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Abstract— The problem of multi-label classification has at- In the literature, multi-label learning has been extengigtlid-
tracted great interest in the last decade, where each instance canied [30]. Conventional approaches focus on supervised settings,
be assigned with a set of multiple class labels simultaneously.yhich require a sufficiently large amount of labeled examples
It has a wide variety of real-world applications, e.g., automatic in order to train an accurate model. However, in many real

image annotations and gene function analysis. Current research I licati the labeli . ¢ | .
on multi-label classification focuses on supervised settings which world applications, the 1abeling process IS extremely expensive

assume existence of large amounts of labeled training data. @nd time-consuming, especially with multi-label data. Creating
However, in many applications, the labeling of multi-labeled data a large training dataset, where each example is labeled with a
is extremely expensive and time-consuming, while there are often set of multiple labels within the candidate classes, is usually
abundant unlabeled data available. In this paper, we study the infeasible in practice. For example, in image annotation, human
problem of transductive multi-label learning and propose a novel - gyherts have to go through the entire list of all candidate words
solution, called TRAM, to effectively assign a set of multiple labels in order to decide the set of all possible tags for an image. It

to each instance. Different from supervised multi-label learning : ) .
methods, we estimate the label sets of the unlabeled instanced®quires time, efforts and excessive resources to manually tag

effectively by utilizing the information from both labeled and €ach image with all its labels, and hence only a limited amount
unlabeled data. We first formulate the transductive multi-label of labeled images can be obtained in practice. Moreover, there
learning as an optimization problem of estimating label concept are often copious amounts of unlabeled images available from
compositions. Then we derive a closed-form solution to this yarious sources. Thus it is much desired that the large amount of
optimization problem and propose an effective algorithm 10, 15heleq data can be effectively utilized together with the limited

assign label sets to the unlabeled instances. Empirical studies on t of labeled data to i th lti-label classificati
several real-world multi-label learning tasks demonstrate that our amount or labeled data to improve the mufli-label classincation

TRAM method can effectively boost the performance of multi- Performances. Transductive learning [32] is a type of approaches
label classification by using both labeled and unlabeled data.  to exploit unlabeled data in classification processes. Transductive

- . . . learning assumes all the testing data are available, and the goal is
Index Terms—Data mining, machine learning, multi-label ¢ hi bett f th testing data b loiti
learning, transductive learning, semi-supervised learning, unla- 0 achieve better per ormarlces on e.s.e e§ Ing data by exploiting
beled data. the unlabeled testing data in the classification process. It has been
shown useful in many single-label classification tasks [17], [32].
Formally, the transductive multi-label classification problem
I. INTRODUCTION corresponds to predicting the label sets of a group of unlabeled

Conventional classification approaches assume that each |ﬂi_tances simultaneously by utilizing the |nform.at|o-n frorq both
eled and unlabeled data. Transductive learning is particularly

. . . - la
stance is associated with ongne class label within a number of S : . : .
candidate classes. However, many real-world applications Oﬂtél'ﬁallenglng n multl-label_ settings. The_ reason 1s that, in the
le-label case, conventional transductive learning methods can

2 et ofmlipie labels. For example, M mage annotaon, ong® APPISd 0 propagate cass labels among the unlabeled data

image can be tagged with a set of multiple words, suchrban and pred!ct each ur?labeled |nsj[ance ywth the class Iabe.l which

building androad, indicating the contents of the image [6], [27].haS the hlghe_st confidence. But in multi-label cases, each !r?sta.nce
cg&talns multiple label concepts and the transductive classification

In bioinformatics, one gene sequence can be associated with atask corresponds to finding a label set for each unlabeled instance
of multiple functions, such ametabolismand protein synthesis "~ " P gal
ithin the space of label setge. the power setof all labels.

indicating the functions of the gene sequence within a cell’s li b f ible label sets | tial to th b
circle [10]. In text categorization, one news article can coverhe number of possible fabel Sets 1S exponential to the number
. ; . ; of .candidate labels, which is extremely large even with a small
multiple aspects of an event, thus being assigned with a Setn%fmber of candidate labels
multiple topics, such agconomicsand politics [24], [28]. An . C . . .
. T If we consider the transductive learning and multi-label classi-
effective classification model for these real-world data should _ .. . .
. - Ication as a whole, the major research challenges on transductive
be able to adopt the multiple labels of each training example " . e . .
Iti-label classification can be summarized as follows:

and predict a label set, instead of one single label, for eaghu Lack of labeled dataOne fund tal bl in t
testing example. Motivated by these challenges, the problem o:I" ack ot labelec gatane fundamental probiem In trans-

multi-label learning has received considerable attention in the last ductive mu_ltl-label classn‘lcat_|on lies n the Iabellr_lg CC.)St
of the training data. Conventional multi-label classification

decade. approaches focuses on supervised settings [30]. The training
X. Kong and Z.-H. Zhou are with the National Key Laboratory foovel of classification models strictly follows the assumption that
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(d) An approach by adopting single-label trange) Our approach: transductive multi-label clas-
ductive classification results sification

