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Abstract

Three-dimensional imaging and image processing has become an important part for investigations of fluid distribution and flow in
porous media. We describe two methods of computed tomography with different characteristics, namely X-ray- and neutron-based.
We give an overview of image processing sequences and their methods. We investigated image enhancement with a focus on filters
using partial differential equations, classification and structure identification that we used to prepare our images for quantitative eval-
uations. These methods are demonstrated on a partially saturated sand sample. Finally, we show an application with soil aggregates
where investigations using synchrotron X-rays and thermal neutrons have led to new insights and refined fluid distribution and flow
models.
� 2008 Elsevier Ltd. All rights reserved.

Keywords: Image enhancement; PDE filters; Image segmentation; Computed tomography; Synchrotron light; Thermal neutrons; Porous media; Soil;
Water movement
1. Introduction

Several projects have used imaging methods and image
analysis to describe and model the flow behavior in soil
and more generally in porous media [1–6]. Non-destruc-
tive image acquisition such as computed tomography
(CT) has the advantage over destructive imaging that
the same sample can be scanned repeatedly under differ-
ent initial conditions or a process can be monitored spa-
tially and temporally. Traditionally, samples are exposed
to X-rays that are sensitive to density variations in the
sample. In our measurements, we combine this modality
with illumination by thermal neutrons. The beam from
this source type is sensitive to hydrogen atoms. By imag-
ing modality we mean imaging systems that are based on
different physical concepts and hence provide images that
reveal different information. Thus, unlike many metals,
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water and organic matter strongly attenuate and scatter
neutrons.

Examples of applications using images are structure
quantification [7–9], flow modeling [5,10], and mechanics
of porous media [11,12]. The main image processing tasks
are noise reduction, image enhancement, pixel classifica-
tion, and pixel clustering. We review both image process-
ing research regarding the development of processing
methods and research of method applied directly in the
field of porous media. The performance of some of the
methods described will be demonstrated. Here, we use a
three-dimensional image of a partially saturated sand
sample.

We detail the useful methods in our projects and com-
bine the results in a multi-scale and -modality context. In
Sections 2–4, we describe the imaging technologies we used,
the image processing, and an example that shows how the
combination of neutron and X-ray-based imaging, along
with image processing can lead to new insights in porous
media research. The interpretation and quantification of
the images requires intensive image analysis.

mailto:anders@kaestner.se
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Fig. 2. Performance of neutron imaging detection systems with respect to
their spatial and time resolution.
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2. Imaging methods

2.1. Illumination by thermal neutrons

For neutron imaging, we used the Neutron Transmis-
sion Radiography (NEUTRA) facility at beam line 32 of
the spallation neutron source at the Paul Scherrer Institute
(PSI). NEUTRA is directly linked to the neutron source
providing thermal neutrons from the moderator tank
(D2O) surrounding the spallation target. Neutron radiog-
raphy is ideal for quantifying water in the samples because
of the atom cross-section of hydrogen. The attenuation
coefficients of structural soils are an order of magnitude
less than water. Imaging by thermal neutrons has been used
in several investigations to quantify the amount of water
contained in samples. Examples of applications using neu-
tron radiography are observation of dynamic processes in
construction materials and geological samples [13–17].
More recent detector developments also allow tomography
using neutron sources. Again dynamic processes in porous
media are in focus [18–20]. Hassanein et al. [20] describes a
method to correct for the scatter contribution in the
images. By removing the scatter component the water con-
tent can be estimated with a higher accuracy.

Digital image detection systems permit the direct quanti-
fication of water flow. In respect to sample size and spatial
resolution, neutron imaging is more on the macroscopic
side with the beam diameter of 40 cm and an inherent spa-
tial resolution of about 0.1 mm. This compares to the con-
ditions at the synchrotron radiation beam line as shown
qualitatively in Fig. 1. There is an overlap in the mm-region
and the reason why similar experiments were performed at
both large scale facilities; the Swiss Spallation Neutron
Source (SINQ) and the Swiss Light Source (SLS).

With respect to temporal resolution, the source strength
of the facility plays the most important role; exposure times
are shorter at higher intensity. There are a variety of imag-
ing detection systems available, see Fig. 2. The CCD-cam-
era system was used with a narrow box and an adapted lens
system to obtain the intended field-of-view. CMOS is
another semi-conductor sensor that can be used directly
in the beam. The track-etch foil technique, now outdated,
exposes nitrocellulose materials. The tracks from alpha-
particles deliver a latent image. Temporal resolution is
mainly determined by the exposure time to obtain the
image. Some cases require additional readout or develop-
Fig. 1. Length scales for the sample size and the image resolution in
synchrotron radiation imaging (SLS) and neutron imaging using thermal
neutrons at NEUTRA.
ment time. The figure is to be considered qualitative. For
radiography and tomography, one has to multiply the
exposure time by the number of required projections. Film
and imaging plates are unsuitable for tomography. This
scheme demonstrates that all improvements in temporal
resolution will reduce the spatial resolution (and vice
versa). However, most of the processes in soil physics like
water migration are relatively slow (minutes to hours)
and require only low frame rates. Therefore, the spatial res-
olution was of higher importance in this study. The detec-
tion system used here was a slow-scan CCD-camera with
wide dynamic range (16 bit) and high sensitivity. The cam-
era focused via a mirror on a scintillator screen. The pho-
ton emission from the scintillator has mean energy of
500 nm. This corresponds to visible green-blue light that
the camera registers. This equipment is assembled sealed
inside a light-impermeable box, which has to be placed per-
pendicular to the beam direction, Fig. 3. Using a small field
of view (35 mm) to fit to the smallest sample dimensions
in our experiment (5 mm diameter, 20 mm length), the
inherent resolution given by the CCD pixel number
(1024 � 1024) is about 0.035 mm. However, the real resolu-
tion of the imaging system is limited by the scintillator per-
formance and light dissipation in the sensitive layer. With
these limitations, resolutions 0.1 mm can be achieved with
Light impermeable boxMirror CCD camera
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Fig. 3. Principle of the neutron imaging detection system used for the
investigations, based on a cooled CCD-camera.
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commercial screens. Higher resolutions can also be
achieved with on-site developed screens [21]. The location
of the sample holder was constant throughout the experi-
ment. This allowed application of a pixel-wise referencing
procedure, where the information in all successive images,
It, were related to the first (dry, It = 0) one by division and
normalization using the flat field, Iflat:

