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Abstract⎯We analyze statistical encoding algorithms as one of the type of general methods of image
compression. An approach we proposed allows us to improve effectiveness of a lossy image compres-
sion. We develop a statistical encoding algorithm that remains effective when compressing images with
raw errors. It can be used as a part of any methods of image compression performing encoding of
decorrelated signals with nonuniform distribution of probabilities. Coding specific data of a hierarchi-
cal compression method, we experimentally compared our algorithm with ZIP and ARJ archivers.
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1. INTRODUCTION
In the present time, body of data related to images increases permanently. As an example, we can men-

tion growth of video data obtained when shooting the Earth’s surface from aircrafts [1–3]. If earlier, they
have to deal only with images obtained from airplanes and satellites, now the researchers are concerned
with multispectral and hyperspectral data that can contain hundreds of large format high-resolution chan-
nels. Mass application of unmanned aerial vehicles adds to the problem of storage of such image data.

Of course, there are other examples except the Earth’s surface shooting. Increase in resolution and
number of images takes place in different branches of knowledge, such as geoinformatics, medicine, print-
ing industry, science of crime detection, and so on. In this situation, compression of images has no alter-
native, and the necessity to increase the efficiency of image compression methods is obvious.

Many image compression methods use decorrelation techniques [4]. Then data are quantized [5] and
encoded (finish compression is performed) [6, 7]. For example, in the framework of the differential meth-
ods [8] of image compression they perform the decorrelation by transition to a residual signal (difference
between incoming and predicted values of pixels). After that, the residual signal is quantized and encoded.

In the case of transform coding based on the discrete cosine transforms [9] (JPEG [10]) or the wavelet
transforms [11] (JPEG-2000 [12]) a quantized field of the transforms (the results of transformation) has
to be encoded.

When applying a hierarchical grid interpolation (HGI) for compression of images [13, 14] we interpo-
late pixels of an image basing on thinned versions of the same image and quantize and encode interpola-
tion errors (post- interpolation remainders).

In all the examples discussed above, finally we need to encode a quantized signal. Of course, at a decor-
relation step of any compression method it is necessary to construct the quantized signal most suitable for
encoding (“final compression”). This is why as a rule the quantized signal has a specific (strongly non-
uniform) distribution of probabilities. To make the best use of this non-uniformity for increasing the coef-
ficient of compression, usually the quantized signal is statistical encoded [6, 7] allowing one to reduce data
volume with the aid of an unequal-probability of the signal readings.

Thus there is a problem to choose (or to develop) an algorithm of statistical encoding for a given
method of image compression. The most frequently used are the Lempel-Ziv algorithm [15], the Huff-
man coding [16], and the arithmetic coding [17]. Most of the other algorithms involve the ideas of the
algorithms listed above.
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Computational complexity of the arithmetic coding is compara-
tively high. One other substantial defect of the arithmetic coding is
that patents cover many of arithmetic coders. Computational com-
plexity of the Lempel-Ziv algorithm is also high. Moreover, it is not
sufficiently effective without an additional final compression algo-
rithm. As such algorithm they usually use the Huffman coding. This
is the reason why the most attractive is the Huffman coding whose
complexity is less and the coefficient of compression is the best
among all the variable-length codes.

However, due to the specific character of the distribution of
probabilities of a coded signal direct application of the Huffman
coding can lead to a substantial loss of the efficiency of the codding.
The coded signal frequently contains a value (usually, zero value)
which occurs much more often than the others (this is one of the
most important aims of quantizing). The cause of the loss of the
efficiency is in inability of the Huffman coding to assign a
codelength less than 1 bit to any symbol (even the one that occurs
very frequently). Thus, the coefficient of compression cannot

exceed the width of the input signal and the degree of compression (in bits per reading) can sufficiently
exceed the entropy of the compressed signal. In fact, just this is a loss of efficiency of the encoding (the
algorithm is noticeable behind the theoretical limit).

In this paper, we propose a two-stream statistical coder well adapted to the distribution of probabilities
of a coded signal when compressing images. Although we developed our coder for the hierarchical com-
pression method, its main idea is suitable for a wide variety of methods of image compression based on
the decorrelation and successive quantization of the compressed signal.