Fig. 1. An illustrative example for transductive multi-label classification problem

directly adopt existing multi-label classification approes. predict new label sets lik¢b, d} in the unlabeled data.
For example, in Fig. 1, we show an illustrative examplén this paper, we study the problem of transductive multi-
on multi-label classification. In Fig. 1(a), we have thregabel classification and propose a novel solution, calledhN
labeled instances with a large number of unlabeled instancgprasductive Multi-label classification), to effectively assig
Fig. 1(b) and Fig. 1(c) show that supervised classificatiafultiple labels to each instance using both labeled and unlabeled
methods, either based upon combining single-label methoglgta. Different from supervised multi-label classification methods,
or multi-label approaches, can only make use of the infove estimate the label sets of the unlabeled instances effectively
mation from labeled instances to make predictions on thg utilizing the information from both labeled and unlabeled data.
unlabeled data, where the predictions are not quite effectivge first formulate the transductive multi-label classification as an
when the number of labeled data is small. To cope withptimization problem of estimating label concept compositions.
this issue, it is deemed that the information within thghen we derive a closed-form solution to this optimization
unlabeled data should be exploited to facilitate mu|ti-|ab¢jrob|em and propose an effective algorithm to assign label sets
classification. to the unlabeled instances. Empirical studies on several real-
2. Multiple labels Another problem in transductive multi- world multi-label classification tasks demonstrate that oRaM
label classification lies in the multiple labels of each inmethod can effectively boost the performance of multi-label
stance. Conventional transductive learning approaches foeigssification by using both labeled and unlabeled data.
on single-labeled classification problems [7], [38], [41]. The rest of this paper is organized as follows. Section I
The classification strategy strictly follows the assumptiogives a brief summary of related work on multi-label classi-
that each instance has only one label. However in mulication and transductive learning. In Section Ill we formulate
label classification problem, each instance can be associageshsductive multi-label classification as an optimization problem,
with a set of labels within the power set of all labels.and then derive a closed-form solution. Section IV introduces
Directly adopting conventional single-label transductive apabel set prediction methods. Evaluation metrics used in multi-
proaches may not be effective for multi-label classificationabel classification are then briefly introduced and experiments of
For example, in Fig. 1(d), we directly adopt a single-labefraM on real-world multi-label classification tasks are repdrte
transductive classification approach by treating each typeiaf Section VI. Finally, we give some concluding remarks in
label set as a “class’l.é., we directly convent a multi-label Section ViII.
classification problem to a single-label classification problem
with three classes). Since we only have a limited number Il. RELATED WORK
of labeled instances, not every ground-truth label set hasaa pyiti-Label Classification
representative instance being Ia}b.eled n .the.tralnmg@gi, Multi-label classification deals with the problem where each
the label set{b, d}. Thus the trivial application of single- . . .
. e . example can belong to multiple different classes simultaneously.
label transductive classification method will not be able t?raditional two-class and multi-class bl b
problems can both be cast



as special cases of multi-label classification problem. Thulii- transductive learning approaches have been proposed. One famous
label problems are inevitably more difficult and complicated tapproach is Transductive SVMs, introduced by [32] and applied
solve than traditional single-label problems (i.e., two-class ¢w text classification by [17]. They exploit the structure in both
multi-class problems). Until now, multi-label classification probtraining and testing data for better positioning the maximum
lem has been studied by a lot of researchers and many algorithmmergin hyperplane. Another type of approaches are graph-based
have been developed to solve different real-world applicationethods, which define a graph with the nodes representing both
tasks, such as text categorization [8], [13], [20], [24], [28], [31]abeled and unlabeled instances, and edges reflect the similarity
bioinformatics [10], [34], scene classification [4], image or videof instances€.g.[1], [37], [41]). Graph-based approaches usually
annotation [27]. assumes label smoothness over the graph. One example is to
Some multi-label learning algorithms are derived from tradiexploit the structure of the entire dataset in search for mincuts
tional learning technigues. One famous approach proposed [By or for min average cuts [18] on the graph.
Schapire and Singer, @STEXTER [28], is extended from the
popular ensemble learning methodABo0ST[11]. In the train- lll. PROBLEM FORMULATION
ing phase, BOSTEXTER maintains a set of weights over bothA. Transductive Multi-Label Classification

training examples and their labels, which will be incrementally gefore presenting the transductive multi-label classification
enlarged if examples or labels are hard to be predicted correcfypdel, we first introduce the notations that will be used through-
Elisseeff and Weston [10] presented a kernel methadlRsvM gt this paper. LeD = {z1,--- ,x,} denote the entire dataset,
for multi-label classification, by minimizing a loss funatimamed \yhich consists of. instances #; € RY. The data set includes
ranking loss Experimental results on the Yeast gene functiongjth |abeled and unlabeled instances. Without loss of generality,
classification problem demonstrate its effectiveness. Zhang agd assume the first,(n; < n) instances withirD are labeled by
Zhou [35] extended the lazy learning algorithiNN, to a multi- {¥1,---,Yn,}, whereY; C C denotes the set of multiple labels
label version, M-KNN. It employs label prior probabilities gai”edassigned tox;. HereC = {i1,--- ,lm} is the set of all possible
from each example’'& nearest neighbors and use maximam |gpe| concepts. For convenience, we also dedote{1,--- ,n;}
posteriori (MAP) principle to determine labels. Extension ofyg the index set for the labeled instances znd {ry+1,--+ ,n}
other traditional learning techniques have also been studiggs the unlabeled instances: (= n; + nu). The multi-label
such as probabilistic generative models [24], [31], decision treggssification task corresponds to finding an optimal labelyset
[8], neural networks [34], maximal margin methods [15], [20]for each unlabeled instance; in the space of label set8(C)
maximum entropy methods [14], [40] and ensemble methods [12k the power set of.