In ¼
I t=I flat

I t¼0=I flatðt¼0Þ
ð1Þ

The camera subtracted the dark field. This procedure frac-
tionates the water information from the structure informa-
tion of the porous medium in each pixel, thus allowing
quantification of the water content.

In the tomography run, 300 projections, with exposure
time of 30 s per frame, were taken over an angular range
of 180�. Each projection was about 4 MB, giving the total
data set for the tomography of about 1.2 GB.

2.2. Illumination by synchrotron-based X-rays

Synchrotron radiation X-ray tomographic microscopy
(SRXTM) experiments occurred at the tomography station
of the Materials Science beamline of the Swiss Light Source
at the Paul Scherrer Institut in Villigen, Switzerland, see
[22]. Synchrotron radiation is extracted at the straight sec-
tion 4S of the SLS with a mini gap hybrid wiggler. Vertical
collimation and focusing is provided by variable angle, var-
iable curvature Rh-coated Si mirrors, which also eliminate
higher order harmonics. This produces a monochromatic
flux density at 10 keV of �1014 photon/s, which can be
focused onto a spot at the experimental stations with
minimum size of 1 mm2. Illuminating the sample with a
monochromatic beam, as opposed to the white beam
illumination from conventional X-ray tubes, has the
advantage of mitigating beam hardening artifacts, which
negatively affect image quantification.

For our experiment, the beam energy was set to
20.0 keV to optimize absorption contrast and to provide
sufficient photon flux to penetrate the large sample. After
penetration of the sample, X-rays were converted into vis-
ible light by a thin Ce-doped YAG scintillator screen (Cris-
matec Saint-Gobain, Nemours, France). Projection images
were magnified further by diffraction limited microscope
optics and finally digitized by a high-resolution CCD cam-
era (Photonic Science Ltd., East Sussex, UK). The optical
magnification of the microscope was set to 4�. Considering
an additional 2� eyepiece and a hardware binning of 2�
(to improve the signal to noise ratio) the final theoretical
pixel size was 7.0 lm, thus resulting in isotropic voxels of
7.0 lm for the reconstructed images. The field of view
was 7 � 2 mm2, limited vertically by the natural vertical
beam divergence and the optics acceptance. Multiple scans
are necessary for samples larger than the field of view. For
each measurement, between 721 and 1001 projections were
acquired along with dark and periodic flat field images at
an integration time of 4 s each. The dark (Idark) and flat
field (Iflat) image were used to normalize the projection to
represent the attenuation of the beam instead of an abso-
lute intensity reading. The normalized images (In) were
computed using

In ¼
I0 � Idark

I flat � Idark

ð2Þ

where I0 is the acquired projection image and Iflat is a flat
field image that is interpolated using the two flat field
images that precede and succeed the current projection
image.

The scanning time for one volume of interest was 70–
120 min and resulted in 0.3–2.5 GB of raw projection data
depending on the cropping and binning.

2.3. Contrast enhancing components

Quantitative analyses based on X-ray absorption are
often associated with difficulties obtaining a good contrast
between air, water, and solid phases. This, in turn, will
complicate the classification task. To overcome this prob-
lem, one can add a contrast enhancing compound to the
water. Wildenschild et al. [5] for instance added KI. Iodine
has an absorption edge at 33.7 keV that enhances the con-
trast further than the effect of a density increase when ener-
gies near the absorption edge are used. Consequently,
water could be clearly distinguished from the other two
phases. In our experiments, we used CaI as tracer. We used
Ca as the cationic background because bivalent cations
preserve the structure of clayey soil aggregates. A concen-
tration of 4% was selected to optimize the contrast between
the three phases. A similar problem occurs in neutron-
based imaging, but here the contrast can be too high. This
is a technical problem since the dynamics of the detector is
limited; on one hand neutrons must pass through all
regions of the sample to avoid detector starvation and on
the other hand the detector will be saturated if it is exposed
to too many neutrons. The water is such a strong attenua-
tor that it occasionally must be diluted with heavy water
(D2O).

Adding a tracer has the drawback that density, viscosity,
surface tension and contact angle between the liquid and
solid phase change with the tracer concentration. This must
be incorporated into models of flow behavior. Further-
more, it is important to decide how much contrast enhan-
cer should be added. Tracer addition may increase the
attenuation so much that the gray level distribution mode
for the fluid phase exceeds the distribution mode of the
solid phase. Alternatively, a tracer may just center the his-
togram mode for the fluid phase in between the two
extreme modes for air and solid phase. For a non-absorb-
ing solid phase, this decision depends only on how much
the hydraulic properties are allowed to alter. However,
for absorbing solid phase, like soil aggregates, it becomes
a tradeoff since the attenuation will increase for the solid
phase simultaneously as for the fluid. In this case the fluid
mode is best placed centered between the two extreme



Fig. 4. Schematic of the image processing flow.
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modes of air and solid. In addition, the salt may crystallize
and block fine pores. Crystals affect the flow paths in the
sample. A lower concentration is thus preferable.

