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Abstract7

The past quarter century has witnessed development of advanced modeling8

approaches, such as stochastic and agent-based modeling, to sustainably manage9

water systems in the presence of deep uncertainty and complexity. However, all10

too often data inputs for these powerful models are sparse and outdated, yield-11

ing unreliable results. Advancements in sensor and communication technologies12

have allowed for the ubiquitous deployment of sensors in water resources systems13

and beyond, providing high-frequency data. Processing the large amount of het-14

erogeneous data collected is non-trivial and exceeds the capacity of traditional15

data warehousing and processing approaches. In the past decade, significant16

advances have been made in the storage, distribution, querying, and analysis of17

big data. Many tools have been developed by computer and data scientists to18

facilitate the manipulation of large datasets and create pipelines to transmit the19

data from data warehouses to computational analytic tools. A generic frame-20

work is presented to complete the data cycle for a water system. The data cycle21

presents an approach for integrating high-frequency data into existing water-22

related models and analyses, while highlighting some of the more helpful data23

management tools. The data tools are helpful to make sustainable decisions,24

which satisfy the objectives of a society. Data analytics distribution tool Spark25

is introduced through the illustrative application of coupling high-frequency de-26

mand metering data with a water distribution model. By updating the model27

in near real-time, the analysis is more accurate and can expose serious misin-28

terpretations.29

30

Keywords:31

water systems, modeling, big data, automation, Hadoop, Apache Spark, cloud32

computing33

1. Introduction34

The water resources community relies on computer models to conceptualize35

and reproduce behavior of systems, aiding in planning, design, and analysis.36
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The use of computer models is growing due to the need for deeper insights into37

water systems and providing sustainable solutions for smart cities [1]. Models38

are formulated by developing a set of mathematical equations and rules, which39

mimic the real behavior of the system and decisions of stakeholders, and can be40

executed in an iterative fashion. These equations represent universal laws while41

parameters represent local systems. Parameters are typically characterized us-42

ing averages, probability distributions to specify the likelihood of parameters at43

different states, and assumptions. Model parameters are updated to best reflect44

the actual system, often done manually when results deviate from field data.45

This fashion of updating models is time-consuming. Further, due to the speed46

at which some spatially heterogeneous variables (e.g. water demands and pre-47

cipitation) change, it is nearly infeasible to manually update with fine resolution.48

49

Engineering advances in sensor and communication devices allow for the50

continuous monitoring of many systems including water systems. The purposes51

of these devices are to record and relay time series data with high frequency.52

Pertinent parameters measured by such devices include flow, quality, and stage;53

all of which are in situ. Technological advancements allow many sites to be54

monitored in near real-time with very little oversight. This type of measure-55

ment creates so-called big data, which relates to the collection in the data cycle56

– also including, storage, purification, and analysis of large-size data sets [2, 3].57

58

The technological advances in acquisition, processing, and storage of this59

big data, are poised to greatly advance water systems modeling. The efforts60

to update models in real-time using large datasets require engineering involve-61

ment and discretization. The typical practice is to acquire and format new62

data so that model parameters can be updated. This two-step practice is time-63

consuming, insufficient and may introduce many errors that subsequently in-64

crease the computational efforts to calibrate these models [4, 5, 6]. In this65

process, the term real-time modeling is overused. Truly real-time models auto-66

mate the entire process from remote sensing to model output, completing the67

data cycle.68

69

The authors describe a more thorough integration of high-frequency data70

with water simulation models. The benefits and challenges are discussed along71

with examples of integrating big data and models. This work emphasizes the72

necessity for the collaboration of industry and academic sectors in developing73

such processes. A generic framework is proposed for the processing of large-size74

data, collecting valuable information from data, and furthermore, using data75

to enhance water computer models. Done correctly, these automated models76

can form the nervous system for smart resource management; addressing the77

resiliency and reliability of water systems in near real-time. This study envisions78

the process of integrating big data with models and discussing the challenges79

along with the benefits.80

81
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2. Big Water Data82

Big data is systematically characterized with three parameters: Volume, Ve-83

locity, & Variety [3]. Water data possess these three characteristics. Big water84