Unlike the previous works that only consider the correlations As reviewed in Section |, previous approaches in multi-label
among different categories, Liu et al. [22] presents a semimssification are focused on supervised settings. In this pa-
supervised multi-label classification method to exploit unlabel%r, we address the multi-label classification problem under the
data as well as category correlations. This approach is baggthsductive setting. Our goal is to find a simple and efficient
on constrained non-negative matrix factorization. Generally, Way to improve the performance of multi-label classification by
comparison with supervised methods, semi-supervised meth%&ﬁloiting both labeled and unlabeled data.
can efficiently make use of the information provided by unlabeled The key issue of transductive multi-label classification is how to
instances. Zhou et al. [39] proposed the MIML framework whicRredicta setof multiple labels for each unlabeled instance based
deals with multi-label examples each is represented as a sebffa limited number of labeled examples and a large number

instances. Sun et al. [29] employed hypergraph spectral learniygunlabeled examples, which is a non-trivial task due to the
to solve multi-label classification problems. following problems:

(P1) How to properly estimate the composition of label concepts

B. Transductive Learning within the label set of an unlabeled instance based upon

The use of unlabeled data has been increasingly popular these information from both labeled instances and all the other
years in machine learning society. As in many practical learning unlabeled instances? Intuitively, all the unlabeled instances
problems, we usually need to handle situations when a small should be estimated simultaneously and similar instances
size of labeled data with a large amount of unlabeled data are should contain similar label concepts in their label set.
available. The unlabeled data are usually much easier to obtain but The question is how to jointly and effectively estimate the
quite expensive to identify their labels. Roughly speaking, there compostion of label concepts on each instance within the
are three main paradigms of approaches to utilize unlabeled data unlabeled dataset.
[38], that is, semi-supervised learning, transductive learning dR@) How to predict the label set for each unlabeled instance
active learning. Semi-supervised learning approaches attempt to based on the estimated label concept composition with only
automatically exploit unlabeled data usually assuming the testing @ limited number of training examples? Some types of the
data are different from the unlabeled data; transductive learning label sets may not even have any representative labeled data
approaches attempt to automatically exploit unlabeled data where in the training set. The question is how to predict new label
the testing data are exactly the unlabeled data; active learning sets based upon only limited examples of label sets in the
approaches query asracle for the labels of specific instances in training dataset.
the input space, in order to get better models while minimizing In the following sections, we will introduce the optimization
the number of required queries. framework for transductive multi-label classification. Then we

In this paper, we focus on transductive learning. Transductivéll derive our closed form solution to the optimization problem
learning was proposed by Vladimir Vapnik [32] in the 1990'sand propose an effective algorithm to predict multiple labels for
where all unlabeled points belong to the testing set. Mamach unlabeled instance.



B. Basic ldea C. Optimization

We address problem (P1) discussed as in Section Ill-A by|n order to characterize the relation between similar instances,
defining transductive multi-label classification as an optimizatiofe puild a weighted neighborhood gragh = (V, E) on both
problem of estimating the label composition for each unlabelegpeled and unlabeled instances. Each vertex corresponds to an
instance. Our target is to first effectively estimate the lab@istancer;, an edge is put betweety andz., iff z; is among the
concept composition for each unlabeled instance and then makgearest neighbors af. or z. is among the: nearest neighbors
the multi-label predictions based upon the estimated conCeypty, .
compositions._Here we define thabel concept compositiofor _In order to reduce computational cost/d@fIN search among
a multi-label instance as follows: Suppose we have a mulfispeled and unlabeled instances, we use kd-tree to efficiently
label instancer;, and its label set; contains a set of multiple search for approximaté nearest neighbors for each instance.
label concepts. For example, if we have a text document Wighce kd-trees suffer seriously from the curse of dimensionality
20% of the paragraphs writing about the label concept “pPofghich will degenerate to linear search in high dimensions [33], in
itics™ (11), 50% of the paragraphs writing about “economicsgyr work a multi-label dimensionality reduction approachoi
(l2) and the rest about “culture’l{). Now we can say the [36]) is used before using kd-tree to constribtN graphs, which
label set forz; is {l1,12,13} and the label concept compositionfings a linear subspace from the original features to maximize the
is (11:02, l:05, 13:03, l4:0,---,lm : 0). Here the label gependence between the label information and the subspace.
concept composition means that in the text document, 00y After the kNN search, we define a sparsex n matrix W

of the paragraphs were writing about conceptOf course this inqicating the similarities among neighboring instances:
is just an extreme example, since in most cases there is no clear

‘fraction’ of the instance belonging to different labels. Indeed, %exp(-%), if 2N,
the label concept composition expresses the typicality of the Wiz =47 @)
belongingness of the example to the labels, or the probability

for the example to have different labels.