3. Image analysis methods

Here, we give a review of some image processing and
analysis methods that have been used in investigations of
various sample types.

3.1. Image reconstruction

Three-dimensional images are made by stacking
sequences of two-dimensional slice images. The slices are
tomographic reconstructions from a large number of pro-
jection images obtained by the scanning system. The inver-
sion process required to obtain a spatial image from
projections uses the filtered back-projection algorithm,
see e.g. [23,24]. This algorithm consists of two steps, filter-
ing the projection and back projecting the information on
the three-dimensional image volume that represents the
scanned sample. The distance from source to target is long
relative to the sample size. Therefore, a parallel beam
reconstruction is a valid approximation. The setups for
the two imaging modalities share this property. For shorter
source-to-detector distances, the cone shaped beam geom-
etry must be considered. This is the case for desktop lCT
scanners. The most common algorithm for cone beam
CT reconstruction is the Feldkamp algorithm [25]. For
the interested reader, we suggest the book by Kak and Sla-
ney [23] that covers this topic in more detail. Ring artifact
reduction improves the image quality and simplifies the
segmentation work. Ring artifacts can be reduced, either
in the projection/sinogram domain (pre-reconstruction)
or in the image domain (post-reconstruction). In the sino-
gram domain, a straight line parallel to the projection angle
axis represents a ring in the reconstructed image. The cor-
rection can be made directly on the sinogram by subtract-
ing a high pass filtered average projection from the
sinogram [26] or in the 2D Fourier domain using a notch
filter [27]. Alternatively, the ring artifacts can be reduced
in the spatial domain on the reconstructed image [28].
We used a modified approach of [26] where only artifact
pixels are modified in the sinogram. This approach pre-
vents new noise from being added to the reconstructed
image.

Here, we describe several methods usually used in image
processing leading to the characterization of relevant fea-
tures in the original image. Fig. 4 schematically outlines
the sequence of operations that are required to obtain the
desired information from the image. Not all steps are
always necessary and, occasionally, results from different
steps are combined to provide the results. The image prep-
aration steps, the shaded box in Fig. 4, are described in
more detail in the following sections.

We also want to stress the importance of using three-
dimensional operations for volume images. Choosing a
two-dimensional slice-based processing scheme will detri-
mentally affect the geometry of the image features. Infor-
mation in the slice plane will dominate the structure. This
will produce undesired shape artifacts that negatively affect
the accuracy of the subsequent analyses or simulations.

3.2. Image enhancement

Images are rarely perfect representations of the attenua-
tion coefficients, since they are disturbed by optical transfer
functions, scatter, and noise. Consequently, the first opera-
tion on an image is usually to apply a filter that reduces the
noise level. A smoothing filter, i.e. a filter with low-pass
characteristics, generally suppresses the noise. The first fil-
ters that one encounters in the image processing literature
are convolution filters of different flavors, e.g. Box or
Gauss filters [29,24]. Another common approach is to use
a median filter that performs especially well with outliers.
Both of these filters have low-pass characteristics and are
spatially invariant. The effect of such filters is a smoothing
that also affects sharp edged features in the image. This
smoothing is undesired since it will negatively affect the res-
olution and the identification of edges. Noise suppression
as a part of the tomographic reconstruction has the same
effect.

There are solutions to the noise suppression problem
that smooth regions with essentially constant intensity
while maintaining or even sharpening edges. Here, we
describe three different filters that all require the numerical
solution of partial differential equations (PDE): the non-
linear diffusion filter, the shock filter, and the inverse scale
space filter. The original works by Perona and Malik [30],
Catté et al. [31], and Osher and Rudin [32] use two-dimen-
sional implementations of these filters to demonstrate the
performance. The theory of these filters also supports
three-dimensional implementation. Extending these filters
to three dimensions is straightforward and we will show
their performance on images of sand samples. Next, we
outline the principles of the three filter types and apply
them on two- and three-phase images of sand and soil
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aggregates. For the interested reader, we suggest the book
by Aubert and Kornprobst [33] which provides a deeper
mathematical introduction to this class of filters.

3.2.1. Non-linear diffusion filter

The non-linear diffusion filter is based on the homoge-
neous heat diffusion equation

ou
ot
¼ r � jru

where u is the image and j corresponds to thermal conduc-
tivity. The drawback of this equation is that the steady-
state solution is an image with constant intensity. To over-
come this drawback Catté et al. [31] modified the thermal
conductivity, j, into a non-linear diffusivity function con-
trolled by the amplitude of the gradient. Following this
change, the diffusivity can be small for high gradient ampli-
tudes and near unity for low gradient amplitudes. The ef-
fect is a filter that performs smoothing in nearly
homogeneous image regions, while virtually no filtering
will take place near edges. The form of the diffusion filter
that we use is

ou
ot
¼ r � ðgðjrruj2ÞruÞ

where g(�) is the non-linear diffusivity function that has a
selective behavior at intensity level k. The diffusivity is
unity for intensities less than k while it decreases rapidly
for greater values. The diffusivity function is computed
for $ru, which is a gradient image smoothed by a Gaussian
convolution kernel with variance r2. This regularization
prevents the conservation of small irrelevant features.

