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Using Metabolomics to Investigate
Biomarkers of Drug Addiction
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Highlights
With modern technology, it is feasible
to determine the exposome of an indi-
vidual and to assess how multiple
types of exposure (e.g., environmen-
tally relevant chemicals, tobacco pro-
ducts, or clinically relevant drugs)
contribute to addiction, withdrawal,
and adverse health outcomes asso-
ciated with substances of abuse.

The use of metabolomics in well-
designed studies of opiate addiction
may enable the identification of targets
for pharmacological and/or nutritional
intervention.

Metabolomics is an ideal approach to
study human individuality in response
to both drug exposure and treatment.
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Drug addiction has been associated with an increased risk for cancer, psycho-
logical complications, heart, liver, and lung disease, as well as infection. While
genes have been identified that can mark individuals at risk for substance
abuse, the initiation step of addiction is attributed to persistent metabolic
disruptions occurring following the first instance of narcotic drug use. Advan-
ces in analytical technologies can enable the detection of thousands of signals
in body fluids and excreta that can be used to define biochemical profiles of
addiction. Today, these approaches hold promise for determining how expo-
sure to drugs, in the absence or presence of other environmentally relevant
factors, can impact human metabolism. We posit that these can lead to
candidate biomarkers of drug dependence, treatment, withdrawal, or relapse.

Metabolomics and the Dole–Nyswander Theory
Drug addiction is a chronic disease and an ongoing social problem world-wide. A treatment for
narcotic addiction evolved during the 1960s, when Marie Nyswander and Vincent Dole
conducted clinical trials that led to the development of the Methadone Maintenance
Program (MMP) (see Glossary). During this period, these researchers became convinced
that there was no evidence to support the theory that addicts have sociopathic tendencies or
addictive personalities [1]. However, they noticed that methadone prevented withdrawal and
reduced cravings in opioid addicts, enabling them to return to normal life activities [1]. It
appeared that methadone, similar to insulin for a diabetic, restored normal homeostasis [1].
Together, these observations led to the theory that addiction was initiated through a disruption
in metabolism resulting in a persistent neurochemical disturbance and, furthermore, that this
imbalance could lead to the types of psychological disturbance (such as underhanded tactics
or deviant behaviors) reported for addicts (reviewed in [1]).

Metabolomics has been used in clinical and laboratory medicine for the discovery of potential
diagnostic, prognostic [337_TD$DIFF], and therapeutic biomarkers [2], and may provide a means to reveal
underlying metabolic perturbations associated with drug addiction, withdrawal, and relapse [3].
Metabolomics technologies enable the analysis of the low-molecular-weight (LMW) comple-
ment of cells, tissues, or biological fluids. Given that body fluids and tissues are rich in LMW
endogenous metabolites, untargeted metabolomics provides a means to profile the bio-
chemistry of an individual, or a cellular or organ system [4]. Indeed, many metabolites are
involved in multiple biochemical pathways, and their quality and quantity in biospecimens
represent a comprehensive metabolic status [4].

Through the study of perturbations in metabolic status, mechanisms underlying diseases or
specific phenotypes of an organism can be revealed [5]. For example, by comparing metab-
olomics profiles between the phenotypes of current drug abusers, withdrawal period, duration
of abstinence, relapse, or no drug use, biomarkers can be identified that correlate with the
Trends in Molecular Medicine, Month Year, Vol. xx, No. yy https://doi.org/10.1016/j.molmed.2017.12.005 1
© 2017 Published by Elsevier Ltd.