Formally, we denote the concept composition for instaage
asa; = (a1, 49, 7aim)T, wherea;; represents the fraction e - : )
of label conceptl; in instancex;. Here we assume;; > 0 empirically estimated as the2 average distance between instances.
ande; 1 = 1 (¥4). For convenience of representation, we denotéi = >_.c, eXp(—M) ,thus) W;, = 1 for instances.

o) = (a1, ,anj)T and illustrate our notations as follow: Thus based on themoothnesassumption in the previous sub-
section, we propose the following general optimization framework
to estimate the optimal alpha values for unlabeled instances:

0, otherwise.

whereN; is the index set of-th instance’'sk nearest neighbors.
Typically, ||-|| refers to the Euclidean distance. And parametisr

X e T %(m)
{ { 1 9
aT Ui
all .. al . ... al .
. N A N A o, D> (e = D Wisas
; : ; ; = | 2EN;
T
Q1 Qg Qim | = |0y | <24
- : o, Q20 ity =1 @
ez ajj = aij (Vi€ L)
Anpl - Qpj - Onm (0779 H h is defined
. e ere theq;,; is defined as
In multi-label classification problems, we only know the labe i
set of each training instance. There is no concept composition L ifl ey,
information available explicitly. We can only assume that, in a Qij = (')Yi‘ tH . (iel)
labeled training instance, all label concepts in its label set have ’ otherwise

equal weights or importance for concept compositioa, the The optimization objective is to minimize the weighted diffe

. _ _ T .. L . .
ground-truth concept compositioft; = (@1, ,@m) fora ences among the concept compositions of similar/neighboring
labeled instance; is defined as follow: instances. As for the labeled instances, the concept compositions
) ﬁ’ if 1, € Y;, ' are “l.<n0\./vn”, and henc.e we put_constraini‘@j = a;; in the .
Qij = 0 ' otherwise (iel) optimization. In an optimal solution to the above problem, it
’ ’ guarantees that the estimated concept compositions of any pair

And our target is to estimate the concept compositions ofh&ll tof instances, that are closely connected in the weighted neighbor-

unlabeled instances based upon both labeled and unlabeled dasad graphG, will be similar. Intuitively, the estimation process
We assume that the optimal estimation of concept compositioggresponds to the propagation of concept compositions among

should have the following propertysmoothnessi.e., similar instances along the gragh.

instances should have similar concept compositions within theirTg simplify the optimization, we have

label sets. If an unlabeled instanag is similar to a labeled )

instancex;, the «; should be similar too; = &;. Moreover, m

if two unlabeled instances are similar to each other, their concept Z Z Qi — Z Wizaz;
compositions should also be similar. Thus it is deemed that we iel j=1 ZEN;

need the estimate the concept compositions for all the unlabeled m 5
instances jointly/simultaneously in order to find optimal solutions = Z HDu (O‘(j) - Wa(j)) H
on all the unlabeled data. J=1



o

where D, — 0 ) . and the vectoray; = The proofs can be found in [25], we put them in the Appendix
0 Tu (nxn) ' section to make the paper self-contained.

(aj,-- 7%] aLJ . Then, the optimization problem in After the optimal .alpha values are solved in Eq. 6, we will show
how to use the optimal alpha values to predict a set of labels for
Eq. 2 can be simpli |ed |nto matrix form as each unlabeled instance in the following section.
min ZHD“ (I-W)a )|| IV. LABEL SET PREDICTION

@) m) 3 In this section, we address Problem (P2) as discussed in

) > 0, Z arn =1 Section IlI-A to predict a set of labels for each unlabeled instance
sit. 1T based on the optimal alpha val ised

o = a; ased on the optimal alpha values. We propose a supervise

version of label set prediction method, and a transductive version
D. A Closed-Form Solution of label set prediction method. The differences between these two
versions are as follows: (1) In the supervised version, we only
We note that the objective function and the constraints in Eq3,1e use of the labeled instances to learthrasholdfunction
are convex. Therefore a global minimizer exists [25]. LB& 5y girectly predict a label set based upon the estimated alpha
I — W in Eq.3. We partition the matrixi and c;) VeCtOrs int0 51465, (2) In the transductive version, we make use of both
blocks according to the labeled and unlabeled data, labeled and unlabeled instances to estimatectirdinality of the
Arr Aru oy B label set for each unlabeled instance. After the label set cardinality
Aur Auu} and o)) = [auj G =1eee,m) is estimated, we sort all the labels based on instance’s concept
composition {;e. the estimated alpha values), and predict the
label set with the top ranked labels with the estimated label set