data is being generated constantly at unprecedentedly high temporal and spa-85

tial resolutions by ubiquitous sensors embedded in the environment, from smart86

water meters in our houses to satellite-based spectrometer in Earth’s orbit.87

88

Millions of smart meters are already deployed, with many more to come ac-89

cording to the reported projections. IHS Markit estimates that over 2 million90

units were shipped globally in 2015, and this number is projected to double by91

2022 [7]. Many utilities are considering or already have plans to install smart92

meters, such as the City of San Diego, which revamps the master plan to install93

more than 200,000 meters during the next three years [8]. With these massive94

number of smart meters and sensors sending measurements of flow, pressure,95

and many other parameters every second, minute, or hour, water utilities have96

already begun to have large amounts of data at their disposal.97

98

Other water resources domains have seen similar trends of collecting more99

data. NOAA alone generates tens of terabytes of hydro-climatic data everyday100

day from satellites, planes, ships, and other sources [9], which represents a sig-101

nificant untapped opportunity for water resources researchers and professionals.102

To better manage the challenges of collection and analyses of big water data,103

NOAA established a new National Water Center in the University of Alabama.104

Further, NASA’s Moderate Resolution Spectroradiometer (MODIS) generates105

new data at 1.2 MB/s rate, the National Centers for Environmental Information106

stores more than 25 petabytes of data, and water data are generated at diverse107

spatiotemporal scales by many separate entities, monitoring different variables108

[3].109

Advanced technologies facilitate processes to store data [10], to mine big110

data [11, 12], and to make analytical conclusions about the status quo of sys-111

tems [13]. To process collected data, database technologies were developed to112

store relational (e.g., SQL) and non-relational (e.g., Hadoop Distributed File113

System – hdfs) datasets and execute analytics on data using a distributed and114

non-distributed computational features. In addition to data collection capabil-115

ities, machine learning technologies were developed and embedded to facilitate116

analytical workflows and integrating with cluster computing platforms such as117

Apache Spark to run analytics at scale [12].118

119

3. Benefits120

Integrating big data into water systems introduces technical challenges but121

we argue these challenges are outweighed by the following benefits:122

123

3
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3.1. Big Data Reduces Model Assumptions124

In the most basic terms, big data leads to more information about systems125

and increase the insight towards the system. Big data can close a number of126

existing knowledge gaps about the system. In recent years, our understanding127

about the water systems has been discontinuous such that the stakeholders typ-128

ically observe systems at the time of planning. Collecting data at the real-time129

basis using big data techniques enables stakeholders to understand the trend of130

the systems and make decisions accordingly. Following benefits illustrates the131

benefit of using big data to reduce model assumptions such as:132

133

1. The conservation polices and regulations, such as rebate programs and134

water tariff changes, influence water use behavior of individual citizens based135

on their social attributes such as income and education. Studies addressed the136

water conservation policies by understanding the social behavior and creating137

meaningful statistical and mathematical linkages between water usages and so-138

cial attributes. Using the hourly water consumptions can remove making unnec-139

essary assumptions for designing the water conservation strategies. For example,140

the Singapore’s National Water Agency gains insight into the comparative ef-141

fectiveness of its engagement strategies, ranging from traditional water tariffs142

to modern gamification methods, by analyzing the high-resolution water usage143

data collected by its new advanced metering infrastructure [14]. Such insights144

and business intelligence may not be obtained using accumulated monthly usage145

numbers provided by traditional meters. Using traditional meters, the utility146

had to make assumptions about the water usage response of customers to new147

tariffs. However, with the benefit of the new technology, the utility was able to148

adjust water tariff policies as the water is consumed to meet water usage goals.149

150

2. Managing ecological systems requires identifying and understanding underly-151

ing significant factors, in addition to creating a model to represent the systems.152