mailto:susan_sumner@unc.edu
https://doi.org/10.1016/j.molmed.2017.12.005


TRMOME 1303 No. of Pages 9

Glossary
Ambient pressure ion mobility
mass spectrometry: analytical
technique that uses a carrier buffer
gas to separate ions for identification.
Chemometric approaches:
statistical and multivariate
approaches used to determine
patterns of signals in complex data
sets that correspond with specific
phenotypes.
Clonidine: a prescription drug used
for the treatment of hypertension,
attention deficit hyperactivity
disorder, and anxiety, and to ease
the symptoms of substance abuse
withdrawal (narcotics, nicotine,
alcohol, etc.).
Datura stramonium: one of the
well-known folklore medicinal herbs
belonging to the Solanaceae family
with hallucinogenic effects.
Exposome: the totality of exposures
from conception onwards.
GABA-inhibitory mechanisms: one
of the inhibitory neurotransmitters
that is used by the endogenous
analgesia system.
Gas chromatography (GC): a
method for separation of compounds
in the gas phase.
Gas chromatography mass
spectrometry (GC-MS): analytical
method that combines GC for the
separation of analytes, with MS
detection.
Liquid chromatography mass
spectrometry (LC-MS): analytical
method that combines LC for the
separation of analytes, with MS
detection
Metabolomics: a powerful tool for
analysis of metabolites in biological
fluids, excreta, cells, and organ
tissues; used to determine
biomarkers and explore mechanisms
and metabolic pathways related to
the impact of exposures on health
outcomes.
Metabotype: the metabolomics
signature of an individual or system.
Methadone maintenance program
(MMT): a comprehensive treatment
program for opioid dependencies
that includes long-term methadone
treatment.
Nuclear magnetic resonance
spectroscopy (NMR): a
spectroscopic method that uses
radio frequency pulses, and
magnetic properties of certain atomic
phase of addiction [6]. These metabolic profiles can be used to determine how addiction might
contribute tometabolic disturbances and patterns associated with the adverse health effects of
addiction.While the use ofmetabolomics in studies of addiction is in its infancy, there is a wealth
of literature demonstrating that metabolomics signatures (metabotypes) can correlate with
gender, race, age, ethnicity, drug use, chemical exposure, alcohol use, tobacco product use,
stress, weight, blood pressure, disease states, mental health, behavior, and nutrition, as well as
changes in the gut microbiome; in their aggregate, these endogenous and exogenous com-
ponents comprise the exposome [7–9]. In this opinion, we outline the rationale for using
metabolomics in substance abuse research, discuss study design considerations, highlight the
newest advances in the field, and present the hypothesis that metabolomics may be useful in
biomarker discovery for substance abuse disorders (SUDs).

Why Use Metabolomics in Substance Abuse Research?
The identification of endogenous metabolites that correlate with addiction profiles can provide
clinically relevant biomarkers. Mapping metabolic perturbations to pathways can improve our
knowledge of the underlying etiology of the drug addiction profile. The Dole–Nyswander theory
indicated a role for metabolism in addiction, relapse, and withdrawal, in part because it was
noted that these individuals developed devious behaviors following drug use, while they did not
exhibit these behaviors before the first occurrence of consumption [1]. In addition, the metha-
done treatment trials demonstrated that it was possible to titrate individual methadone doses
based on metabolic rates [1].

Opiates bind to receptors localized in various regions of the mammalian brain, spinal cord
digestive tract, and immune cells [10]. Indeed, mammals express endogenous opiate-like
compounds (e.g., endorphins and enkephalins) in both GABA neurons and astrocytes, which
have been implicated in the modulation of pain, mood, and immune responses, as well as
cravings for food or other substances [11]. Opium is the dried resin obtained from the opium
poppy and contains many chemical constituents, primarily alkaloids and opioids, where
morphine is the active ingredient used medically for pain relief, and recreationally, for euphoria.
Given that morphine binds to the same receptors (mu, delta, and kappa opioid receptors) as
endogenous opioids, it also interacts with GABA-inhibitory mechanisms, inhibiting the
production of cAMP in nerve terminals; consequently, it is expected that exposure to opium
and morphine will have a significant impact on endogenous biochemical pathways that lead to
the excitation of neurons, modulating responses to pain, cravings, and euphoria [8].

From another angle, there is growing concern about the link between opium exposure and
cancer endpoints [12]. For example, a study of the Golestan Cohort Study (comprising
approximately 50 000 subjects from a rural region in Iran) provided epidemiological evidence
of a link between self-reported opium use and an increase in esophageal cancer [13],
pancreatic cancer [14], bladder cancer [15], and gastrointestinal cancer [16]. By using metab-
olomics in these studies, metabotypes might be revealed, potentially indicating an association
with a variety of factors, including the duration and cessation of opium use, and links to health-
related phenotypes, as well as links to confounding factors, such as tobacco use and alcohol
use. Understanding the perturbations in the metabotypes that correlate with these factors
could help identify biomarkers for diagnosis, monitor intervention, or determine targets for drug
development or nutritional intervention.