The implementation of the three-dimensional diffusion
filters is relatively direct thanks to the additive operator
scheme (AOS) by Weickert et al. [34]. This is a numerically
more stable solver for this kind of equations than a naı̈ve
implementation of a solver.

By modifying the k- and r-parameters of the filter, dif-
ferent effects can be achieved. For example the intensity
of grains and pore space can be homogenized or in images
where the pore space is barely resolved root structures can
be enhanced while the pores are smoothed allowing a more
precise segmentation of the roots [35].

Diffusion filters are implemented in the open source
image segmentation and registration library ITK [36].
Sheppard et al. [37] combined diffusion filters and unsharp
mask [24] edge enhancement for tomographic images of
porous materials. The unsharp mask operation does how-
ever introduce overshoots near the edges. This may disturb
later processing steps.

3.2.2. Shock filter

The second filter type is the PDE-based shock filter that
was introduced by Osher and Rudin [32]. They described
the filter in the form

ou
ot
¼ �jruj signðDuÞ
here u again is the image to be enhanced and Du = $ � $u

denotes the Laplacian operator. This original form is sen-
sitive to noise. Every rapid change in the image will be en-
hanced, including outliers originating from noise. To avoid
enhancing the noise Alvarez and Mazorra [38] added a dif-
fusion term to the original shock equation. The resulting
equation is used in our three-dimensional implementation.
They also smoothed the Laplacian with a Gauss filter to
prevent small structures from generating shocks on their
edges. The equation we use in some of our enhancement
tasks is here rewritten such that it is clear that the curva-
ture, H, is used by the diffusion term:

ou
ot
¼ cjrujH|fflfflfflffl{zfflfflfflffl}

Diffusion term

� jruj signðDruÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Shock term

where the constant c controls the amount of diffusion to in-
clude in the solution. The local curvature was computed
using second derivatives, Thirion and Gourdon [39]. The
effect of this equation is a filter with shock effect perpendic-
ular to the edge and diffusion parallel to the edge. The
shock filter is best applied on images that have smooth
edges and noise models with low spatial correlation. For
images with a high spatial noise correlation, the noise re-
gions will be enhanced as structures unless strong smooth-
ing is applied. Welk et al. [40] give the theoretical
foundation of the shock filter.

3.2.3. Inverse scale space filter

A different approach to define enhancement filters is pre-
sented by total variation filters, introduced by Rudin et al.
[41]. These filters are based on the concept of minimizing
the variation in the image using a cost function. Develop-
ments of this filter lead to the regularized inverse scale
space filter (ISS-filter) that was introduced by Scherzer
and Groetsch [42] who defined the filter for a linear scale
space. This filter combined the diffusion filtering methods
and regularized filtering methods. Burger et al. [43]
extended the theories to support non-linear scale spaces
and formulated a simple and well defined stopping crite-
rion. Generally, the inverse scale space filters start with
any image. During the iterations first large scaled features
are added and with an increasing amount of iterations also
finer features appear. The principle is based on the minimi-
zation of a functional such as

min
u

JðuÞ|ffl{zffl}
Regularization

þ kHðf ; uÞ|fflfflfflfflffl{zfflfflfflfflffl}
Fidelity

8><
>:

9>=
>;

where u is the filtered image, f the original image, and k is a
regularization parameter. This functional has a minimum
at the steady-state solution of the following coupled system
of constrained PDEs

ou
ot
¼ �pðuÞ þ kqðf þ v; uÞ

ov
ot
¼ aqðf ; uÞ

ð3Þ
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where a is a time scaling constant of the decomposed noise
solution v. Filter behavior depends on the definition of the
regularization function p(�) and the fidelity function q(�, �).
We demonstrate the total variation in L2 (TV-L2) filter de-
scribed by Burger et al. [43]. This filter is, as they say, a nat-
ural choice for image enhancement as it produces a sharp
and clean approximation of the input image. With this fil-
ter, Eq. (3) takes the following form

ou
ot
¼ r � ru

jruj

� �
þ kðf � uþ vÞ

ov
ot
¼ aðf � uÞ

ð4Þ

For this filter Lie and Nordbotten [44] proved that a 6 k
4

must be chosen to avoid oscillating solutions. To suppress
strong noise and/or large features the regularization
parameter k must take small values, i.e. k� 1.

3.2.4. Demonstration of enhancement filters

We demonstrate the performance of the described filters
using an image taken from an evaporation experiment. The
sample was a cylinder filled with sand and a solution of
water and CaI2 (4% by weight). The used image has the
dimensions 256 � 256 � 256 voxels and a resolution of
7 lm/voxel. Fig. 5 shows the mid slice of the original image
and of the filtered images using non-linear diffusion filter,
Original
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Fig. 5. Performance examples using the described filters on an X-ray image. T
the same intensity window and the axis units are given in mm. Original image
Lausanne, Switzerland
shock filter, and ISS filter. The figures show that with the
filter settings used, the diffusion and ISS filters produce
the smoothest homogeneous regions. The diffusion filter
produces somewhat irregular edges. This is because the
edges essentially are untouched by this filter. Furthermore,
the diffusion filter uses constants for the contrast- and
scale-parameters. Better edge performance can be expected
for the diffusion filter when a parameter update method is
used. Perona and Malik [30], used a percentile of the histo-
gram of the absolute gradient image to select k. Another
method to find k is proposed by Black et al. [45] who used
robust statistics based on the median of the gradient image.

