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A B S T R A C T

The popular smart city concept, for some, is viewed as a vision, manifesto or promise aiming to constitute the
21st century’s sustainable and ideal city form, while for others it is just a hype. This paper places smart city
practices from the UK under the microscope to investigate their contributions in achieving sustainable urban
outcomes. Panel data analysis methods were employed to investigate changes in carbon dioxide emissions level
of 15 UK cities with differential level of city smartness over the period of 2005–2013. The findings reveal that the
link between city smartness and carbon dioxide emissions is not linear, and the impact of city smartness on
carbon dioxide emissions does not change over time. This finding calls for better aligning smart city strategies to
lead to concrete sustainable outcomes. The paper concludes by highlighting the importance of prospective in-
vestigations to accurately scrutinise existing smart city projects’ outcomes, and emphasising the necessity of
developing smart city agendas that deliver sustainable outcomes.

1. Introduction

Not to a surprise, the 21st century is promoted as the ‘century of
cities’ (Carrillo et al., 2014). By 2030, 60% of the world’s population is
expected to live in mega-cities; by 2050, 75% of the world’s population
will be living in urban areas; and this figure will reach to over 80% at
the end of the century (Hardoy et al., 2013; Dizdaroglu and Yigitcanlar,
2014). Today, some of the developed nations have already exceeded
this urbanisation rate. For instance, in the UK well over 80% of the
population is residing in urban areas. Moreover, the Anthropocene era
is already upon us, which is characterised by massive human impacts
on geological and ecological systems (Crutzen and Steffen, 2003).

Urban growth is a major phenomenon of the Anthropocene era,
which is taking place on an unprecedented scale globally, and its im-
pacts on society and the environment are evident (Perveen et al., 2017).
Particularly, greenhouse gas (GHG) emissions, including carbon dioxide
(CO2), are major contributors of the global warming (Mahbub et al.,
2011; Yigitcanlar and Dizdaroglu, 2015). Climate change in this era has
severe implications for the security of individuals, communities, cities,
regions, and the planet (Deilami et al., 2018). Mitigating global climate
change and neutralising the impacts of fossil fuel-based energy policy
on the environment have emerged as the biggest challenges for the
planet, threatening both natural and built systems with long-term
consequences (Dur and Yigitcanlar, 2015; Arbolino et al., 2017). In
recent years, a broad consensus is established on sustainable urban
development—or smart growth—being a panacea to the ills of the
Anthropocene era—such as the Paris Agreement (Dizdaroglu et al.,

2012; Yigitcanlar and Kamruzzaman, 2014). Consequently, the chal-
lenge of sustainable urban development has resulted in ‘smart cities’
and appeared as a hot topic of research and practice globally.

Over the past decade smart urban technologies, as part of the smart
city agenda, have begun to blanket our cities with an aim of forming the
backbone of a large and intelligent infrastructure (Lee et al., 2008).
Along with this development, dissemination of the sustainability
ideology has had a significant imprint on the planning and development
of our cities (Zhao, 2011; Goonetilleke et al., 2014). Today, the smart
city concept is viewed as a vision, manifesto or promise aiming to
constitute the 21st century’s sustainable and ideal city form. In other
words, smart city is an efficient, technologically advanced, green and
socially inclusive city (Vanolo, 2014). This is to say, smart city appli-
cations place a particular technology focus at the forefront of gen-
erating solutions for ecological, societal, economic, and management
challenges (Yigitcanlar, 2016). However, despite their promise to de-
liver sustainable outcomes with the aid of advanced technology, smart
cities are heavily criticised as being just a buzz phrase that has outlived
their usefulness (Kunzmann, 2014; Shelton et al., 2015).

Smart cities’ primary focus mostly being exclusive to technology has
been heavily criticised by a number of scholars. For instance, the darker
side of smart cities—particularly the extreme dependency on tech-
nology, and on corporations dominating technology and related ser-
vices—is mentioned in the literature as threatening. As stated by
Kunzmann (2014, p. 17), “sooner or later society will not manage any
more to live without the ICT-based services. Like addicts, or chronically
sick patients who are extremely suffering from the lack of some
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substance, respectively the medicine they are relying on, citizens will
become sick, if the access to smart ICT services will be cut-off. They will
soon forget how to survive in cities, once smart ICT technologies are not
available any more. The concentration processes, which characterize
the global market of smart technologies, are threatening”.

Smart city projects are big and expensive investments that are
supposed to drive societal and environmental transformations.
However, for example after more than a decade of investment, Songdo
City (Korea)—widely referred to as the world’s first smart city—is still a
‘work in progress’ project without concrete sustainable outcomes
(Yigitcanlar and Lee, 2014). On the contrary, Shwayri (2013) pinpoints
the negative environmental externalities caused by the development of
the Songdo smart city.

In spite of the heavy criticisms of smart city sceptics of this type of
urban form and development practice, as presented above, there is a
general sense among the scholars that rethinking our cities’ planning
and development paradigms and processes in the age of digital dis-
ruption and climate change is a good thing (Angelidou, 2017). It is,
thus, imperative to clearly understand what smart city agenda can de-
liver for cities before our governments are heavily investing on, and
jumping on to the smart city bandwagon. However, despite the in-
creasing popularity of the paradigms of smart and sustainable cities,
measuring sustainability levels of smart cities is an under-investigated
research area. Moreover, there are no empirical studies, so far, scruti-
nising the GHG emissions of so-called smart cities—the literature
mainly focuses on the sustainable city context rather than smart cities
(Coutts et al., 2010; Velasco and Roth, 2010).