By ignoring the constraints;) > 0, the Lagrange function for
Eqg. 3 becomes

cardinality.
B,y =3 Z ‘D“AO‘(J)H A. Supervised Label Set Prediction via Linear Regression
. In this subsection, we propose a supervised label set predicting
- mechanism based on the optimal alpha values on unlabeled
— — 1 P .
8 Z Ui ; (zj = ac;) instances. More precisely, a label set predicting funcfion(z))
is modeled by a linear functiof (a(x)) = Pa(x), wherea(x) =
where3 > 0 and-y; > 0. The optimal condition fokx;) is (o1 (), - ,am(x)) is the m-dimensional vector of the optimal
oL T T 0 i apha values for unlabeled instaneg and P is am x m linear
Do A" Dy DuAoajy — LB} - {Oj} =0 (4)  transformation matrix. The procedure used to learn the optimal
) @) _ . _ linear transformation matri¥ is described as follows:
By summing over the optimal conditions in Eqg.4 for alf; We perform the leave-one-out process using Eq. 6 on the
(j=1,---,m), we have training set to calculate the estimated optimal alpha values on each
moo STy .training instance, deno_ted hy;;’s. By combining &;;, (i € £). .
Z(A Dy DuAcyjy) = Jn;,B into a vector, the estimated alpha outputs on every training
j=1 instance can be solved by the following equation:
Then using the constralng _1a(;) =1, we have Grj=(—Agp)ag; =Weear; G=1,--,m) (7)
AT DT Do AL — ZFl ¥ Suppose the output vector for instance is &; =
R I YC I (&1, Qio,---dym) ' (i € L). The ground-truth labels for

instance: are known, i.e.)Y; C C. Here for convenience of
prediction, we denote the vector of ground-truth labels as
¥; € {—1,1}"™. Then, transformation matri® can be calculated
by minimizing the following sum-of-squares error function with

aLJ} _ ['yj} _ a regular term,

Qg 0
J P—argmmZHyz PaZHQ—i—)\Z | P;. H2
Therefore we get iel

(5) WhereP;. denotes thg-th row of matrix . Then the solution is

HereA;u is guaranteed to be nonsingular for a connected graph P= yﬁé‘T(ddT + A7 ®)

[2]. By substituting the constrainis;; = &.; into Eq. 5, the Here ) is used to avoid the singularity of the linear system in
optimal alpha values of unlabeled instances for clags., aus;)  (8). In practice, we seh as a very small number (it is set to
can be calculated by the following linear equation: be 1 x 10”7 in the experiment). Then, with the linear transforms
matrix P, we can predict label vector for unlabeled instances from
their optimal alpha values by

which is a sparse, symmetric linear system. The number of ) )

equations equals te,, and the number of nonzero entries is less yi = sign(Pavi) (Vi €U).
than (k + 1) x n. Here, the solutiony,; is guaranteed to exist Wherey; = (y;1,- - ,yim)T. Then the outputted label set for
and be unique with values guaranteed to lie between O andthiei-th instance isy; = {I; : y;; = 1}.

Notice that theAl = (/—W)1 = 1—-W1 = 0. So, the following
equations can be deriveg = 0, ijzl ~v; = 0 and then we
substitute them into Eq. 4,

A;LAML AZ:{_ELAZ/{Z/{
Ay Auc  AyuAuu

. . ,
Ay (Aycod, + Ayyed,) =0

Ayuoq; = — Ay (6)



B. Transductive Label Set Prediction (Yu, o) = TRAM(X, Yr.)

In this subsection, we propose a transductive label set predicfnpyt:
ing method based on the optimal alpha values. Different from the X : (x;,--- ,2,) encoding features of the whole data set
supervised method in the previous subsection, the transductiveYz: (Y1,---,Y;) encoding labels of training set
label set prediction method can utilize information from both Process: )
labeled and unlabeled data. 1 ConstructcNN graph among instances.

As we have already found the optimal alpha values for any 2 Initialize the S|m||ar|t|2es on each ed.ge as
unlabeled instance;. A sorted list of all potential labels fa; Wiz = ?Xp(—”"%z”) and normalize t_, Wi. = 1;
can be find by ranking all candidate labels using their alphaega 3~ Determine thax, values for all unlabeled data by
in descending order. The larger the alpha value is, the more likely SS?J'\;;EE/i;Zed I:/r:ater:iroiystem in Eq.6;
x; will have the corresponding label. FQr example, supposether , Compute the label set prediction matiixby solving Eq.8;
are three class labels, i2, 13, and the optimal alpha valuas are 5 Predict label set for each unlabeled instance by
(a1 = 0.25, ;9 = 0.4, ;3 = 0.35). The sorted list for instance y; = sign(Pai;) (Vi €U).
x; is (I2,13,11). Now the only problem is how to decide how # Transductive version:
many labels should be predicted into the label setepfusing 4 Compute sorted Iabell list on each unlabeled instance using
both labeled and unlabeled data. As long as the number of labels_  OPtimal alpha values in Step 3; .