The performance of the shock filter is not impressive for
this example image. The reason for this is that the image
characteristics do not correspond to the optimal conditions
for this filter; smooth edges (several pixels wide) and spa-
tially uncorrelated noise. Tuning the filter for this image
was a difficult balance between smoothing the homoge-
neous regions and eroding relevant edge features. Fig. 6
shows the effect of a shock filter on a more relevant sample.
The histograms of the original and processed images show
that not only a smoothing takes place but also a sharpening
that minimizes the tail distributions.

In Fig. 7, we show some edges in more detail. In this fig-
ure the shock filter is replaced by a Gauss filter to show the
difference in how edges and homogeneous regions are han-
Diffusion filter
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he image shows sand grains, water, and air. All images are displayed with
courtesy of P. Lehmann and D. Or, Swiss Federal Institute of Technology
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Fig. 6. An example that shows the effect of a shock filter applied on the original image (a), the resulting edge enhanced image (b), and the histograms of
the two images (c). The example image is a slice extracted from a 3D image of an arrangement of soil aggregates scanned at a resolution of 125 lm/voxel
using thermal neutrons. The voxel intensity represents the local water content.
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Fig. 7. A detail of the image that shows some edges in closer detail. All images are displayed with the same intensity window and the axis units are given in
mm. Original image courtesy of P. Lehmann and D. Or, Swiss Federal Institute of Technology Lausanne, Switzerland.
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dled by the filters. The histograms of the images in Fig. 5,
show that the two PDE-based methods produce the sharp-
est histograms. A different way to quantify the image
improvement is to compute the total variation ratio to
the original image:

TVrðu; vÞ ¼
P

XjrujP
Xjrvj ð5Þ

where X is the set of voxels, and u and v are images.
With this metric we obtain TVr(uGauss,u) = 0.7190,
TVr(uDiffusion,u) = 0.2068, and TVr(uISS,u) = 0.1654. A
small value indicates homogeneous regions. Combined
with the histogram (Fig. 8) this information tells that the
ISS filter followed by the diffusion filter cancels most noise
and preserve the edges best. Still, for initial investigations
smoothing by convolution or median filters are methods
since they are available in most image processing tools
and deliver the result faster.
3.2.5. Memory efficient implementation of PDE-based filters

A disadvantage of the PDE-based filters is the heavy use
of computer memory. In the worst case, memory consump-
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tion can reach seven times the original image size. The solu-
tion is either to process small slabs of the image or to do a
thorough redesign of the filter implementation. The latter
approach resulted in a filter that only requires a small frac-
tion of the image size for intermediate information storage.

The principle exploits the fact that PDE filters only
require local information to update a pixel and that the
sub-operations of the filters are separable, i.e. each direc-
tion can be filtered independently from the others using
one-dimensional filter kernels. The latter is an essential fea-
ture that allows the use of 2D images for intermediate
results. This saves a large amount of memory by using
first-in first-out (FIFO) queue data structures to store the
currently relevant image information. We used image slices
in the XY-plane as the smallest image fraction to process.
The items stored in the queues are pre-computed image
slices, e.g. Gauss (2D) filtered slices or gradient slices in
the X- and Y-directions. The third dimension is processed
when the output slice is finalized. Several queues may be
required to support the computations. When a queue item
is no longer needed, it is removed from the queue and
memory can be released. The inverse scale space filter
requires that the original image is used for the fidelity term
in each step. This makes the implementation less memory
efficient than diffusion and shock filters.

3.3. Classification

The choice of a classification method is not as straight
forward as the aforementioned enhancement methods. It
depends on the number of classes to be identified, the sep-
arability of the classes, the size of the relevant features, etc.
One method may be ideal for one application but may not
work for others. In general, a good classification method
should preserve the class distributions including their tail
distributions as illustrated in Fig. 9. In cases of tail trunca-
tion some pixels are assigned to the wrong class. These pix-
els are mostly near the edges. This will detrimentally affect
the accuracy of the classification of the feature for use in
subsequent analysis or simulation.

The difficulty of identifying an efficient classification
method is reflected by the great variety of published meth-
ods as we show in the following sections. Here, we only
consider unsupervised methods since the supervised seg-
mentation becomes impractical for most applications in
porous media research; there are usually too many items
to identify. Furthermore, the result of supervised methods
may be biased by the arbitrary choices of the operator.

The classification task can be approached in several
ways. First the task can be composed into two sub-tasks;
identifying and providing information about the classes
present in the image and assigning classes to the pixels.
In some methods these sub-tasks are clearly separated
while in others there is a continuous interaction between
the two tasks.

3.3.1. Histogram-based thresholding

This is a common initial approach to assign classes to
the pixels in an image. The principle is based on the estima-
tion of a global threshold level from the intensity histogram
of the image. The pixel classes are assigned by comparing
the intensity with this threshold value.

A classic method of this type is described by Otsu [46]
who uses the criterium that the in-class variance is mini-
mized while the between-class variance is maximized.
When the noise is identified as Gaussian, an alternative
method is to fit a sum of Gaussian functions on the histo-
gram data and use the estimated parameters to determine
the threshold levels using decision theory, see e.g. [47]. Met-
rics based on the histogram entropy also has been used to
identify threshold levels [48]. To find a threshold level in
mono-modal histograms Rosin [49] used a method based
on the location of the histogram knee, i.e. the point where
the tangent of the main histogram peak meets the tangent
of the asymptotic low probability tail.