2. HIERARCHICAL REPRESENTATION OF IMAGES
The method of the hierarchical grid interpolation (HGI) [18, 19] for compression of images is based

on the hierarchical representation of the compressed image. That means that we represent the image as a
set of L scale equations. The highest scale level that is the level number (L – 1) is a two-dimensional array
of readings of an input image that is  times thinned over each coordinate. The next scale level is the
level number . It is the input image from which we exclude the readings of the previous scale level

 thinned with the step ; and so on up to the level number 0 (see Fig. 1).
This representation is alike a quadtree (a pyramid image representation) [4, 5] but has the advantage

since it is irredundant. In a formalized form we write of our hierarchical representation of the image  as
a set of the scale levels :

(1)

where  is an array of image pixels thinned with the step  over both coordinates.
The hierarchical representation described above allows us to perform compression of the scale levels

one after another beginning from the highest scale level XL – 1; and at that we use pixels of more thinned
(less detail) scale levels to interpolate pixels of less thinned (more detail) scale levels. Let us write down a
formal compression procedure.

3. HIERARCHICAL IMAGE COMPRESSION
When compressing we process the scale levels of images one after another starting from the highest that

is in the order XL – 1, XL – 2, … X1, X0. The way of compression of the highest level XL – 1 is not important
since its contribution to the whole data set is very small (when number of the levels is larger than four this
contribution is less than half a percent). So, in what follows we describe a compression procedure for a
level , where . It consists from the following steps (See also Fig. 2):
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By the time of interpolation of the scale level
 all the more thinned scale levels

 are already processed. Their
union is the image  thinned with the
step 2l + 1. For all the pixels of this image, we
already know all the restored values 
that coincide with the values that will be
obtained during decompression. Let  denotes
the set of the restored pixels corresponding to the
scale level . Consequently, we perform inter-
polation of the pixels of the scale level  basing
on the restored pixels that correspond to the
already processed more thinned scale levels:

(2)

where  are the interpolating values of the
readings;  is a function that specifies the
interpolator.

(2) Calculation of residual signal

We calculate a residual signal that is a set of
differences of true and predicted values of the
readings (post-interpolation remainders):
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(3) Quantization of residual signal
We quantize the obtained residual signal Eq. (3). At that, we replace each residual signal  by its

quantized value

(4)

where  is a function that defines a quantizer and  is the quantized residual signal (or simply
the quantized signal).

(4) Restoration
At this step we use a quantized values ql(m, n) to calculate the restored values  of pixels of the

scale level l. For this purpose, we, first, have to calculate the restored values of the residual signal

(5)

where  is a dequantization function that defines approximate values of the residual signals from their
quantized values; and second, to calculate the restored values themselves:

(6)
These restored values of pixels are identical to those that will be obtained during the decompression (as

if the compression procedure includes the decompression procedure). We need the restored values for
interpolation of the more thinned hierarchical levels  . At this stage of compression, we per-
form this operation for all the scale levels (except the scale level ). Due to the above-described feedback
(in other words, when using for interpolation the restored pixels in place of the input pixels; see Fig. 2) we
can guarantee that during the compression and decompression the interpolator works in exactly the same
way (it calculates the same values). This allows us to control the measure of inaccuracy.

(5) Statistical encoding
At this stage we perform the statistical encoding of the quantized signal ql(m, n). Since the in this signal

distribution of probabilities is strongly non-uniform we can obtain a significant decrease of the data set.
That is the result that should have been received after the image compression.
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At this, we finished the general description of the algorithm of the hierarchical compression. To specify
the compression method it is necessary to indicate algorithms of interpolation, quantization, and statisti-
cal encoding.

In the framework of our analysis we are concerned with the statistical encoding. Consequently, the
interpolation algorithm is not so important for us. Next, for quantization we use an equidistant scale [4, 5]:

(7)

where [..] denotes the integral part of a number. This guarantees that the decompressed image differs from
the input image by no more than the given value of the maximal error :

(8)

Our algorithm of the statistical encoding we describe in what follows.

4. STATISTICAL ENCODING WHEN COMPRESSING IMAGES
Under the hierarchical compression, we apply the statistical encoding [6, 7] to the quantized residual

signal . The distribution of probabilities in this signal is much alike the distribution of probabilities
in the “not quantized” residual signal : it has a maximum at zero and quickly decreases symmet-
rically on the both sides of zero [4, 5]. However, the quantized signal differs from the “not quantized”
since its distribution of probabilities is narrower due to the union of values when quantizing.

When encoding signals characterized by strongly non-uniform distributions of probabilities they often
use variable-length codes [6]: short codes are assigned to frequently occurring symbols and longer codes
to rare in occurrence symbols. In this case, the length of the code word defines the efficiency of the coder
[7] that coincides with the average length of the code word. When measured in bits per reading it is

(9)

where N is the number of possible values of the coded signal, pi, bi are probabilities and lengths of codes
of coded values.