The Great Lakes ecosystem was studied by collecting the wind speed and water153

temperature accurately. The high spatiotemporal variability and the sparsity154

of the in-situ sensors [15] leveraged an unprecedented collection of one million155

unique measurements made by volunteer ships on the Great Lakes from 2006156

to 2014 to obtain the high spatiotemporal variability and the sparsity of these157

factors. Using these datasets, they were able to fill some gaps that have not158

been observed before the study.159

160

With more data, engineers can reduce model assumptions (such as the ef-161

fectiveness of water conservation strategies) and better determine boundary162

conditions (such as the nodal demands in an hydraulic models of a water net-163

work). These benefits come from three types of high-resolution data: spatial,164

temporal, and unstructured. High-resolution spatial data (e.g., DEM, LiDAR)165

allow for the heterogeneity of physical features to be considered. Temporal166

data aids in the ability to consider variables that are in constant flux such as167

temperature, precipitation, and user demands. Many models account for some168

temporal changes using patterns or distributions, but also assume longer term169

4
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stationarity. These models fail to capture changes in land use, climate, and hu-170

man impacts [16]. In water systems, physical properties such as pipe roughness,171

flow (rate and uniformity), and channel depth are in constant flux but are often172

assumed static. Integrating streaming sensor data into models allows engineers173

to forgo stationary assumptions.174

175

3.2. Big Data Helps to collect social data176

In the world of social science, it is a common practice to collect social at-177

tributes by conducting surveys. What if the social attributes can be derived by178

processing unstructured data. The unstructured data refers to data sources that179

are neither spatial nor temporal, such as human-generated data on social me-180

dia. Use of social media posts as a means of crowd-sourcing, data acquisition,181

and uncertainty reduction is already under investigation in many disciplines,182

such as for water quality data crowd-sourcing using the iPhone camera [17],183

real-time description of urban emergency events [18], earthquakes detection and184

notification using twitter posts [19], spatiotemporal evolution understanding of185

super-storms [20]. Social media posts offer the advantages of being abundant186

and accessible, but their lack of official legitimacy could introduce new uncer-187

tainties to the models, possibly resulting in misleading results. However, in188

certain applications, mining social media posts would provide timely, valuable189

information. Such as in the event of a possible water-related outbreak, when190

the tracking of observations and complaints posted on social media by affected191

populations might provide the decision makers with more information about the192

likelihood, scale, and severity of the possible incident.193

194

In addition to social media, with the help of Internet of Things (IoT), new195

information can be collected as sensors measure environmental factors that con-196

tribute to households and environment. For example, it is foreseeable to collect197

the indoor temperature to relatewith the water usage with. It becomes more198

plausible to sense the type of water usages in each household by deploying smart199

devices such as Amazon Echo.200

201

3.3. Big data reduces risk and increases resilience202

Risk is directly related to uncertainty. Risk is higher in a more uncertain203

environment, whether this uncertainty be in possible failure scenarios, loads,204

capacities, or consequences [21]. Therefore, the reduction in the uncertainties205

achieved by the integration of high-resolution data in models and decision sup-206

port systems leads into lower risks and more informed decisions. For instance,207

the use of high-resolution hydro-climatic data resulted in a realistic simulation208

of the average discharge regime in the Upper Danube [22]. A narrower flood209

intensity probability distribution derived using more data, consequently, results210

in a lower, more accurate failure probability for a given flood control system211

capacity, and therefore, a lower risk [23]. A design study for flood diversion sys-212

tem of Bakhtiari Dam in Iran demonstrates how the availability of more data213

5



Page 6 of 20

enables achieving lower risk for a fixed construction budget [23].214

215

Big data can reduce risk by revealing system weaknesses and enabling allo-216

cation of limited resources to the critical weaknesses. In the event of a failure,217

big data also can accelerate and improve response and selection of mitigation218

strategy by elucidating the state of emergency and the effectiveness of alternate219

scenarios to the decision makers. Collection of adequate data in timely fashion220

leads into a proper selection of response strategy as decision trees are typically221

developed off-line and require critical data to select the right decision, for ex-222

ample, to flush contaminated water during a water pollution event, the water223

quality sensor data are valuable information to effectively flush the network224

[24, 25]225

226

During and aftermath of the super-storm Sandy in 2013, Stafford Town-227

ship, New Jersey, water utility was able collect and analyze real-time data from228

various smart sensors and gain a critical view of a utility’s infrastructure for229

strategizing recovery efforts [26]. Smart meters, for example, helped the util-230

ity identify, locate, and repair widespread pipes breaks and leakages promptly.231