Study Design Considerations and Metabolomics Approaches
Metabolomics studies have been conducted using samples derived from human, animal, and
plant models. Given that metabolic profiles are perturbed by many factors, such as genetics,
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nuclei, to characterize the structure
of molecules.
Orbitrap Mass Spectrometry: MS
with an ion trap mass analyzer.
Serotonergic syndrome: a
potentially life-threatening syndrome
associated with increased
serotonergic activity in the central
nervous system.
Targeted metabolomics:
assessment of defined groups of
chemically characterized metabolites.
Time-of-flight mass spectroscopy
(TOF MS): a MS method that uses
an electric field to accelerate ions
through a tube, and determines the
mass-to-charge ratio of the ion via a
time measurement.
Ultra-performance liquid
chromatography (UPLC): a
method for the separation of
compounds in liquid phase.
Untargeted metabolomics: the
simultaneous assessment of
thousands of signals for known and
unknown metabolites.
Xenobiotic exposure: exposure to
a drug or chemical that may found
within an organism but that is not
naturally produced.
lifestyles, microbial populations, and exposures, these parameters should be taken into
consideration in the design of investigations in humans aimed at the discovery of putative
metabolite biomarkers [17]. In addition, the collection and storage of samples should be
consistent throughout clinical or epidemiological investigations, ensuring that factors, such
as types of anticoagulant used, collection vessels, clotting times, stabilizers, or storage
temperatures, do not introduce artifacts into the analyses [4].

Moreover, studies using in vivo model systems should be designed with dose and time to
response (e.g., addiction, withdrawal, or relapse) to enable the identification of early or
predictive markers of an addiction profile. Designs using both biological fluids and organ
tissues should provide a means to establish noninvasive (e.g., blood, feces, or urine) corollary
markers of target organ (e.g., brain) effects [18]. Furthermore, because metabolites are
generally readily conserved across species, studies conducted in model systems (such as
rats, mice, or nonhuman primates) might be translatable for validation in investigations in
humans [19]. In addition, cell-based assays can be designed to determine how xenobiotic
exposure (e.g., opiates) perturbs the cellular metabotype in the absence and presence of
treatment; alternatively, it may be possible to compare cell metabotypes derived from sub-
stance-abuse subjects who are responders or nonresponders to treatments [20]. Such study
designs might reveal markers and pathways important to opioid addiction treatment
responses, and could result in the identification of druggable targets, or targets that could
be considered for nutritional intervention.

Comprehensive analysis of LMW components of cells, tissues, and biological fluids can be
achieved using a variety of methods [4,21]. The most-common analytical methods for metab-
olomics include gas chromatography and liquid chromatography mass spectrometry
(GC-MS and LC-MS), and nuclear magnetic resonance spectroscopy (NMR). Targeted
metabolomics approaches are often used when the research hypothesis is focused on
specific analytes or pathways. Accordingly, specificmethods are established to detect, identify,
and quantitate exogenous and endogenous metabolites [22,23].

By contrast, broad-spectrummetabolomics (or untargetedmetabolomics) are often used in
hypothesis-generation research; in this scenario, techniques such as high-resolution orbi-
trap or time-of-flight (TOF) mass spectroscopy are used to capture signals for thousands
of metabolites, and statistical and chemometric approaches are then used to reveal the
signals that are important for defining the phenotypes of interest [24]. The specific methods
selected for a metabolomics investigation will rely on factors such as: (i) the metabolites and
pathways of interest; (ii) the sensitivity and resolution needed for low-abundance or difficult-to-
identify analytes (e.g. neurotransmitters or endocannabinoids); (iii) the need for nondestructive
sample analysis for retention of biospecimens; and (iv) the need for high-throughput methods
for large-scale epidemiological studies [25].

Recent Findings in Drug Addiction Research
Metabolomics studies have been conducted using samples from both human and animal
models to find putative metabolite biomarkers related to opioid addiction and lifestyle choices,
such as the use of tobacco products and alcohol, which can influence addiction-related
outcomes. In an early study, NMR metabolomics were used to analyze brain tissue from
morphine-treated versus saline-treated monkeys; the authors reported perturbations in the
concentrations of myoinositol, taurine, lactic acid, phosphocholine, creatinine, N-acetyl aspar-
tate, g-aminobutyric acid, glutamate, glutathione, methionine, and homocysteic acid in brain
hippocampus and prefrontal cortex (PFC) in the morphine-treated monkeys relative to controls
Trends in Molecular Medicine, Month Year, Vol. xx, No. yy 3
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[26]. Moreover, following morphine treatment, the administration of methadone or clonidine
reversed metabolic perturbations, demonstrating the potential for using metabolomics to
assess molecular mechanisms of opiate withdrawal and intervention [26]. Accordingly, the
reversal of some metabolic perturbations by methadone supported the previously posited
Dole–Nyswander theory.