Against this backdrop, the study aims to capture the big picture
view on whether smart city practices have been making considerable
contributions to local sustainability agendas by improving sustainable
urban development outcomes. Empirically investigating sustainability
achievements of smart cities is important to provide evidence on
whether this new and popular smart city policy contributes to the
sustainability agendas and/or accomplishments of cities. As both smart
cites and sustainable urban development concepts are highly complex
in nature, for practical reasons, the paper uses proxies for these con-
cepts: (a) Smart cities concept is characterised as city smartness, and;
(b) Sustainable urban development concept is characterised as CO2

emissions. In order to address the critical issue of whether smart city
policy leads to sustainability of cities, the paper focuses on the fol-
lowing two research questions:

(a) Does city smartness bring sustainability to cities in terms of CO2

emissions?
(b) Does the impact of city smartness on CO2 emissions change over

time?

Following this introduction in Section 1 of the paper, Section 2
provides a review of the literature on smart city concepts, and their
potential links with urban sustainability. Next, Section 3 outlines the
data and methods applied to address the research questions. After-
wards, the findings of the empirical analysis are presented in Section 4,
and discussed in policy terms. Finally, Section 5 concludes this paper by
highlighting the key findings of the study.

2. Literature review

The adoption of technology is a global phenomenon, and the in-
tensity of its usage is impressive all over the world. Particularly, state-
of-the-art smart urban information technologies play critical roles in
supporting decision-making, design, planning, development, and man-
agement operations of complex urban environments (Yigitcanlar,
2015). Their role in dealing with complexity and uncertainty and in
generating sustainable and liveable urban environments has been a
popular subject for many scholars (Lee et al., 2014). This has brought,
with strong push from major global technology companies—such as

IBM, Cisco, Schneider Electric, Siemens, Oracle—, the smart city notion
and practice to the forefront of urban agenda in many cities of the
world (Alizadeh, 2017).

As stated by Goh (2015, p. 169), “visions of a kind of technology-
infused smart city are becoming reality, translated from the realm of
concepts into actual urban space”. Particularly the development of
smart urban systems through effective use of smart urban technologies
is providing an invaluable foundation for smart cities to surface. Today,
more and more governments are showing interest in smart urban
system investment to make cities more efficient, sustainable and in-
clusive. Consequently, it is estimated that the global market for smart
urban systems for transport, energy, healthcare, water and waste will be
around US$400 billion per annum by 2020 (Yigitcanlar, 2016). This is
to say smart urban systems will fast become an integral part of our lives.
In recent years, many researchers explored the most common and ad-
vanced smart urban systems, and offered examples of their adoption in
the contemporary cities of the world (Klauser and Albrechtslund,
2014).

Over the past decade smart urban technologies have started to form
the backbone of a large and intelligent infrastructure network in cities.
Along with this development, dissemination of the sustainability
ideology has had a significant imprint on the planning, development
and management of our cities (Dizdaroglu and Yigitcanlar, 2016). Ac-
cordingly, the concept of smart cities, evolved from intelligent cities
(Komninos, 2008), has become a popular topic particularly for scholars,
urban planners, urban administrations, urban development and real
estate companies, and corporate technology firms.

Despite its popularity, so far, there is no prevalent or universally
acknowledged definition of smart cities. Instead, there are numerous
perspectives on what constitute a smart city. These are ranging from
purely ecological (Lim and Liu, 2010) to technological (Townsend,
2013), and from economic (Kourtit et al., 2012) to organisational
(Hollands, 2015), and societal (Deakin and Al Waer, 2012) views.
Ecological perspective of smart cities focuses on getting local govern-
ments, businesses and communities to commit to reducing GHG emis-
sions, reversing sprawling development, increasing urban density, in-
creasing greenspaces, encouraging polycentric development, and so on
(Lazaroiu and Roscia, 2012). Technological perspective focuses on
adoption of smart urban technology solutions to improve liveability of
communities and sustainability of cities—these technologies also in-
clude infrastructural ICTs that serves as the backbone such as internet
and world wide web (Paroutis et al., 2014). Economic perspective fo-
cuses on generating an innovation economy through smart technology
solution development, thus increasing the GDP and self-containment of
the city (Zygiaris, 2013). Organisational perspective focuses on estab-
lishing a transparent and democratic governance model (Meijer and
Bolívar, 2016). Societal perspective focuses on establishing socio-
economic equality and public participation in the smart city planning
and initiatives (Lara et al., 2016).

As for Kitchin (2015), smart city symbolises a new kind of tech-
nology-led urban utopia. Utopia or not, in all above mentioned per-
spectives the vision of technology and innovation is a common ground
to shape our cities into a form that we want to leave to our descendants.
This is to say, without a commonly agreed definition, the smart cities
concept is broadly viewed as a vision, manifesto or provocatio-
n—encompassing techno-economic, techno-societal, techno-spatial,
and techno-organisational dimensions—aiming to constitute the sus-
tainable and ideal 21 st century city form (Yigitcanlar, 2016). Never-
theless, presently, there are no fully-fledged smart cities (Trindade
et al., 2017).

Stated by Glasmeier and Christopherson (2015, p. 4), “over 26
global cities are expected to be smart cities in 2025, with more than
50% of these smart cities from Europe and North America”. Smart cities
are a global phenomenon today, as there are well over 250 smart city
projects underway across 178 cities around the world. The potential
success of these cities triggers much more cities to follow their
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footsteps—for instance, announced in 2015 the Smart Cities Mission of
India targets the development of 100 smart cities (Praharaj et al.,
2017).

At the moment with the building or retrofitting of many of these
cities underway in a large number of places around the world, smart
city examples abound in both the popular media and in academic dis-
cussions. Nevertheless, in a recent study, Alizadeh (2017) highlights the
limited empirical evidence—on whether these cities will be able to keep
up to their promises in forming green and inclusive urban en-
vironments—as the major shortcoming of the smart cities agenda. She
raises concerns on the unjustified popularity of the concept, as there is
“limited number of in-depth empirical case studies of smart city in-
itiatives… lack of holistic studies that compare smart city developments
in different locales… and limited collaborative engagement with var-
ious stakeholders in smart cities studies (p.71)”.