. . . - 5 Determine the optimal number of labels on each instance
on instancer; is decided, say;, we can predict the tog; labels by solving the linear equation in Eq. 10.
on the sorted list as the label set of instange Output;

Let; denote the number of labels in the label set for instance v;,: the predicted labels for unlabeled instances.
x;. The 6; values on the labeled instances are fixed according au,: the alpha value outputs for unlabeled instances.
to the ground truth of their label setise. §; = |Y;| (i € £). For
unlabeled data, the number of labefs)(should be a non-negative Fig- 2. The TRAM algorithm
integer, here we can relax tiie € R and 6; > 0 (i € U). Then
by using similar smoothness assumption in Section IlI-B, we
assume similar instances should have similar number of label

Then the optimald; values can be solved by the following
optimization problem:

Sparse and symmetric, many good solvers can be empleygd,
direct methods€.g, LU factorizations), or iterative solvers [16].

In practice, “the cost of computing the sparse LU factorization
depends in a complicated way on the sizeA3f;,, the number

of nonzero elements, its sparsity pattern, but is often dramatically

min 0; — Z W0, smaller than the cost of a dense LU factorization. In many cases
=y zEN; the cost grows approximately linearly with,, whenn,, is large.
This means that wheH;,;, is sparse, we can sol . =b
st. 0; =|Y;| (Vi€ L) 9) uu 1S Sp Ve o

very efficiently, often with an order approximatety,” [5].
Similar to the optimization problem in Section 1lI-D, optimal For simplicity, we have used QR factorization designed for
solutions of the Eq. 9 can be found by solving the followingparse matrix in MTLAB to compute the R factor very cheaply,

linear equation: which avoids the expensive computation of an explicit Q, details
Ay = — Ay, (10) are described in [23]. Then for label learning procedure RAN,
P the computation o&’ and transforms matri¥ costs respectively
where@ = (61, ,0,) = 0‘ . We can now use the optimal O(m - n;) and O(n; - m + m?).

4 . . .
solutions ¢7) on each unlabeled data to predict its label set. The 1€ computational complexity of Rk -svm [10] is currently

number of labels for unlabeled instanag is predicted as the © the orderO(m-n;*) in each iteration for training. M-KNN [35]

closest integer ta* as a lazy learning algorithm require® (n? -+n; -m)) for training,
7 . .

The TRAM method is briefly summarized in Figure 2. Note thé@nd O(ny - nu + n - m) for testing. BOOSTEXTER [28] requires

default label set prediction method inREAM is the transductive O(n; -m) fqr _each iteration round in training with additional _COSt
version described in Section IV-B. TheREM method using for the training of base learners.N@F [22] as a transductive

supervised version of label set prediction in Section IV-A jlearning method requires(n?) for similarity calculation between
denoted as RAM g samples andD(m - ny,) in each iteration for testing.

V. COMPUTATIONAL COMPLEXITY VI. EXPERIMENTS

In this section, we briefly analyze the computational coripfex ~ In this section, we show the performance ¢tAM on several
of TRAM as follows. Beyond the computational cost ofoldv  real-world multi-label classification tasks. Table | summarizes the
dimensionality reduction (§(m - n)) in the training step and characteristics of the data sets used. For comparison, we also
the neighborhood graph searched by kd-tr@¢n(logn)) in the compare with several general-purpose multi-label classification
testing step, the alpha solutions and the label learning procedat@orithms, including ®@MF [22], BOOSTEXTER [28], RANK-
of TRAM involve the following costs: In the worst case, the leastvM [10] and ML-KNN [35], which are applicable to various
squares solution of the linear systems in Eq.6 requisés + Mmulti-label problems, and represent the state-of-the-art techniques
n; - nw)) operations when all data points are connected in a filfl multi-label classification:
graph (i.e.k = n). However, this cost can be significantly reduced 1. TRAM: The proposed algorithm RAM, i.e. a transductive
using a k-nearest neighbor graph &« n) which leads directly multi-label classification algorithm via label set propagation
to a sparse matrix A;4). Thus the linear systems are large, (implementation in MTLAB). For label set prediction step,



the default setting is using transductive version of label 2) Hamming lossevaluates how many times an instance-label

set prediction. RAM with supervised version of label set pair is misclassified.
prediction is also compared, denoted brAM g; 1 1
2. CNMF: The ONMF [22] is a semi-supervised multi-label HammingLoss(h,Dy) = Wzieu —|h(zi)AY;|
classification algorithm by constrained non-negative matrix u
factorization. The key assumption behindi@r is that where A stands for the symmetric difference of two sets.

two instances tend to have large overlap in their assigned ~The smaller the value, the better the performance.
class memberships if they share high similarity in their Label Ranking Performance3he second group of evaluation
input patterns. By minimizing the difference between inputsriteria are concerning algorithm’s label ranking performance for
similarity with class label overlaps, NB/F can determine each instance, they are based on the real-valued output function
the labels of unlabeled data; f: RYx C — R of each algorithm. For RAM method, the

3. BOOSTEXTER: The BOOSTEXTER[28] (implementation in optimal alpha values are used as the real-valued outputs.
C) is a Boosting style multi-label ranking system, which has 3) Ranking lossevaluates the average fraction of label pairs
been shown with excellent performance in previous studies, ~ that are not correctly ordered.
especially on text categorization tasks;