Using strict gray-level intervals, such as the ones pro-
vided by histogram-based thresholding methods, generally
truncates the tail distributions and results in a number of
incorrectly classified pixels. This makes these methods
unsuitable as a final segmentation method. Histogram-
based thresholding, however, often serves well as an initial
condition for more complex methods, described in the
following.

3.3.2. Region growing
The concept of region growing is that small regions are

grown by assigning the region class to neighboring pixels.



Fig. 10. The landscape model used by the watershed segmentation.
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This growth is repeated until a termination condition is ful-
filled [50]. The seed regions can be defined by pre-segmen-
tation from a histogram-based method. Fan et al. [51]
provides a recent comparative study of seeded region grow-
ing methods. Morphological methods can also be used to
describe the region growing [52].

Vogel and Kretzschmar [53] used region growing for the
segmentation of soil samples and region growing is also the
concept used by Ketcham [54] in the BLOB3D analysis
package.

Refinements of the seeded region growing approach are
methods that locally adapt the threshold level to the local
conditions during the iteration. This type of segmentation
has been used to track fine features like roots or wormholes
in soil samples [55].

3.3.3. Iterative class property minimization

This is a class of segmentation methods that iterates
over a set of pixels until a minimization criterium is ful-
filled. Some methods use a pre-segmentation by a histo-
gram-based method as initial condition. Further
refinement of difficult regions like edges is handled by other
methods. The presegmentation saves processing resources
for the difficult regions, both in terms of processing time
and memory. An example of this approach is the indicator
kriging segmentation by Oh and Lindqust [56]. Al-Raoush
and Willson [57] have also used this method.

An example of a method that operates on the whole
image is the fuzzy C-means method [58]. It belongs to a
class of methods that minimize an objective function based
on a clustering criterion. This method is well suited for
multi-class segmentation. Wildenschild et al. used a
method based on a combination of C-means and a seg-
mented image of the dry sample to segment images of the
wet samples [59].

3.3.4. Pyramid-based segmentation

Pyramid-based segmentation uses the concept that the
relevant features must have a specified size to be accepted
in a class. This scale concept is realized by using a scale pyr-
amid [29,58]. A scale pyramid is constructed by successively
down-sampling the image to increasingly coarser scales.
The sampling procedure uses Gaussian- or box-filter, this
result in either a Gaussian or a Laplacian pyramid. In its
simple form, the highest (coarsest) level is segmented into
two or more classes. The class information from this level
is propagated down to the next level by an update scheme,
which produces a segmented image at a finer scale. The seg-
mentation process finishes when the class information has
propagated down to an image of the initial scale.

In general, the pyramid provides a framework for seg-
mentation that leaves two major decisions open; the top
level segmentation, and the class propagation down the
pyramid.

The top level segmentation is crucial for the outcome of
the segmentation. In our three-phase segmentation we used
the fuzzy C-means algorithm for the top level segmentation.
Classes can be propagated using several methods. The
class of the child can be assigned by the most likely parent.
This is known as parent relinking and an early application
of this approach was presented by Burt [60] who iteratively
refined the pyramid. A second approach is to use probabil-
ity schemes. In this approach a combination of class statis-
tics and local probability is used. In some applications even
local structure information such as edges is used in the
decision [58, pp. 441–448]. For a more detailed review of
the development of pyramid-based methods we refer the
reader to Marfil et al. [61].

To set up a pyramid, the number of levels must be deter-
mined; this is a trade-off between the smallest feature that
has to be detected detect and the noise level in the image.

3.4. Structure clustering

A recurring task in our investigations is to identify single
items in the images. There are various reasons for this.
Some examples are: to compute the grain size distribution,
selecting items with a specific shape and size, and to iden-
tify contact points between items. Most often, we apply
the watershed segmentation algorithm for this task [52,
pp. 267–292]. In contrast to a simple connected-component
labeling procedure, this labeling method can also success-
fully identify items that touch each other as two individual
items.

The underlying principle of the watershed segmentation
is based on the analogy of a landscape that is flooded by
water as shown in Fig. 10. Catchment basins are regions
that share a common local minimum and will be assigned
a label. The ridges of the hills will form watershed lines,
i.e. region boundaries in the image. Dams will be built to
prevent water from overflow into another catchment basin.
These dams will also be a part of the watershed lines. The
labeling procedure terminates when the whole image only
contains labeled regions and watershed lines.

A successful labeling procedure involves several steps.
Firstly, the watershed segmentation algorithm requires an
elevation map that represents the landscape to be flooded.
In our case, this elevation map is generated from a bi-level
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image using the Euclidean distance transform, DEð�Þ. This
operation transforms the background pixels of a bi-level
image into a distance field. Each pixel is assigned a Euclid-
ean distance to the nearest foreground pixel. In our experi-
ence, a good elevation map Df of image f is represented by

Df ¼ DEðf Þ � DEðf cÞ
where fc represents the complementary image of f, e.g. the
pore space of an image that represents a sand sample. This
distance map requires a post-processing step using the bi-
level image to mask out the items from the segmented re-
gions. In the landscape analogy the valleys represent the
items, e.g. grains, and hills represent the background
(Fig. 10). Irregular shapes such as sand grains will produce
several local minima for each grain in Df. These minima
lead to an over-segmentation, since each minimum will re-
sult in a catchment basin. The over-segmentation behavior
can be avoided by imposing minima regions that include all
local minima for each item. This procedure is described by
Soille [52, pp. 279–280]. Videla et al. [62] suggests using the
semi-variogram to determine the size of the particles in the
samples. They used this size to define the local minima. The
complete processing sequence for watershed segmenting an
image is outlined in Fig. 11.