Given the fact that many people still had not returned to their property, this232

success would have been very difficult or impossible to achieve in the absence of233

the high-resolution data provided autonomously by the ubiquitous smart sen-234

sors.235

236

The Las Vegas Valley Water District provides another example of using data237

to increase resilience. By integrating real-time, high-resolution data with their238

water distribution model, they improved response times during planned and239

emergency outages by reducing the time spent setting the model boundary con-240

ditions [27]. The hydraulic model is set up with all current operating conditions241

and pumping schedules and this allows immediate what-if analysis. Emergency242

outage situations do not conform to the norm of the system, in which the bound-243

ary conditions of the model (e.g., consumer nodes’ demands) are traditionally244

set to a handful of generic demand profiles. But with high-resolution, real-time245

data feed integrated with the hydraulic model, a true image of the current sys-246

tem conditions and its projections under different possible response and recovery247

scenarios is provided.248

249

In addition, as rivers may become polluted after storms due to new long-250

term hydrologic regime, identifying the source of a river’s pollution is a great251

concern for decision-makers.To address this concern in the city of Newburgh,252

the city benefited from a big data application and was able to characterize 13.1253

million gallons of overflow at a site over a three-month period by deploying a254

real-time, high-resolution level monitoring system [28]. Remote field units pro-255

vided accurate start time, stop time, and overflow volume of combined sewer256

overflows, reducing the pollution sources uncertainties caused by the combined257

sewer outfalls being submerged in the Hudson River.258

259

6
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3.4. Big data enables advanced modeling260

Human populations are in constant and intertwined interaction with natural261

and built water systems [29, 30, 31]. A complex adaptive simulation model [32]262

that couples the human and water systems, therefore, has the immense potential263

to provide a more accurate image of the reality, as have been proven on mod-264

eling drinking water contamination emergencies [33, 34], hydrological systems265

[35, 36, 37], flood warning [38], amongst others.266

267

Relaxing the unrealistic homogeneity, stationarity, and independency as-268

sumptions made possible by the complex adaptive models, nevertheless, has269

the side effects of the models becoming data-intensive and computationally-270

expensive. For instance, in a water contamination research study, simulation of271

a single sociotechnical simulation required 600 seconds, whereas a single engi-272

neering simulation took 15 seconds [39].273

274

The advent of big data analytics platforms and the increasing availability275

of high-resolution data helps resolving both of the data and computation chal-276

lenges. Researchers have already succeeded to substantially reduce the runtime277

of sociotechnical models by using Hadoop clusters; for example, from 42 days278

on desktop computers down to just 2 hours for a large-scale socio-hydrological279

simulation [13, 40]. Advances in computational social science [41] together with280

the increased availability of behavioral data from sensors [42], surveys [43], and281

social media [44, 45] enable quantifying heterogeneity in human behaviors in282

coupled human-water systems models. Commercial products are already rolled283

out by companies like WaterSmart Software and Advizzo that interface with the284

public and harness the power of behavioral data for enhancing consumers satis-285

faction, water conservation, and beyond. As agent-based modeling has provided286

the platform for integrated modeling [46, 47, 34], big data stands to replace the287

agents behavioral assumptions with more accurate profiles of individuals.288

289

4. Challenges290

The benefits gained by automating the integration of big data with models291

are not realized without overcoming some challenges:292

293

4.1. Data may contain gaps or errors294

The quality of data that is stored and transmitted to different databases295

is a concern in big data. Errors can be introduced and propagated by in-situ296

sensors and processes that store, reshape, and transmit data among databases.297

Malfunctioning of advanced technologies– including hardware, firmware, and298

communication devices– in sensors increase likelihood of having gaps in time299

series data. Missing-data imputation is not guaranteed to recapture the status300

of transient data.301

302

7
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4.2. Data heterogeneity necessitates advanced warehousing303