4. RANK-SVM: The RaNK-svMm [10] (implementation in RankLoss(f,Dy) = ﬁ
MATLAB) is an SVM style multi-label classification algo- dicu Wﬁmmyhyz) €Y; x Yilf(mi,y1) < flwmi, y2)}]
rithm which minimizes ranking loss directly and has also o
exhibited excellent performance in previous studies; Where theY; denotes the complementary set¥fin C.
5. ML-KNN: The ML-KNN [35] (implementation in MTLAB) The performance is perfect whetankLoss(f) = 0. The
is a kNN style multi-label classification algorithm which smaller the value, the better the performance.
often outperforms other existing multi-label algorithms. ~ 4) Average Precisionevaluates the average fraction of labels
Parameters are used in their default settings unless otherwise anked above a particular labgle Y; which actually is in
specified. For BOSTEXTER!, the number of boosting rounds Y;.
is set to 500 because on all data sets studied in this paper, the AvePrec(f,Dy) =

performance of BOSTEXTER will not significantly change after
the specified boosting rounds; FORRK -svM the best parameters
reported in the literature [10] are used; FoNNF, the best The bigger the value, the better the performance.

parameters in [22] are used. _ Note that all the criteria evaluate the performance of multi-
Our TRAM implementation is in MTLAB and the size of |5pe| classification systems from different aspects. Usually few

neighborsk is 10. Moreover, the influence ofRAM's parameters 5 qqrithms could outperform another algorithm on all those crite-

will be discussed in Section VI-G. fia. In order to make our evaluation criteria more comprehensive,

we will use the value ofl — AvePrec and 1 — MicroF'1 to

A. Evaluation Metrics replace the originaAverage Precisiorand MicroF1. Thus under
Multi-label classification systems require much more compl@ll evaluation criteria, smaller values are always indicating better

cated evaluation criteria than traditional single-label systems. Bgrformances.

this section we briefly summarize the criteria used for perfor-

mance evaluation from various perspectives. Since our appro%:.hApplication to Automatic Image Annotation

not only produces a ranked list of class labels, but also produces a o .

predicted label set, in this paper we employ two sets of evaluation’V€ test the automatic image annotation task on Corel dataset

metrics to evaluate the performance of label ranking as well 4§€d in [9]. The original data set contaii$)00 images each was

the label set prediction. Adopting the same notations as usedSjgmented into several regions and tagged with several words.

L s {y' €Yilrs(xi,y)<rs(miy)}
D] i€U TY;| yeY; ri(Ts,y)

Section I1l, for a test SeDy, = {(x141, Yis1), - » (n, Yn)}, the The regions of similar features are clustered into 500 clusters,
following multi-label evaluation criteria are used in this papeKnoWn as blobs [9]. Then, each image is represented by a binary
which have been used in [10], [28], [34], [35]. vector of these 500 blobs. The average annotated words for each

Label Set Prediction Performanceghe first set of evaluation 'Mage is3.5. We remove the words that occur less than 100 times,
criteria are concering algorithm’s performance on label s@fd obtain4,800 images and 43 annotation words.
prediction for each instance. It is based on multi-label classifiers This data set is partitioned randomly into labeled/unlabeled
label set prediction function : RY — P(C), assumeh(z;) be data sets according to certain ratios. In detail, we randomly

the set of labels predicted by a multi-label classifier for instang§@W from 1% to 9 % of the data as labeled training examples
and randomly selection 50% of the data from the remaining as

labeled examples. For instance, assuming the data set contains
,800 examples and the label rate is 1%, we randomly draw
48 examples as labeled training examples; a0 examples
2% Y ey M) NY] from the remaining data set as unlabeled testing examples. Thirty
Y icu (@) + 2 Vil runs of experiments are conducted under every label rate; in each
The bigger the value, the better the performance. THE™ algorithms are.evaluated on random data set partitions. We
criterion has been used in [19], [22]. also compared_agalnst theARK -SVM algonth_m [10]_, but on the
Image Annotation dataset alone, the algorithm did not get good
Ihttp://www.cs.princeton.edu/ schapire/boostexter.html results.

;.
1) MicroFl: evaluates both micro average of Precision an
micro average of Recall with equal importance.

MicroF'1l =




TABLE |
SUMMARY OF EXPERIMENTAL DATA SETS

Task Studied Data Set # Instances  # Attributes +# Labels
Automatic Image Annotation annotation 4,800 500 43
Gene Functional Analysis yeast 2,417 103 14
Web Page Categorization yahoo (11 subsets) 5,000 {462047) (21~ 40)
Text Categorization RCV1-v2 6,000 662 54
Natural Scene Classification  scene 2,407 294 6