The morphological operations and transforms described
here are supported by commercial image processing soft-
ware packages such as Matlab and IDL as well as open
source libraries like ITK. Calculation speed can be
improved by implementing the algorithms for 3D image
processing using C/C++. A reason for this is that the com-
mercial code is partly based on general purpose command
interpreting processing engines that rarely meet the perfor-
mance level of well-tuned compiled code.

An alternative to the morphological segmentation is
given by level sets and fast marching methods. An intro-
duction to these methods is given in [33] and an overview,
with more recent results and applications, is provided by
Osher and Paragios [63]. In general, these methods grow
regions by minimizing a cost function consisting of two
terms, one that stops the evolving surface and the other
controls the direction and rate of surface movement. A
problem with active contour and level set methods is to find
Image f

Valleys: -Dε(f c)

Mountains: Dε(f)

Elevation map
Dε(f )-Dε(f c)

Local m

Fig. 11. Schematic illustration of the proce
good stopping criteria. To overcome this problem, Shepp-
ard et al. [37] introduced a combination of active contours
and watershed propagation, which gives a natural stop on
the watershed lines.

4. Application

In the following section, we apply the image analysis
methods described above to study the hydraulic properties
of soil aggregate packings. Two imaging techniques are
used: neutron radiography for monitoring in real time
and two dimensions the water distribution through series
of soil aggregates; and X-ray tomography to image the
pore geometry and the water distribution between and
within soil aggregates at stationary conditions. The two
techniques provide complementary information for deriv-
ing the hydraulic properties of aggregated media. To derive
such properties we make use of the image analysis methods
described before.

Surface soils are often structured as aggregates sepa-
rated by large inter-aggregate pores. Such a structured state
is crucial for the movement of water, air and solutes. The
hydraulic behavior of aggregated soils is in first place char-
acterized by the duality of the large inter-aggregate pores
and the micro-pores within the aggregates. The link
between the properties of the individual aggregates and
those of large aggregate packings is still missing or it is
based on empirical and parametric approaches. In order
to find this link the following experiments have been
performed.

Neutron radiography has been used to image in real
time and in two dimension water infiltration through series
of soil aggregates. The measurements have been performed
at the NEUTRA facility of PSI, Switzerland. A detailed
description of the measurements is reported in [64]. The
obtained radiographs have been corrected for scattering
corrections as described in Section 2.1. From the corrected
radiographs and from comparison with dry aggregates, the
water content distribution through the series of aggregates
was calculated using Eq. (1). The water content distribu-
tion is shown in Fig. 12. The time-series of radiographs
show how water moves through the soil sample and how
Watershed
segmented image

Impose
minima

inima

Elevation map
with strong minima

ssing flow for watershed segmentation.
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Fig. 12. A time series of images that shows the movement of a few droplets of water in an arrangement of aggregates. The sequence was captured with
thermal neutrons. A dry reference image was subtracted from the images in the sequence. Dark regions have high water content.
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the flow is affected by heterogeneities such as the aggre-
gate–aggregate contacts. Water is well visible thanks to
its high neutron attenuation coefficient. Neutron radiogra-
phy is an optimal tool for imaging dynamic and fast pro-
cess such as water infiltration in thin soil samples, where
small variations in water content can be quantified with
high precision. From this type of experiments, it is possible
to derive macroscopic hydraulic properties such as water
retention curve and hydraulic conductivity [64]. Limita-
tions of taking time-series neutron radiography are due
the two-dimensional approximation and the limited spatial
resolution. Three-dimensional information can be obtained
by performing neutron tomography of the samples at sta-
tionary conditions. However, pores smaller than 0.1 mm
are unlikely to be visible via neutron tomography. In the
case of soil aggregates, the intra-aggregate pores and possi-
bly discontinuities at the aggregate–aggregate contacts are
not detectable. Therefore, imaging techniques with higher
spatial resolution are required in order to resolve the geom-
etry of the pore space and relate it to the measured hydrau-
lic properties.

Pore geometry and fluid distribution inside and between
soil aggregates have been obtained by means of X-ray
tomography. The experiment has been performed at the
TOMCAT beam line of the SLS-PSI (Section 2.2). The
experimental set-up allowed a field of view of 2.5 �
11 mm and a resolution of 5.92 lm (voxel side length).
The sample is a cylinder containing two soil aggregates
placed one on the top of the other. At the bottom of the
cylinder a porous plate was connected to a water reservoir
for wetting the sample at controlled water potential. In
order to increase the visibility of the liquid phase we added
CaI2 at a concentration of 4% by weight. The contact
region between the two aggregates was tomographed at
two equilibrium conditions: at a matric potential
h = �0.025 and �1.4 m. Objective of these measurements
was to evaluate the distribution of water in the contact
region. The contact region was expected to have different
hydraulic properties compared to the aggregate interior.
The roughness of the aggregate surface likely creates irreg-
ular contacts with large pores, which become rapidly
drained and which affect the conductivity of the entire
medium. To evaluate and quantitatively describe this
mechanism, the two aggregates, the liquid and the air
phases have to be distinguished. Additionally we defined
a contact surface which separates the two aggregates.
The distribution of water on this contact surface gives
the flow-cross section between the aggregates and it is an
expression of the hydraulic conductivity of the contacts.