In spite of many cities being claimed as smart cities or at least
having declared themselves that they are smart, for some scholars, the
current hype around smart cities tends to be mostly technocratic, and
beyond speculation. There is no strong evidence to suggest that a smart
city can provide genuine answers to a number of complex problems
cities face today (Anthopoulos, 2017). As underlined by Mora et al.
(2017, p. 20), “the knowledge necessary to understand the process of
building effective smart cities in the real-world has not yet been pro-
duced, nor the tools for supporting the actors involved in this activity”.

This issue brings the crucial need for further empirical studies on
smart city strategies and initiatives, and forms the rationale of this
study. Popularity and relatively widespread application of smart city
initiatives provide us the ability to place these cities—even they are not
developed as a fully functioning smart cities—under the microscope to
evaluate their performance in achieving sustainable urban outcomes.

3. Data and methods

3.1. Data

This research was conducted in the context of smart cities in the UK
to answer the research questions. The selection of the UK as the study
context is justified as: (a) Being one of the early adopter nations of the
smart cities concept and practices (Caragliu et al., 2011); (b) Having the
second highest city numbers (7), after the USA (9), within the top-100
smart cities of the world (IESE, 2016), and; (c) Having the highest
number of projects (28/148) listed in the top smart city projects of the
world (Nominet, 2016). This research utilised a number of secondary
sources to gather and analyse data—to address the research questions
mentioned earlier—as outlined below.

3.1.1. CO2 emissions data
The CO2 emissions data were obtained from the Centre for Cities

website (http://www.centreforcities.org/data-tool/su/f5fb2e6f). The
website reported per capita CO2 emissions level (tons) of 65 UK cities
from 2005 to 2014. The CO2 emissions data were originally sourced
from the UK Department of Energy and Climate Change. CO2 emissions
data were used as an outcome variable in this research and regressed by
city smartness data to identify their cross-sectional and temporal im-
pacts.

3.1.2. City smartness data
Some studies try to understand city smartness by considering a set of

variables inside the urban system (Fistola and La Rocca, 2014). The
business vision of a smart city is strongly based on the pivotal role of
technology, especially the ICT (Dameri and Rosenthal-Sabroux, 2014).
IESE (2016) highlights that ICT is part of the backbone of any society
that wants to be called ‘smart’. As a result, this research used two in-
dicators of city smartness representing the ICT penetration in cities: (a)
Number of websites hosted per 1000 population, and; (b) Internet
protocol (IP) addresses per 1000 population. The number of websites

hosted by a city indicates the quality of online services provided by the
city, showing support for ICT dissemination strategies. IP address is a
unique identifier assigned to each computer and other devices (e.g.,
mobile phone) connected to the internet. This is a commercial indicator
of the adoption of the internet by the public in a city (IESE, 2016).
These two datasets were obtained from the MYIP website (https://
myip.ms/browse/cities/IP_Addresses_Cities.html). They represented
the snapshots of the indicators in a point in time (year 2017). This
research derived a quartile classification of the data for a consistent
comparison among the cities over time, given that this is a real-time
data and susceptible to change over time, albeit slowly.

3.1.3. Urban form characteristics
Four variables representing the urban form characteristics were

obtained from the OECD websites (https://data.oecd.org). These in-
cluded: (a) Population density of cities (person/km2); (b) Green area
(m2 per million person)—defined as the land in metropolitan areas
covered by vegetation, croplands, forests, shrubs lands, and grasslands;
(c) Polycentricity—the number of city cores included in a metropolitan
area, and; (d) Urban sprawl index (SI)—measures the evolution of
sprawl over time in a metropolitan area, based on Eq. (1) (OECD,
2016).
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where, i refers to a particular metropolitan area, t refers to the initial
year, t + n refers to the final year, urb refers to the built-up area in km2,
and pop refers to the total population.

The SI measures the growth in built-up area adjusted for the growth
in city population. When the city population changes, the index mea-
sures the increase in the built-up area relative to a benchmark where
the built-up area would have increased in line with population growth.
The SI index is equal to zero when both population and built-up area
are stable over time. It is bigger (or lower) than zero when the growth
of built-up area is greater (or smaller) than the growth of population,
i.e., the city density has decreased (or increased).

Note that the SI data were available only for the period of 2006
whereas datasets for the remaining three variables were available from
2000 to 2013 during the preparation of this manuscript. However, an
initial investigation shows that the level of polycentricity has not
changed over the period meaning that this variable is also static in
nature. In addition, a cross-examination between the CO2 emissions
dataset and urban form dataset shows that only 15 metropolitan areas
are common in both datasets. As a result, the analysis presented in this
paper is restricted to 15 UK cities—i.e., Birmingham, Bradford, Bristol,
Cardiff, Edinburgh, Glasgow, Leeds, Leicester, Liverpool, London,
Manchester, Newcastle, Nottingham, Portsmouth, and Sheffield—with
panel data spanning from 2005 to 2013.

3.1.4. Socioeconomic data
Many prior studies have found linear relationships between per

capita CO2 emissions and per capita GDP (Du et al., 2012; Yang et al.,
2015). This paper used per capita GDP (US$, constant prices in 2010) to
represent the level of socioeconomic development of the selected 15
metropolitan areas.

3.1.5. Descriptive summary
Table 1 shows descriptive statistics of the data used in this research.

Given the panel nature of the variables, the summary table presents
three types of variations in data (overall, between the 15 cities, and
within a city over the nine years study period). The first variable is
individual city ID (identification), which is not a real variable but shows
the cross-sectional dimension of the data. It varies from 1 to 15—i.e.,
the total number of cities (observation) analysed. The next variable is
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the time dimension of the data (year) and varies from 2005 to 2013
(nine years of data). These two variables are used to classify the panel
nature of the data.