Heroin consumption has been shown to significantly stimulate specific metabolic pathways.
Recently, GC-MS was used to measure urine and serum concentrations of metabolites in
Sprague–Dawley rats that were exposed to heroin twice a day to increasing doses adminis-
tered intraperitoneally for 10 days, withdrawn for 4 days, and then readministered for 4 days
[27]. The study reported several metabolites, such as myoinositol-1-phosphate and serotonin,
as being implicated in underlying mechanisms of heroin reward [27]. Furthermore, in heroin-
treated rats, disordered feeding behavior, accelerated energy metabolism (due to enhanced
activity of the tricarboxylic acid cycle) as well as escalation of free fatty acid metabolism, were
documented; these effects returned to baseline when heroin was withdrawn [27]. Again, these
findings were consistent with the theory of metabolic influence of exposure in addiction and
withdrawal that was alluded to above.

In another study from these authors, following intraperitoneal injection of escalating doses of
methamphetamine in male Sprague–Dawley rats for 5 days and then withdrawal for 2 days,
GC-MS metabolomics analysis of serum and urine samples showed disturbed energy metab-
olism during methamphetamine administration, including increased fatty acid beta oxidation,
accelerated tricarboxylic acid activity, as well as a noticeable reduction in branched-chain
amino acids, most of which resolved during the withdrawal period [28].

Moreover, in two separate studies, metabolomics was used to analyze the blood of cigarette
smokersandmenthol smokers,viaultra-performanceliquidchromatography-quadrupole-
time of flight mass spectrometry (UHPLC-Q-TOFMS) [29]. In menthol smokers, significant
changes in 42metabolites correlatedwith levels ofmenthol-glucuronide following the postsmok-
ing boost relative to traditional non-menthol smokers.Metabolic profile changeswere associated
with processes that included cellular motility, as well as cell death (versus survival), including the
cancer-related molecules (ABCB4, C3, CASR, CCK, IDO1, L-tryptophan, and UMOD) [29]. In
non-menthol cigarette smokers, definitive changes in 31 smoking-related metabolites were
reported; menthol-glucuronide was reduced relative to controls, along with 12 cancer-related
biomarkers, glutamate, oleamide, and 13 glycerophospholipids [30].

A novel metabolomics approach, nontargeted flow injection time-of-flight mass spec-
trometry, has also been used in rat models of alcoholism (alcohol dependence induced by
chronic intermittent alcohol vapor exposure) [31]. The authors reported global effects on
specific neurometabolic profiles linked to alcohol consumption, which could be used to
distinguish consumption history and identify a metabolic fingerprint associated with excessive
alcohol consumption; indeed, alterations in metabolites related to energy metabolism in the rat
accumbens shell were reported as potential pathophysiological mechanisms of alcohol depen-
dency [31]. In addition, a prospective, case [338_TD$DIFF][339_TD$DIFF]control study analyzed serum from patients with
acute alcoholic hepatitis and found several altered metabolites associated with glutathione
metabolism and energy homeostasis relative to controls; these 15metabolites correlated with a
6-month survival in the patients [32].

Recently, using an NMR-based metabolomics approach, the metabolites tartrate, ethyl glucu-
ronide, 2,3-butanediol, mannitol, and ethanol, and an endogenous response metabolite,
4 Trends in Molecular Medicine, Month Year, Vol. xx, No. yy
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3-methyl-2-oxovalerate, were identified in the urine of wine consumers [33]. Of relevance,
statistical analysis suggested that the measurement of combined tartrate and ethyl glucuronide
biomarkers would be more valuable than single metabolite analysis in assessing alcohol
consumption [33].

In a GC-MS metabolomics study using male Sprague–Dawley rats, the relationship between
metabolites and Datura stramonium spectra demonstrated that administration of the hallu-
cinogen D. stramonium resulted in increased or decreased levels of metabolites; 15 urinary
(such as malonic acid, glycine, and galactonic acid) and ten plasma metabolites (such as
alanine, butanedioic acid, and L-methionine) correlated with changes in amino, lipid. and
energy metabolism [34].