In the images from the X-ray scan, the water distribu-
tion between the two aggregates is clearly visible in the
segmented image (Fig. 13). X-ray imaging allows distin-
guishing the wet structures from water located in the
voids and between the structures as opposed to neutron
imaging. Fig. 13 shows the segmented three phases
mapped on the identified medial surface and projected
on the horizontal image plane. The three-phase segmenta-
tion was made using the previously described hierarchical
classification method and top-level segmentation using a
Gaussian pyramid and fuzzy C-means classifier. The were
classes propagated down the pyramid using a maximum a
posteriori update scheme based on class statistics from
the current parent image and local class probabilities
computed from the neighborhood of each parent voxel.
The medial surface between the two items was identified
using watershed segmentation. Two seed regions were
used for this; one representing the upper aggregate and
the other the lower aggregate. The seeds were created
using the segmented top- and bottom-most slices. Using
the distance field defined in Section 3.4 we obtained the
medial surface. This surface is located on an equal dis-
tance from the two aggregates. The figure shows that
the water filled contact area is much wider between wet
aggregates than between dry ones. In the dry case the
contact area is reduced to the small areas were the aggre-
gates touch each other, black in the figure. In the wet
case the contact area is the sum of the gray and black
regions in Fig. 14.

From the water distribution on the contact surface we
interpreted the hydraulic conductivity of series of aggre-
gates. In this sense, X-ray tomography and neutron radiog-
raphy provide complementary information for describing
the hydraulic properties of soils. Neutron radiography
can be used to image water content distributions quantita-
tively and with high temporal resolution. These data can be
used to derive macroscopic transport properties. X-ray
tomography can be used to image the three-dimensional
geometry of the pores. Based on this information hydraulic
properties can be derived and compared to those observed
in dynamic experiments.



Fig. 13. Vertical cross-section through a detail of two wet soil aggregates
touching each other. The image is a segmented X-ray tomogram. The
water distribution is visualized with dark blue. The red line indicates the
location of the medial surface between the two aggregates. (For
interpretation of the references in color in this figure legend, the reader
is referred to the web version of this article.)

2.8 mm

Fig. 14. The three classes air (background), water (gray) and solid (black)
mapped on a medial surface.
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5. Discussion and conclusions

We present two techniques for acquiring images of por-
ous materials, such as soil samples. With our application
example, we show how information from the two tech-
niques can be combined to enhance the knowledge of soil
transport properties.

Thermal neutrons are optimal for monitoring two-
dimensional water distributions during dynamic processes
at high temporal resolution. From the recorded water distri-
butions the macroscopic transport properties of the sample
can be derived. X-ray images show soil structures and water
distributions at much higher resolution in three dimensions.
These images contain the relevant information to predict
transport properties. By scanning the same or similar sam-
ples with the two techniques, macroscopic transport proper-
ties of porous media can be linked to the microscopic pore
geometry. Indeed, combination of neutron and X-ray tech-
niques offers unique possibilities to improve our knowledge
of flow and transport in porous media.

We present two tomographic instruments with different
characteristics for acquiring three-dimensional images of
soil samples, or more general samples of porous materials.
With our application example, we show how the combined
information of the two beam modalities can enhance the
knowledge required to test hypotheses. Thermal neutrons
have the ability to show water distribution within a sample,
while X-ray images can show the structures at much higher
resolution. Yet, the images alone are not sufficient for a
quantitative investigation. Image analysis methods are
required to extract the information from the large amounts
of data emerging from the two imaging technologies. The
methods of such data analyzes may be already described
and applied in other fields, such as in medical applications.

Images alone are not sufficient for a quantitative investi-
gation. Many applications in porous media research are
based on the use of bi-level images that describe the porous
structure of the investigated samples. Bi-level images are
useful for structure quantification and as geometries for
simulations, but the water displacement cannot be verified
without adding a contrast enhancing component in the
fluid. This is the niche where neutron-based imaging has
its advantage. By accepting a lower spatial resolution than
an X-ray-based system, neutron-based imaging can be used
to monitor and quantify three-dimensional water distribu-
tions in a sample with much higher accuracy. Recent
advances in detector systems and acquisition techniques
decrease the beam time required for a tomography. Such
technical improvements allow tomography of dynamic pro-
cesses with a temporal resolution of about 1 min. The abil-
ity to monitor water displacement in almost real-time opens
many interesting applications in the future. Processing four-
dimensional data (three spatial dimensions and time) also
requires spatio-temporal image analysis methods. Tasks
that will arise are the tracking of a wet front through a het-
erogeneous sample. For this, methods using active contours
and level sets are well suited. For example, Prodanovic et al.
[65] used level sets to simulate water movement in a porous
medium. By enhancing the image information with a phys-
ical model a more precise tracking can be achieved.

There are mainly technical limitations regarding the
image-based approach. The major problem is handling
the large amounts of data. The problem is two-fold. Firstly,
to process images with sizes in the order of 109 voxels
require either computers that can store the entire image
in its primary memory (RAM) or methods must be devel-
oped that decompose and process the image in smaller
regions at the time. The second part of the data-handling
problem is storage because a measurement session can eas-
ily produce several GB of data. This problem is not so
severe but must be considered. Another limitation is the
field of view of the scanning system. This limits the sample
size for a given resolution. Other limitations are related to
the process that is supposed to be observed. The sample
must be prepared such that it can be mounted in the scan-
ner. This is especially important for samples that require
preconditioning to specific hydraulic conditions. There is
a trade-off between ideal process conditions and ideal
imaging conditions and the experimental design must
account for these limitations.
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