The CO2 emissions variable is the main outcome variable used in
this research (Kamruzzaman et al., 2015). The mean value of the CO2

emissions data is 6.36 tons, which means that on average each person
emitted 6.36 tons of CO2 in a year. The overall standard deviation of
this variable is 0.79 tons with between and within variations are re-
spectively 0.51 tons and 0.62 tons. This means that there is a greater
variation in the emissions levels over the periods within a city than
between cities.

The research used two key exposure variables: (a) Number of
websites hosted per 1000 population by the cities, and; (b) Number of
IP addresses per 1000 population. These are classified as quartiles, and
as a result, the overall variation is shown between 1 (lowest quartile)
and 4 (highest quartile). Note that the within variations in these data-
sets are 0 (zero), which means that these variables are time-in-
variant—that is the classification of the cities does not change over
time. This rule applies to the two urban form variables (polycentricity,
and SI) because they are time-invariant as well (measured only once).
In contrast to the CO2 emissions variables, GDP, green area, and po-
pulation density variables have a larger variation between the cities
than within a city over time.

3.2. Methods

As for the statistical investigation, a panel data analysis is conducted
to observe sustainability related performance figures (e.g., CO2 emis-
sion levels) from pre-introduction (year 2005) of the smart city policy
to post-policy period (year 2013) of the selected UK cities. The panel
dataset consists of both cross-sectional and time series dimension,
which are required to analyse the differences between cities and
changes within cities over time. The dependent variable (CO2 emis-
sions) as used in this research is continuous in nature and varies over
time (time-varying variable). The independent variables consist of both

categorical (website, and IP address) and continuous data types (GDP,
population density, green area, polycentricity, and SI). Some of the
independent variables vary over time (time-varying: GDP, population
density, and green area) whereas the remaining independent variables
are time-invariant. These complexities, particularly with the nature of
the main outcome variable (CO2 emissions) and exposure variables
(website, and IP address), possess unique challenges in this research to
estimate a panel data model in order to answer the research questions.
This research overcomes the challenges by estimating three models as
outlined below.

3.2.1. Pooled regression model
A first step in the analysis of the data was to pool the information

from all t=1,…, 9 panel waves for all i=1,…, 15 cities and treated
them as though they represented independent information for n=9 *
15= 135 cities. An ordinary least square (OLS) regression model was
estimated (Eq. (2)) using these pool dataset, assuming that the residual
(εit) behaves like the OLS error term.

= + + …+ + + …+ +y β β x β x γ z γ z εit it k kit i j ji it0 1 1 1 1 (2)

where, subscript i refers to the i=1,…, 15 cities, which have been
observed at t=1,…, 9 equidistant points in time; yit denotes the value
of the dependent variable CO2 emissions for city i at time point t; k and j
represent time-variant …β x β x( )it k kit1 1 and time-invariant (γ1z1i… γ1zji)
independent variables; and β1… βk and γ1… γj denote the corre-
sponding regression coefficients to be estimated.

Previous studies have derived a logarithmic transformation of the
CO2 emissions data prior to conducting regression analysis (Du et al.,
2012; Yang et al., 2015). Our analysis shows that the outcome variable
is approximately normally distributed and a natural log transformation
did not improve the distribution (Fig. 1). As a result, we have used the
observed CO2 emissions score in all analyses presented in this research.

OLS is applicable to cross-sectional data if certain assumptions are
met, particularly with the assumption of no serial correlation in the
outcome variable. With panel data, this is at stake. Three causes of

Table 1
Summary statistics of the variables.

Variable Name Description Summary Mean Std. Dev. Min Max Observations

ID ID of the case study cities overall 1 15 N=135
between 1 15 n=15
within 8 8 T=9

Year Observation year overall 2005 2013 N=135
between 2009 2009 n=15
within 2005 2013 T=9

CO2 Per capita CO2 emissions (tons) overall 6.36 0.79 4.79 8.4 N=135
between 0.51 5.42 7.03 n= 15
within 0.62 5.26 7.79 T=9

Websites Quartile classification of the number of website hosted per 1000 population overall 2.6 1.09 1 4 N=135
between 1.12 1 4 n=15
within 0 2.6 2.6 T= 9

IP address Quartile classification of the number of IP addresses per 1000 population overall 2.6 1.09 1 4 N=135
between 1.12 1 4 n=15
within 0 2.6 2.6 T= 9

GDP Per capita GDP (US$, 2010) overall 35986.9 7328.8 24949.1 54537.86 N=135
between 7478.48 26762.7 53284.92 n= 15
within 1059.75 33825.3 38616.93 T=9

Green Green area (m2 per million person) overall 163.28 76.57 35.61 329.70 N=135
between 78.83 37.42 315.67 n= 15
within 4.36 149.18 177.32 T=9

Density Population density (person/km2) overall 2301.06 868.57 894.85 4011.50 N=135
between 893.14 923.47 3815.93 n= 15
within 65.81 2118.69 2496.63 T=9

Sprawl Sprawl index (SI) overall −2.82 2.04 −6.78 0.62 N=135
between 2.10 −6.78 0.62 n= 15
within 0 −2.82 −2.82 T=9

Polycentricity Number of functional centres overall 1.6 1.26 1 6 N=135
between 1.30 1 6 n=15
within 0 1.6 1.6 T= 9
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serial correlation of the dependent variable are: (a) Time-constant ex-
planatory variables that cause Y to be persistently above (or below) the
average; (b) Serially correlated time-varying explanatory variables,
and; (c) True state dependence of the dependent variable itself (Andreß,
2013). In relation to the first cause, the sustainability vision of a city,
for instance, is a typical example of a theoretically important, but hard-
to-measure explanatory factor. Different cities have different sustain-
ability agendas, which cannot be measured and controlled in the model.
If they are constant over time, this unobserved heterogeneity causes
some cities to have disproportionately higher (or lower) CO2 emissions
in all years than could be expected from the independent variables in
the model. Pooled OLS is only unbiased, if we are ready to assume that
this unobserved heterogeneity (e.g., differences with respect to sus-
tainability vision) is independent of the explanatory variables in the
model. In addition, if there is unobserved unit-specific heterogeneity
that is constant over time, and even when it is uncorrelated with the
variables in the model, error terms at different time points could be
correlated with one another. Taking the panel structure of the dataset
into account is a possible way forward to address these problems.