Another metabolomics study used MS analysis to separately assess metabolic profiles of urine
and plasma samples derived frommorphine-, methamphetamine-, and cocaine-addictedmale
Sprague–Dawley rats; the levels of metabolites (such as 3-hydroxybutyric acid, L-tryptophan,
cystine, lactose, spermidine, and stearic acid) were altered depending on the type of samples
and drugs [35]. These differences might help explain, at least in part, the different actions of
specific drugs on the brain reward circuitry [35]. This type of study helps demonstrate that
metabolomics may be useful in predicting the extent or mechanism of drug addiction [35].

Moreover, using UPLC-HR-TOFMS analysis, changes in levels of certain endogenous metab-
olites, such as acylcarnitines, adenosine, inosine, AMP, and S-adenosyl-L-homocysteine,
were recently identified in blood samples of illicit 3,4-methylenedioxymethamphetamine
(MDMA) drug users relative to non-users [36]. The authors suggested that these metabolites
are linked to greater energy utilization, drug-induced neurotoxicity, and serotonergic syn-
drome [36].

To assess the effects of opioids in different rodent addiction models, a LC-MS-based
metabolomic analysis was performed in rat and mouse urine samples to compare cocaine
metabolism [37]. After treating the rodents with the same dose of cocaine, the authors
determined that, although benzoylecgonine levels were similar, metabolites from the oxida-
tive metabolism of cocaine, such as N-hydroxybenzoylnorecgonine and hydroxybenzoylec-
gonine, were significantly higher in rats compared with mice [37]. These results were
interesting because they indicated species-specific changes in cocaine metabolism; these
types of finding would be relevant when attempting to translate animal studies to humans
[37].

Additionally, in a neuronal metabolomics study in rats, ambient pressure ion mobility
mass spectrometry was used to evaluate metabolic perturbations following cocaine expo-
sure [38]; the results demonstrated cocaine effects on glucose and amine metabolites in
different anatomical areas of rat striatum, PFC, and nucleus accumbens. Indeed, the metab-
olome diversity that was observed in treated rats was specific to the brain region, revealing
that cocaine administration had the greatest effect on glycolysis metabolism in the thalamus
[38].

It is also evident that choline is important in the generation of acetylcholine, a precursor to
neurotransmitters, as well as in mammalian brain development [39]. The increased cancer risks
associated with drug use [12,40], specifically with opium use [41], in countries that do not
mandate folic acid enrichment of foods [42] may be related to perturbations in the folic acid
pathway, with subsequent impact on choline-relatedmetabolites (Figure 1). Furthermore, these
Trends in Molecular Medicine, Month Year, Vol. xx, No. yy 5
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Figure 1. Effects of Human Alcohol Consumption and Smoking on Folate and Choline Metabolism. The use of tobacco products may reduce serum
concentrations of choline, and ethanol use can inhibit methionine synthase and regeneration of methionine, as well as divert acetylcholine to acetyl Co-A, which impairs
choline utilization, perturbing the conversion of betaine to dimethylglycine [43–47]. Methionine is essential for the methylation of proteins, lipids, and other small
molecules, and for the regulation of DNA and RNA expression. Folate is an essential nutrient for the one-carbon transfer pathway, protein synthesis, DNA repair, and the
synthesis of newDNA and RNA. In countries that do not fortify foods with folic acid, disturbances to folate metabolism and choline-relatedmetabolitesmay contribute to
increased cancer risks associated with drug use, although this remains to be further investigated. Abbreviations: BHMT, betaine-homocysteine S-methyltransferase;
DHFR, dihydrofolate reductase; MS, methionine synthase; MTHFR, methylenetetrahydrofolate reductase.
perturbations might be enhanced by alcohol use, because ethanol is known to perturb the
conversion of betaine to dimethylglycine [43], to inhibit methionine synthase (MetE) [43,44], and
tometabolize acetylcholine to acetyl CoA [45]. Moreover, statistical methods have been used to
show that lower concentrations of choline are associated with increased tobacco product use
in humans [46,47]. Methyl donors (such as choline and folic acid) have been shown to impact
responses to cocaine and opioids [48,49]. Thus, the impact of tobacco, to lower choline, might
significantly contribute to an imbalance in the choline and folic acid pathways, and the addiction
profile of an individual.
6 Trends in Molecular Medicine, Month Year, Vol. xx, No. yy
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Outstanding Questions
How can we use metabolomics in
dose- and time-to-response studies
with animal models to investigate the
impact of in utero, lactational, and early
in life exposure to opiates? How will
this exposure impact the biochemistry
of the developing offspring at different
life stages, as well as in multiple
generations?