It is just the average length of a code word B we try to minimize when developing a coder. However,
according to the Shannon–Hartley theorem [6] the average length of the code word has a theoretical limit.
This means that it cannot be less the entropy [7]

(10)

From the last two equations, it is easy to see that the average length of the code word reaches the the-
oretical limit (i.e. the entropy) if when developing the code we can achieve the length of the code equal to

(11)

However, frequently in the case of the hierarchical compression the specific form of the distribution of
probabilities of a coded (quantized) signal does not allows us to reach the length (11). This results in a loss
of efficiency of the variable-length code for this signal. We have to discuss this effect in detail.

The more accurate the interpolator the larger the value of the given maximal error of quantization 
and consequently the more zero values are in the coded signal. In this case, the probability of zero p0 can
significantly exceed 0.5. The amount of information in the zero symbol is equal to ; and it
can be significantly less than one bit when . In the same time, the variable-length coder assigns
to this signal one-bit length code. This is the reason for the loss of efficiency of codding that increases
when the error due to compression increases. To avoid the above-mentioned loss of efficiency in this
paper we propose a two-stream algorithm for statistical encoding where we take into account a fraction of
zeroth in the coded signal (Fig. 3).

The algorithm works as follows. If the probability of zero  there is no loss of the efficiency
described above. In this case, when encoding we use the best variable-length coder that is the Huffman
coder [16].
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When the probability of zero  we divide the coded signal
into two streams. In the first stream, we send all the nonzero read-
ings. In the second stream, we send a binary dating sequence [8]
where we write ones in place of nonzero readings of the input stream
and zeros in place of zero readings. Then we encode the streams
independently.

In the first stream the symbols 1 and (–1) are the most probable.
At that from the symmetry of the distribution of probabilities, it fol-
lows that the probability of each of this symbols is less than 0.5 and
consequently we can use the Huffman algorithm that in this case
does not loss its efficiency.

We can use different algorithms when encoding the second
(binary) stream depending on the fraction of zero values. If the
probability of zero does not exceed a certain threshold value

 (that is the probability of zero is large, but not too large)
algorithms based on the run-length encoding (RLE) [7] and the
Huffman algorithm [16] suit. Using these algorithms, we first per-
form a transition from the binary sequence to the sequence consist-
ing from the enlarged RLE symbols of the form 1, 01, 001, .. , 00..01,
00..00. Unlike the standard RLE the number of different enlarged
symbols  can be not only powers of two.

Next, in contrast to the usual RLE to each enlarged symbol we
assign not a fixed length code, but the Huffman code. To avoid the
above-discussed loss of efficiency due to excessively large probabil-
ity of one of the symbols, we choose the parameter  satisfying
the inequality

(12)
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Because of the non-uniform distribution of probabilities of the enlarged symbols, such encoding is
more effective comparing with the standard RLE; however, the codebook has to be transferred.

When the probability of zero  we use the standard RLE for the binary stream. Additional
Huffman’s encoding is not useful because there are too many enlarged symbols. Consequently the size of
the codebook becomes too large and the coefficient of compression decreases.

To finish the description of our algorithm of the statistical encoding we note that one can use it not
only for the hierarchical compression of images but also as a part of other compression methods generating
a decorrelated signal with a strongly non-uniform distribution of probabilities.

5. ANALYSIS OF EFFECTIVENESS OF STATISTICAL CODING ALGORITHM

To analyze the effectiveness of the developed two-stream coder we compare it with the common
encoding algorithms ARJ and ZIP [6, 7] using the specific data of the HGI method that is the quantized
residual signal. Here as a measure of effectiveness, we use the degree of compression B (the set of com-
pressed data in bits per reading). In Fig. 4, we show the typical results (for the image “Lena”).

From this figure, we see that for the specific data of the HGI method our two-stream coder is 20% bet-
ter comparing with the algorithms ARJ and ZIP.

6. CONCLUSIONS

We analyzed the problem of the loss of efficiency of the algorithms of the statistical encoding in the
case of lossy compression. The proposed method allowed us to increase the efficiency of the statistical
coder. As an example, we developed the two-stream algorithm for statistical encoding that constitute a
part of the hierarchical compression method. We compared experimentally our algorithm with ZIP and
ARJ coders in the framework of the hierarchical compression method. One can include the proposed
algorithm into any compression method where it is necessary to encode decorrelated signals with non-
uniform density of probabilities.
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