3.2.2. Two-way fixed effect panel data model
Apparently, pooled OLS makes unrealistic assumptions about panel

data. However, the model is easily extended to account for unobserved
heterogeneity at the unit level. The stochastic part of the model (εit), as
presented in Eq. (2), can be distinguished between two components
(εit= μi+ eit): (a) μi: unobserved predictors of Y that are specific to the
unit and therefore time-constant, and; (b) eit: unobserved predictors of Y
that are specific to the time point and the unit (including measurement
errors). Again, depending on our assumptions about these two error
terms, different estimation procedures are available. A simple starting
point is the assumption that the time-varying error, eit, has the same
properties as the error term in OLS estimation. In other words, eit is as-
sumed to be purely random ‘white noise’—idiosyncratic error. Yet, the
main discussion revolves around the unit-specific error, μi. Fixed effect
(FE) model assumes that something within the city may impact or bias the
predictor or outcome variables and we need to control for this. This is the
rationale behind the assumption of the correlation between unit-specific
error, μi and predictor variables. FE removes the effect of those time-in-
variant characteristics so we can assess the net effect of the predictors on
the outcome variable. Another important assumption of the FE model is
that those time-invariant characteristics are unique to the cities and
should not be correlated with other city characteristics. Each city is dif-
ferent, and therefore, the city’s error term and the constant, which cap-
tures cities characteristics, should not be correlated with the others.

In order to account for individual fixed effects and time period fixed
effects simultaneously, we constructed a two-way fixed effect model

based on a generic panel data model. Additionally, FE regression—by
definition—is not the technique to estimate the effects of time-constant
explanatory variables Z. It should be stressed, however, that FE re-
gression controls for all (observed and unobserved) time-constant de-
terminants of Y, even if it does not provide with numerical estimates of
their effects. However, this goes against our research question to be
answered: how time-constant city smartness factors influence CO2

emissions over time. In order to overcome this limitation, we have
extended the analysis by including interactions with time. Since ‘year’
variable has nine categories, there are eight interactions with each
predictor. Note that the other time-invariant predictors (e.g., poly-
centricity) do not have main effects included in the model. If we had
tried to include them, the software would have dropped them from the
model because they have no variation within cities (unless they are also
interacted with time). Our estimation function is (αi is the city specific
effect that captures all observed and unobserved heterogeneity of cities)
in Eq. (3):

= + + + + + +

+ +

y β β t β IP t β Web t β GDP β Green β Density

α ε

. . .it t i i it it it

i it

0 1 2 3 4 5

(3)

3.2.3. Random effect panel data model
The fixed-effects model controls for all time-invariant differences

between the cities, so the estimated coefficients of the fixed-effects
models cannot be biased because of omitted time-invariant character-
istics such as city vision, culture. One side effect of the FE models is that
they cannot be used to investigate time-invariant causes of the depen-
dent variables. Technically, αitime-invariant characteristics of the cities
are perfectly collinear with the city dummies, αi Substantively, fixed-
effects models are designed to study the causes of changes within a city.
A time-invariant characteristic cannot cause such a change, because it is
constant for each city.

The rationale behind random effects (RE) model is that, unlike the
fixed effects model, the variation across cities is assumed to be random
and uncorrelated with the predictor or independent variables included
in the model. Researchers have suggested that if there is a reason to
believe that differences across entities have some influence on depen-
dent variable, then one should use random effects (Baltagi, 2008). An
advantage of random effects is that time invariant variables (i.e.,
polycentricity) can be included in the model. In the fixed effects model
these variables are absorbed by the intercept.

The RE model is based on the same equation that we used for the
fixed effect model but including the time-constant independent vari-
ables. The crucial difference between FE and RE is that now, instead of
treating αi as a set of fixed numbers, we assume that αi is a set of random
variables with a specified probability distribution. For example, it is
typical to assume that each αi is normally distributed with a mean of 0,
constant variance, and is independent of all the other variables on the
right-hand side of the equation. The most apparent difference between
the fixed and the random effects models is that the random effects
method can include time-invariant predictors.

3.2.4. Choosing between RE and FE models
In this research, we performed the Hausman test to select the ap-

propriate model between FE and RE models, and the result indicated
that the fixed-effects model was better than the random-effects model
(chi-square= 19.56, p-value=0.0337). However, given the require-
ments to answer the research questions, it is imperative to analyse the
effect of time-constant variables Z on the dependent variable Y, and as a
result, we have decided to present results from all three models in this
research. All tests were run in Stata 13.1.

3.2.5. Testing for time-fixed effects
We have conducted additional test (testparm command in Stata) to

see if time fixed effects are needed when running the two-way FE

Fig. 1. Distribution of CO2 emissions.
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model. It is a joint test to see if the dummies for all years are equal to 0.
If they are 0, then no time fixed effects are needed. A statistically sig-
nificant test result was found (F= 8.56, p-value= 0.000) suggesting
that an inclusion of the time dummies was better than their omission
from the model.

4. Results and discussion

4.1. City smartness and CO2 emissions: descriptive findings

The findings of the analysis (Table 2) suggest that: (a) Some cities
consistently maintained their ranking in both indicators (i.e., Bristol,
Cardiff, Leeds, Liverpool, Nottingham); (b) The ranking has changed for
the remaining cities justifying the need to investigate for both city
smartness indicators, and; (c) The use of these indicators have also been
justified because external city smartness or smart city rankings seem to
correspond with our ranking. For example, Bristol has been ranked 2nd
among the UK cities based on the Huawei rank. Our ranking has also
consistently identified Bristol in the upper quartile.