What metabolic perturbations result
from exposure to individual drugs of
abuse compared with mixtures of
drugs?

How does concurrent administration of
opiateswith tobacco, alcohol, stress, or
other lifestyle factors associated with
drug addiction and withdrawal perturb
the biochemistry of a system compared
with opiate exposure alone?

How can metabolomics be used to
define nutritional targets that can be
tested in model systems before trans-
lation to humans?

How does opiate exposure influence
microbial populations? What are the
biochemical relationships, and how
are these populations related to dis-
ease outcomes?

Can metabolomics studies with cell-
based assays answer questions related
to the uptake and utilization of endoge-
nous compounds (e.g., amino acids or
sugars) in cells derived from subjects
with different risks factors for addiction,
and enable an informed approach to
individualize nutrition?

How can metabolomics be used in
human research studies and clinical
trials to help address questions of
compliance and adherence, and mon-
itor biochemical processes that
change during a successful versus a
nonsuccessful program?

How can studies be designed to help
unravel perturbations in our biochem-
istry that are attributed to the specific

Box 1. Clinician’s Corner

Addiction is a physiological response of the body to substance abuse. The individual gradually becomes dependent
both physically and psychologically on drugs and, in some cases, increases the amount of drug intake.

Addiction can be defined as a noncommunicable disease that impacts community health and wellness. The biochem-
ical changes in the brain related to drug use may be long-term, and associate with adverse response.

Some individuals who are physically and psychologically dependent on illicit drugs are genetically predisposed, and
have a family history of drug addiction. In addition, an individual’s response to treatment for addiction can also be related
to genetics.

Similar to other diseases, the degree of vulnerability to substance abuse among individuals and subpopulations is
different. The biological and metabolic capacity of an individual can be critical in terms of being susceptible to addiction,
or to having a positive or negative response to treatment.

Using metabolomics to identify perturbations in biochemical process may provide a deeper understanding of the
biological and molecular pathways of exposure, addiction, and withdrawal, and help reveal potential biomarkers for
diagnosis or to monitor treatment.
Concluding Remarks
Metabolomics constitutes a powerful approach for revealing the impact of exposure on the
overall biochemistry of an individual or system. Establishing the concise relationship between
the phenotype and specific drug use is confounded by many types of exposure that an
individual can simultaneously experience (e.g., drugs, chemical, nutrition, or stress), and by
the impact of these exposures over a lifetime. Thus, studies in animal models and cell systems
are critical for controlling experimental conditions and demonstrating links for validation in
human cohorts. Important areas for such controlled dose- and time-to-response studies in
animal models include using metabolomics to: (i) investigate peripheral metabolites that
correlate with biochemical perturbations in the brain caused by opiate receptor binding; (ii)
determine the impact of in utero exposure and neonatal exposure to opiates on biochemical
processes later in life; (iii) investigate sex differences in response to opiate exposure; (iv)
determine the impact of specific nutrient intake concurrent with opiate exposure on addic-
tion-related responses; and (v) reveal the role of opiate receptor binding and metabolism on the
gut microbiota (see Outstanding Questions and Box 1) [50,51]. We propose that, if addiction
constitutes an overall metabolic disturbance in the organism, interventions that regulate
metabolism might be used to treat and/or prevent SUDs. For instance, we recognize that
optimum levels of folic acid are important in contributing to healthy pregnancies [52] and
combatting the development of cancers, and that both low levels and high levels of folic acid
have been associated with increased cancer risks [53,54]. Together, these insights have led us
to hypothesize that opiate addiction, and related cancer risks, could be reduced through
nutritional interventions, andwe propose that extensive studies are warranted to further explore
this hypothesis. We anticipate that using metabolomics for the analysis of human biospeci-
mens, from a variety of studies, including the Golestan Cohort, will facilitate the discovery of
diagnostic biomarkers and nutritional targets that may aid in intervention strategies to treat
substance abuse, addiction, and withdrawal.
metabolism of the drug, adverse
effects of the drug, confounding expo-
sures, lifestyle factors, and genetics?

Can metabolomics be used to reveal
how polymorphisms of susceptibility to
addiction are related to pathways that
are important in the response to
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