the size of the learning sample and
it is necessary to use no less than 1000 lattices of each lattice sys-
tem type to ensure efficient work.

As compared with parametric identification methods, the use
of neural nets makes it possible to decrease the 3D structure
identification failure rate for four couples of lattice systems con-
siderably (as much as 2 to 13 times).

The research results allow us to draw a conclusion that fuzzy
neural networks are an efficient tool in recognition of crystal lat-
tice types using Bravais cells parameters.

Table 6. Relative errors of crystal lattice structure identification when using parametric identification methods

hR (1) hP (2) mP (3) oP (4) tP (4) cP (4)

Triclinic (aP) 0 0 1 0 0 0
Trigonal (hR) 0 0 2 3 26
Hexagonal (hP) 7 0 0 0
Monoclinic (mP) 22 10 0
Orthorhombic (oP) 34 15
Tetragonal (tP) 26

Fig. 5. The class overlapping of lattice
types of subgroup 4.
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