Fig. 2a shows the average per capita CO2 emissions from 2005 to
2013 according to the IP address classification. From Fig. 2a, we find
that per capita CO2 emissions gradually declined from 2005 irrespective
of the classification. The average per capita CO2 emissions of the cities

that fall within the upper quartiles of smartness classification (ac-
cording to the IP addresses) is remarkably higher than other classes
throughout the period. An opposite trend is evident for the cities belong
to the second quartile. Cities in the first and third quartile remained in-
between these extremes over the period with cities in the third quartile
emitting slightly more than the first quartile.

A different trend in the level of CO2 emissions was observed, when
the cities are classified according to the hosted websites (Fig. 2b). In the
light of the analysis the key findings include: (a) An overall declining
trend—time has an impact on the level of CO2 emissions, perhaps cities
are becoming more aware of sustainability issues and adopting policies
and awareness among the city population, and; (b) No clear pattern of
the effect of city smartness on CO2 emissions levels—this needs to be
further assessed through regression analysis.

4.2. Estimation results

For each indicator, we present the results for the pooled OLS and
panel models (FE and RE) in Table 3. The FE model includes interac-
tions between time and the key exposure variables (IP addresses, and
websites hosted) as discussed earlier. We grouped the variables ac-
cording to broader themes in Table 3 as urban form, socioeconomic,
smartness factors, time, and interaction terms. All models were found to
be statistically significant with very good explanatory powers (in terms
of R2). Although many of the coefficients appear to be small in the
model outputs, these are in fact not small when interpreted. For ex-
ample, the coefficient of GDP is 0.0001 across the models which looks
very small. However, this means that $1 increase in GDP is likely to
increase CO2 emissions by 0.0001 tons (or 0.1 kg).

4.2.1. City smartness and CO2 emissions
The pooled OLS model shows that all else being equal, cities with

more IP addresses (quartiles 3 and 4) are likely to emit a reduced level
of CO2 (Table 3). Findings from the RE model, however, shows that
only cities in the third quartile have a statistically significant associa-
tion. These cities emitted a significantly less amount of CO2 per capita.
In relation to the hosting of websites, the pooled OLS model shows that
cities in the third quartile emitted a significantly less CO2 per capita
than cities in the first quartile. However, this is not statistically sig-
nificant in the RE model although it maintains the direction of asso-
ciation. Unexpectedly, the pooled OLS model shows that cities in the
fourth quartile emitted a significantly higher level of CO2 per capita
which remained significant in the RE model. The interaction terms in
the FE model were not found to be statistically significant suggesting
that the gaps in the CO2 emissions levels have not been widened (or
reduced) significantly between the smartness levels of the cities. That

Table 2
Classification of case study cities according to their smartness status.

Case study cities Quartile classification of city
smartness based on:

IESW
ranka

Huawei
rankb

IP address Websites hosted

Birmingham 2nd 3rd 118 3
Bradford 2nd 1st –
Bristol 4th 4th – 2
Cardiff 1st 1st –
Edinburgh 4th 3rd –
Glasgow 4th 2nd 49 4
Leeds 2nd 2nd 156 7
Leicester 3rd 1st –
Liverpool 4th 4th 93
London 2nd 4th 3 1
Manchester 3rd 4th 145 5
Newcastle 1st 3rd –
Nottingham 3rd 3rd 178 9
Portsmouth 1st 2nd –
Sheffield 3rd 2nd – 10

a Ranking among the world cities based on technology dimension, lower rank corre-
sponds to higher smartness.

b Ranking among the UK cities, lower rank corresponds to higher smartness.

Fig. 2. Per capita CO2 emissions by city smartness quartiles (a) IP addresses; (b) Websites hosted.
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Table 3
Estimation results.

Variables Pooled OLS model Fixed effect model Random effect model

Coeff. t P > |t| VIF Coeff. t P > |t| Coeff. z P > |z|

Urban form characteristics
Population density 0.0004 2.63 0.010 5.16 −0.0020 −3.04 0.003 −0.0002 −0.88 0.381
Green area 0.0136 5.86 0.000 10.80 0.0123 0.85 0.399 0.0101 2.82 0.005
Polycentricity −0.1403 −1.68 0.095 3.80 Omitted 0.0784 0.55 0.582
Sprawl index 0.3158 5.30 0.000 5.08 Omitted 0.0845 0.88 0.378

Socioeconomic factor
GDP 0.0001 4.31 0.000 4.16 0.0001 0.64 0.522 0.0001 −0.01 0.992

City smartness factor
Websites (ref: first)

Second −0.0226 −0.10 0.924 3.79 Omitted 0.3849 0.92 0.359
Third −0.3488 −1.81 0.073 2.52 Omitted −0.1197 −0.32 0.746
Fourth 0.9961 2.91 0.004 7.97 Omitted 1.2451 2.12 0.034

IP addresses (ref: first)
Second 0.3458 1.63 0.106 3.06 Omitted −0.1608 −0.41 0.683
Third −0.9345 −2.77 0.006 7.70 Omitted −1.2095 −2.08 0.038
Fourth −0.8177 −3.24 0.002 4.33 Omitted 0.0828 0.20 0.844

Year (ref: 2005)
2006 −0.3955 −2.57 0.013 −0.1459 −2.76 0.006
2007 −0.5538 −3.37 0.001 −0.3450 −6.02 0.000
2008 −0.6085 −3.68 0.000 −0.5308 −9.58 0.000
2009 −1.0410 −5.98 0.000 −1.2225 −21.92 0.000
2010 −0.8702 −4.65 0.000 −1.0119 −17.28 0.000
2011 −1.5443 −7.65 0.000 −1.5951 −25.85 0.000
2012 −0.9918 −4.52 0.000 −1.2788 −19.47 0.000
2013 −1.1558 −4.86 0.000 −1.4664 −20.91 0.000