Environmental sources of data are heterogeneous, which creates complexities304

in storage and retrieval. A number of studies have been performed by leading305

technology companies on the effect of data heterogeneity on databases [48]. Data306

warehouses require significant engineering efforts to store and purge data, tune307

the computation system, and to maintain the database. The traditional data308

warehouses are not effective with real-time data, as they are defined by static309

structures of their schema and relationships between data. The synchroniza-310

tion between transactional data and data warehouses should be redefined for311

real-time data to support any dynamics in their structure and contents [49]. As312

more data from heterogeneous sources and dependencies are incorporated into313

the models, the potential for time lags to affect data currency becomes more314

prevalent. These challenges are being addressed by computer scientists. How-315

ever, efforts are necessary to minimize the knowledge gap among civil engineers316

when real-time water models are deployed.317

318

4.3. Data is prone to confidentiality, integrity, and availability attacks319

The proliferated dependency on cloud and network-based assets demands320

vast, constant temporal and spatial accessibility. This leaves the cyber-infrastructure321

open to malicious penetration and data manipulation, introducing new risks322

[50]. A malevolent attempt to sabotage data and compromise its integrity may323

be staged at any point from data acquisition to deployment in the data cycle.324

An outsider attack may compromise chlorine sensors to report lower-than-real325

concentrations, misleading the network’s feed-back disinfection controller, and326

consequently cause potable water over-chlorination and public poisoning [51].327

Additionally, data manipulation by insiders has been observed, as evidenced by328

the Walkerton E. coli Outbreak [52]. Therefore, along with data confidentiality329

and availability, a data-reliant water system must be safeguarded against data330

integrity attacks that might be staged.331

332

5. Proposed framework333

Utilizing sensing and computation, engineers have greatly improved the mod-334

eling and management of water systems. The current state of the flow of data is335

illustrated in Figure 1 as the white objects. Sensors are deployed in the environ-336

ment; data are collected, cleaned, then used as inputs for models. Engineers and337

decision makers can manipulate the models to receive information, understand338

state of the environment and, using scenario analysis, make decisions concerning339

the future. The most valuable piece of the process is the interaction with the340

model to better inform decisions. However, the preceding steps are very time-341

consuming when done manually. The gray objects represent the proposed data342

infrastructure that should be adopted to facilitate automated data integration343

into models.344

345

8
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5.1. Water Data Lake346

The Water Data Lake, Figure 1A, stores data from every step in the pro-347

cess. This data lake should be distributed and redundant in order to facilitate348

quick querying and reduce data loss. Hadoop-based technologies, along with a349

handful of components and applications, provide the necessary framework for350

storing big data. Hadoop is a distributed computing environment that supports351

the processing and storage of large data sets. A Hadoop-based technology is a352

customized process that uses the Hadoop environment to perform an applica-353

tion.354

355

5.2. Analytics356

Analytical tools (Fig. 1B) are connected to the data lake. The purpose of357

these tools are to scrub data, fill in missing values, and filter out bad data. Addi-358

tional analytics can be performed at this step such as statistical summaries and359

forecasting. Today these processes are often done manually. However, studies360

show the advantages of automated analytics for scientific discoveries [53, 54, 55].361

As the amount of data continues to increase, we will need to employ automated362

methods. In conjunction with the distributed nature of the data lake, software363

which allows for distributed computation, such as Apache Spark, should be364

employed to make computationally-expensive analytics and simulations possi-365

ble. Scenario analysis for short-term predictive control decisions, for instance,366

requires next-day hourly demand forecast for the all tens or hundreds of thou-367

sands of endpoints in a city to be available for the simulation model. Given the368

computational expense of accurate time-series forecast methods, such extent of369

computation easily exceeds the capacity of centralized computers, demanding370

distributed computing tools.371

The Analytics box in Figure 1, therefore, hosts two separate but interfaced li-372

braries: 1) an algorithms library, which acts as a repository for all the data373

transform functions (e.g., ARIMA for forecast), and 2) a distribution library,374

which hosts a distribution tool (e.g., Spark) for distributing a collection of in-375

dependent data transform tasks on a computer cluster.376

377

Apache Spark is a general-purpose platform for distributing independent378

tasks on a cluster. It has emerged as a popular open-source engine since its in-379

ception in 2010 [11]. It provides API’s in Java, Scala, Python, and R, and also380

has a rich set of high-performance, built-in libraries, such as MLlib for scalable381

machine learning [12] and GraphX for graph-parallel computation [56].382

383

The basic abstraction in Spark is that of a resilient distributed dataset384

(RDD), which allows users perform in-memory computations on computer clus-385

ters in a fault-tolerant manner. A RDD is a set of objects partitioned across386

nodes in a cluster that can be reconstructed if a partition is lost [11].387

388

Some other key concepts that are necessary for any Spark deployment are:389

1) Spark Worker – a cluster node that executes a task, 2) Spark Master – a390

9
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cluster node that coordinates the resources (i.e., collection of worker nodes), 3)391

Spark Driver – a client application that requests resources from spark master392

and executes task on worker nodes, and 4) SparkContext – represents the con-393

nection to a Spark cluster. A SparkContext enables access to a cluster through394

a resource manager, which allocates resources across processes. Once connected,395

Spark acquires executors on computer nodes in the cluster, which are processes396

that run computations and store data. Next, it first passes the application code397

(which is defined in the algorithm library) to the executors and then the tasks398

for them to run.399

400

A Spark cluster can be set up manually using a collection of physical or401

cloud-based machines. Most cloud service providers also offer services (Elastic402

MapReduce by Amazon, Dataproc by Google, etc.) that enable configuring403

and deploying a cloud-based Spark cluster fast and conveniently. The latter404

option requires little technical knowledge, and together with the basic examples405

provided on the Apache Spark official website would create a suitable starting406

point for beginners. For learning purposes, one may also use Spark in the local407

mode on a single personal computer. In this non-distributed deployment mode,408

no earlier setup is required to launch Spark applications and the parallelism is409

done merely on the set of threads available on the single machine.410

411

5.3. Middleware412

The Application Program Interfaces (API) for current water computer mod-413

els are not designed to integrate data as it becomes available. A middleware com-414

ponent (Fig. 1C), that automatically queries new processed data (Fig. 1A.ii)415

and formats it to model input, should be introduced. The middleware includes416

any transformation. For example, the processed data might include one-minute417

intervals but the model requires five-minute averages, therefore averaging would418

be applied. Additionally, the middleware should validate the data for each pa-419

rameter before feeding it as inputs to the model.420

421

5.4. Wrapper422

Similar to middleware, a wrapper (Fig. 1D) extends the API of the model.423

The wrapper provides the functionality to receive streaming data and write424

model results to the data lake (Fig. 1A.iii). In a real-time EPANET model, for425

instance, the model boundary conditions, such as individual endpoint demands426

and tank levels, are automatically updated with their current values streaming427

in from AMI and SCADA. Therefore, the model outputs, such as pressures and428

flows distribution, are also current [27].429

430

This step also includes calibration algorithms, which are analytical approaches431

to characterize empirical parameters such as the friction factors in the Darcy-432

Weisbach equation. After completion of each specified period (e.g., one day),433

10
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actual and model-predicted values of tanks levels and other monitored network434

parameters are compared. As models show discrepancies between the observed435

and simulated values for a parameter, the calibration model adjusts the model436

parameters. Additional algorithms can be developed and placed to intelligently437

detect an anomaly, field issue, and identify its source. The calibration is done438

automatically but manual investigations and verifications may be still conducted439

periodically.440

441

5.5. Decision making442

Engineers, scientists, and stakeholders can explore the model results interac-443

tively using visualization tools. Popular visualization tools include TableauTM,444

D3, and RStudio ShinyTM. Additionally, the user can modify model inputs to445

reflect possible future scenarios. Altogether this automated process decreases446

the chance of implementing ineffective decisions in the life-time of the water447

system.448

449

5.6. Data cycle platform450

The infrastructure for Fig. 1 can be engineered in house to facilitate the451

data cycle. Alternatively, it can be hosted on the new cloud-based services such452

as Amazon Web Services and Google Cloud Platform if they do not bypass the453

cost and expertise required for in-house servers.454

455

5.7. Computation cost considerations456

Data analytics (e.g., demand time series imputation and forecast) and sim-457

ulation model runs (e.g., for what-if analysis, calibration, and operation opti-458

mization) constitute the majority of computation cost. For data analytics, for459

instance, week-ahead, hourly demand forecast of 15,000 individual water con-460

sumers in a medium-sized town in California has been done in about one minute461

on a 10-node, cloud-based Spark cluster [57]. Simulation model runs are more462

expensive, but since they are often performed in parallel to investigate differ-463