IP address-Year interaction
Second Quartitle#2006 0.2492 1.57 0.121
Second Quartitle#2007 0.2785 1.76 0.084
Second Quartitle#2008 0.2458 1.54 0.128
Second Quartitle#2009 0.1635 1.02 0.311
Second Quartitle#2010 0.2697 1.64 0.106
Second Quartitle#2011 0.3762 2.30 0.025
Second Quartitle#2012 0.2543 1.54 0.129
Second Quartitle#2013 0.3236 1.93 0.058
Third Quartile#2006 0.0267 0.17 0.868
Third Quartile#2007 −0.0102 −0.06 0.951
Third Quartile#2008 0.0115 0.07 0.948
Third Quartile#2009 −0.1983 −1.07 0.287
Third Quartile#2010 −0.0998 −0.50 0.620
Third Quartile#2011 0.0162 0.07 0.941
Third Quartile#2012 −0.0248 −0.11 0.917
Third Quartile#2013 0.0445 0.17 0.863
Fourth Quartile#2006 0.1482 0.87 0.390
Fourth Quartile#2007 0.2699 1.57 0.122
Fourth Quartile#2008 0.1466 0.84 0.402
Fourth Quartile#2009 0.0232 0.13 0.898
Fourth Quartile#2010 0.1170 0.65 0.520
Fourth Quartile#2011 0.2029 1.10 0.275
Fourth Quartile#2012 0.1256 0.66 0.509
Fourth Quartile#2013 0.1547 0.79 0.432

Website-Year interaction
Second Quartitle#2006 0.1183 0.74 0.461
Second Quartitle#2007 0.0486 0.30 0.766
Second Quartitle#2008 0.0424 0.25 0.801
Second Quartitle#2009 −0.1277 −0.74 0.463
Second Quartitle#2010 −0.0841 −0.46 0.645
Second Quartitle#2011 0.0189 0.10 0.921
Second Quartitle#2012 −0.2098 −1.06 0.294
Second Quartitle#2013 −0.2185 −1.05 0.298
Third Quartile#2006 0.2348 1.48 0.144
Third Quartile#2007 0.1790 1.11 0.271
Third Quartile#2008 0.1730 1.07 0.289
Third Quartile#2009 0.0254 0.15 0.878
Third Quartile#2010 0.0224 0.14 0.893
Third Quartile#2011 0.0654 0.39 0.699
Third Quartile#2012 −0.0747 −0.43 0.665
Third Quartile#2013 −0.1093 −0.62 0.536
Fourth Quartile#2006 0.2476 1.43 0.157
Fourth Quartile#2007 0.2062 1.16 0.252
Fourth Quartile#2008 0.0535 0.29 0.776

(continued on next page)
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means, the cities have been consistent in terms of their efforts of
achieving sustainability irrespective of their smartness status. Overall,
the findings show that there is a statistically significant relationship
between city smartness and CO2 emissions. However, the relationship is
not linear, but tended to be U-shaped (Fig. 3). Overall, there is not
temporal effect of the city smartness on CO2 emissions.

4.2.2. Urban form and CO2 emissions
The pooled OLS model shows that urban population density had

positive effect on per capita CO2 emissions from cities. However, an
opposite association was found in the FE and RE models, which show
that the relationship is negative—i.e., increasing population density
reduces CO2 emissions. Clearly, the findings from the pooled OLS model
are contrary to most studies in the Western countries (Jones and
Kammen, 2014). Therefore, the findings from the FE and RE models are
more consistent with the previous literature on this topic and justify the
application of panel data analytical technique for an unbiased result.

Surprisingly, a positive association between the amount of green
area in a city and CO2 emissions goes against the common wisdom on
this topic. Existing knowledge suggests that green area reduces CO2

emissions (Nowak and Crane, 2002). However, evidence started ap-
pearing that green areas emit as much CO2 as can be found in dense
urban area (https://wattsupwiththat.com/2016/02/23/study-urban-
backyards-contribute-almost-as-much-co2-as-much-as-cars-and-
buildings). The relationship is significant in the pooled OLS model and
RE model but not statistically significant in the FE model. It is possible
that this variable is correlated with other unobserved variable in the

OLS and RE models. The FE model takes into account this unobserved
relationship, and as a result, the effect became statistically insignificant.
However, we believe that this is an issue that requires much broader
discussion and analysis.

Two time-constant urban form variables (SI, and polycentricity)
were found to be statistically significant in the OLS model, but not in
the RE model. As expected, the pooled OLS model shows that increasing
sprawl increases CO2 emissions level, whereas polycentricity reduces
CO2 emissions levels.

4.2.3. Socioeconomic effects
From the estimation results presented in Table 3, per capita GDP

had a positive effect on per capita CO2 emissions in all three models.
However, the association is only statistically significant in the pooled
OLS model.

4.2.4. Time effects
In terms of the effect of time, the annual impact on per capita CO2

emissions was negative and was highly significant for most years. More
importantly, the negative effect increased yearly. This means that per
capita CO2 emissions were reducing over the period and at an in-
creasing rate after controlling for socioeconomic, urban form, and city
smartness factors. This suggests that the time period captures factors
that were not included in the model—it could be the policy measures
that the UK government has undertaken to meet the international ob-
ligations such as the Quito protocol.

Table 3 (continued)

Variables Pooled OLS model Fixed effect model Random effect model

Coeff. t P > |t| VIF Coeff. t P > |t| Coeff. z P > |z|

Fourth Quartile#2009 0.0482 0.24 0.811
Fourth Quartile#2010 0.0357 0.16 0.870
Fourth Quartile#2011 0.0946 0.41 0.685
Fourth Quartile#2012 0.0089 0.04 0.972
Fourth Quartile#2013 −0.0223 −0.08 0.935

Constant 2.295969 3.69 8.9833 2.71 0.009 6.0534 7.170 0
N 135 135 135
F/Chi2 8.56** 0.000 42.08 0.000 2561.86 0.000
R2 (Overall) 0.4336 0.09 0.81
R2 (Between) 0.03 0.56
R2 (Within) 0.98 0.96

5
6

7
8

9

First Second Third Fourth
Quartile classification of IP addresses per 1000 population

CO2 emissions per capita (tons) CO2_mean

Fig. 3. Heterogeneity in CO2 emissions according to IP address clas-
sification.
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5. Conclusion

In recent years, the smart cities concept has become an important
research topic and a priority policy agenda for many cities from both
developed and developing country contexts (Yigitcanlar, 2017). Even
smart city technologies are seen crucial for the survival of our species
(Townsend, 2013). Today, many of the global cities’ administrations
view smart urban technology applications and systems as potential
vehicles to deal with their current and future developmental challenges
whether they are economic, societal or environmental in nature. Con-
sequently, smart cities have become a global phenomenon with over
250 smart city projects underway across 178 cities around the globe.

In many instances, however, the fashionable term smart city is used
for branding or marketing purposes with a lack of integrated approach
covering sustainability concerns (Söderström et al., 2014; Shelton et al.,
2015; Vanolo, 2015). In other words, the fashionable term ‘smart’ has
started to replace ‘sustainable’ in the brand of many projects—for ex-
ample, China’s Tianjin Eco-City is now also branded as Tianjin Smart
City.

According to Ahvenniemi et al. (2017, p.242), “the role of tech-
nologies in smart cities should be in enabling sustainable development
of cities, not in the new technology as an end in itself. Ultimately, a city
that is not sustainable is not really smart”. There is little empirical
evidence that, despite its promise, smart cities contribute to sustain-
ability agenda of those cities. In order to address this issue of whether
smart city really leads to sustainable outcomes, the study at hand has
put cities with smart city agendas from the UK under the sustainability
performance assessment microscope. Based on the authors’ knowledge,
this is the first study that attempted to assess a causal relationship be-
tween city smartness and sustainability—by using nine waves of panel
data.

The findings revealed in this study suggest that, in the investigated
cities from the UK context, there is not strong evidence on: (a) A po-
sitive correlation between technology adoption and sustainable out-
comes, and; (b) The impact of city smartness on CO2 emissions change
over time. In other words, despite to their promise, so far, smart city
practices in the UK cities have failed to make a considerable con-
tribution to the sustainability agenda beyond the rhetoric. This finding
calls for further investigation and better aligning smart city strategies to
lead to concrete sustainable outcomes. In this instance, we would like to
highlight the importance of prospective investigations to accurately
scrutinise existing smart city projects’ outcomes, and emphasising the
necessity of developing smart city agendas that deliver sustainability
oriented outcomes. This would also help in maturing of the smart city
paradigm—as a city planning and development model and emerging
urban reality—that is already in continuous transformation.

As underlined by Conroy and Berke (2004), strategically planning
our cities, by adopting sustainable urban development principles, is
critical to achieve sustainable outcomes—particularly by promoting
planning for sustainable urban development at the local level. This in
turn helps in generating ecological sustainability that is a critical ele-
ment of smart cities. In order to achieve comprehensive sustainable
urban future outcomes, we also need to focus on the strategic im-
plementation of smart urban technologies rather than the smart cities
concept (Taamallah et al., 2017). Moreover, Komninos (2016) high-
lights that in smart cities there is a need for strategy and leadership,
strategic policies and plans that will integrate bottom-up initiatives at
company or organisation level with planned projects by various sta-
keholders under a coherent vision for the future of the ecosystems that
make up each city. The critical question here is not about implementing
on-the-shelf smart city solutions, but learning to innovate with smart
environments, capabilities distributed among organisations, people,
machines, and collaborative business models. This approach will better
support the success of smart cities movement, and also creating desired
sustainable urban futures. This is to say, concepts of smart and sustai-
nable—that are currently not well aligned—need to be brought

together through locally designed solutions and strategic planning
practices (including strategic implementation of adequate smart urban
technologies) for a truly smart and sustainable urban devel-
opment—hence subsequently leading to the formation of smart and
sustainable cities.

In conclusion, this paper generated new insights and empirical
evidence on whether smart city policy leads to sustainability of ci-
ties—in the case of UK cities—particularly focusing on city smartness
and sustainability aspects. However, sustainable urban development is
beyond technology and ecology aspects alone; a quadruple bottom line
approach is critical—economic, societal, environmental, governance
(Yigitcanlar and Teriman, 2015). On this very point Yigitcanlar (2016)
suggests that for a successful: (a) Economic development in smart cities:
We need to give our cities the capability of developing their technolo-
gies unique to their own developmental problems and needs. This in
turn contributes to the establishment of a local innovation economy and
prosperity that is a central element of smart cities; (b) Sociocultural
development in smart cities: We need to develop our cities wired with
smart urban technologies not only exclusive to urban elites, but also
inclusive to those unfortunate. This in turn helps in establishing so-
cioeconomic equality that is an essential element of smart cities; (c)
Spatial development in smart cities: We need to reform our cities by
adopting sustainable urban development principles—e.g., minimising
urban footprint, limiting GHG emissions, establishing urban farms, and
using renewable energy sources. This in turn helps in generating eco-
logical sustainability that is a critical element of smart cities, and; (d)
Institutional development in smart cities: We need to equip our cities with
highly dynamic mechanisms to better plan their growth and manage
their day-to-day operational challenges. This in turn helps in per-
forming appropriate strategic planning, development, and management
practices that is a coherent vision for the future of urban ecosystems of
our smart cities.
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