ent scenarios, they can be also distributed over a cluster by Spark. Given the464

scalability offered by Spark, distributing the run on a larger cluster is merely a465

matter of setting the cluster size to a larger number when configuring the cluster466

on cloud-based service portals. However, this distribution is feasible when the467

underlying tasks are parallelizable. A run of a single complex adaptive system468

simulation, for instance, can be only partially parallelizable, given the interde-469

pendencies between the agents in the past and present.470

471
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Figure 1: The data cycle for a water system — from collection to decision making — should
include a data pipeline that automatically updates a specific model. A) The Water Data
Lake stores data during every stage. B) Analytics processes raw data and returns cleaned
or forecasted data. C) Middleware pulls, aggregates, and formats data for a model. D) A
wrapper provide communication capabilities to a model.
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6. Applications472

The proposed framework is applicable to many water computer models. The473

models can be categorized into physical models, that encode mathematical equa-474

tions governing a water system (e.g. EPANET, SWMM, and MIKE) and policy-475

related models that encode rights and policies for sharing and uses of water and476

evaluate the effect of each decisions on water availability (e.g. WRAP and477

WEAP). Due to accessibility and lower subjectivity, the transition of environ-478

mental data into a water model is simpler than the transition of water policies479

and decisions into these models. This framework can be applied to many models480

but stands to benefit operational models most. A few examples include water481

distribution networks, lock and dam operation, treatment plant operation, and482

storm water management. Below, an illustrative example is briefly explained483

for integrating high-frequency data with a water distribution model: EPANET484

[58, ].485

486

Traditional use of EPANET involves making assumptions about the demand487

patterns for customers and rules for pumps and valves. With the use of Ad-488

vanced Metering Infrastructure (AMI) and Supervisory Control and Data Ac-489

quisition (SCADA) data, the hydraulic model can be enhanced by integrating490

the consumption of each consumer and operations of pumps and tanks. New491

raw meter reads and SCADA information are stored in the data lake (Fig. 1 A).492

An analytics platform (Fig. 1 B) will periodically query and run operations on493

the data, saving the cleaned data back to the data lake. At each time step, the494

middleware (Fig. 1 C ) submits queries to the data lake (Fig. 1 A) to check the495

availability of data for the next time step. The AMI system has transmission496

latency, therefore, the hydraulic model can be stopped to receive the data. The497

wrapper (Fig. 1 D, which ensures the consumption rate has been stored for498

each meter and the data is not an error, is checked before running the model499

and returning the results to the data lake.500

501

7. Discussions and Conclusions502

The aim of this manuscript is to encourage development and enhancement503

of water computer models by integrating big data. High-frequency data is col-504

lected from heterogeneous sources across environmental systems. However, the505

collected data is processed and analyzed at discrete actions. Each action can506

be thought of as collecting a hunk of data to process and analyzing it to make507

engineering and scientific discoveries. Despite significant challenges, the data508

should be integrated with water models in an automated fashion to create real-509

time models and complete the data cycle for a water system.510

511

A broad framework is proposed to enhance the current water computer mod-512

els with a new API that enables near real-time dynamic modeling and completes513

the data cycle. In this way, the model is able to characterize some parameters514

13



Page 14 of 20

using data that becomes available in the water data lake. The results of a sim-515

ulation are also stored in a water data lake for further analysis. The ultimate516

outcome of this modeling is to enable a stakeholder to gain better understand-517

ing on the status quo of a water system and manage this system with more518

confidence. This type of model enhancement provides ways to encounter water519

systems as a whole rather than a set of technical, economical, and social sys-520

tems that are studied separately and in isolation. The outcome of this holistic521

approach is useful to assess the performance of all aspects of a system.522

523

Most importantly this manuscript emphasizes the increasing importance of524

computing and analytics in water systems modeling. While many of the chal-525

lenges are being addressed by the computer science field, future water profes-526

sionals will need the basic skills to interface with complex database structures527

and ever evolving API’s.528

529
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The highlights of the study are: 

1‐ Identify and highlights of using the big data—mention the benefit and study the example 

2‐ Identify the challenges along with using the big data for water systems 

3‐ Propose a generic model for integration of water computer models with the big data 

4‐ Support the study and paper with examples 