The results of multi-label classification on image annotation The data set is partitioned randomly into labeled/unlabdbed
task are shown in Figuré?3In label set prediction performances sets according to certain ratios, the same setup as in the automatic
TRAM with transductive version of label set prediction gets mucimage annotation task. Thirty runs of experiments are conducted
better performances on MicroF1 than other algorithms includingnder every label rate; in each run, algorithms are evaluated
the supervised version of RBRM on label set prediction (i.e., on random data set partitions and the average performance is
TRAM). Itis not strange that the classic multi-label classifmati recorded.
methods such as MKNN could not work well in this setting  The results of multi-label classification on Yeast Gene Func-
since they were designed for supervised scenarios where thgomal Analysis are shown in Figure 4. For label set prediction
are lots of labeled training examples. When the number pérformances, RAM gets better performances than the other
labeled data is extremely small, the supervised versionrRsif M methods on MicroF1, while getting comparable performances
becomes unstable in MicroF1 performance, sinceaMg only  with other methods on Hamming Loss. For label ranking perfor-
use labeled data to train the label set prediction function, amgances, RAM outperforms the other methods on all evaluation
the supervised information in labeled data can be weak in thesgeria and all label rates.
cases. Although RAM g gets better performance in Hamming
Loss than RAM, this may bg expla?r?ed .by the fact that Hamming, Application to Automatic Web Page Categorization
Loss treats two types of misclassification errors (false alarm an o -
missing prediction) equally, which is quite similar to the sum- he Wel.) page cgtegonzaﬂon tas!< has been. studied in [20]’.[31]’
of-squares error function inRAM g’s label set prediction step. [35] Ir_' this experiment, our task is to classify web pages in a
In image annotation task each image usually has a small num?guecnon of eleven data subsétThe web pages were collected

of labels compared with the large number of classes. In oth&f™ the “yahoo.com” domain, represented by the form of "Bag-

words, the label distribution on each class is quite imbalance .-Wordﬁ, i.e. each dimension of the feature vector represents the

Classification methods like RAM g with better Hamming Loss number of times a word appearing in the web p“age. Eaph dat"a
and bad MicroF1 are biased to avoid predicting any label f ubset corresponds to a top-level category (e.g. “Entertainment”,

each instance. FAM g obtains bad Micro-Recall performance‘ (tjucztg)r(l)”(,)gtc.)bwhlch c_onttr?lnts 2t,OOCt) Véebkf)agebsmthe_ tra|n|_ng d
and good Micro-Precision performance. Since MicroF1 is treatins%e and 2, Web pages In ne test set. Lach web page Is assigne
ﬁ several second-level categories and may belongs to multiple

both Micro-Precision and Micro-Recall equally, MicroF1 cal i . imult |
better evaluated the label set prediction performances in this ca egories simultaneously. . . .
he web page data subsets are briefly summarized in Table

On evaluation criteria concerning label ranking, i.e., rankinﬁ Details of these data subsets can also be found in [35]

loss and average precision,RAM’s performances are better . . . .
9 P P aComparlng with the data sets used in previous tasks, the number

than other methods. RAM can make use of both labeled an of instances and size of vocabulary size in these 11 data subsets
unlabeled data to get an optimal set of alpha values on each y

unlabeled instance, which may significantly help to improve th [e much larger. Furthermore, a larger percentage of instances

ranking performance especially when there are not sufficient aPOUI 30% ~ 40%). are aSS|gr1ed to multiple Iabells. Thus, the
reasonable size of training data. ata subsets used in automatic web page categorization tasks are

more difficult to learn from.
The same experiment settings are used to randomly partition
C. Application to Yeast Gene Functional Analysis the data subset into labeled/unlabeled sets according to different
The task of the yeast gene functional analysis has been stud@Rf! rates. To make a more meaningful comparison among 11
as a multi-label classification problem in many works (e.g., [m]ata subsets, we used the geometrical means of the evaluation
and [26]). Following [10], we aim at predicting the functionalv@lues across thel data subsets instead _of simply using the
classes in the gene of yeaSaccharomyces cerevisiae. Thesév€rage values. Such that, only the algorithms that have good
functional classes are structured into 4 levels of hieraréhias ~Performances over all 11 data subsets can have good performance
in [10], only top level hierarchy is considered. The whole data s¥@lues after the geometrical means.
has 2,417 instances of genes and 14 possible class labels. Eadii® results of multi-label classification on automatic web
of the gene is represented by a 103-dimensional vector and B#g€ categorization task are shown in Figure 5. For label set

average number of class labelstig4 + 1.57 for each instance. Prediction performances,RAM has better MicroF1 results after
the geometrical mean over 11 data subsets on this task, in other
2Evaluation results oHamming Lossand MicroF1 are not available for words, TRAM achieves better performances on average over 11
CNMF.
3Details in http://mips.gsf.de/projlyeast/catalogues/funcat/. 4Data set available at http://www.kecl.ntt.co.jp/as/members/ueda/yahoo.tar.gz
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TABLE Il
DATA SUBSETS USED IN THE AUTOMATIC WEB PAGE CATEGORIZATION TASK“MDoc%" DENOTES THE PERCENTAGE OF WEB PAGES BELONGING
MULTIPLE CATEGORIES AND “#AvelLabél REPRESENTS THE AVERAGE NUMBER OF LABELS FOR EACH WEB PAGE

Number of Vocabulary Training Set Test Set
Data Subset Labels Size MDoc% #Avelabel MDo% #Avelabel
Arts&Humanities 26 462 44.50% 1.627 43.63% 1.642
Business&Economy 30 438 42.20% 1.590 41.93% 1.586
Computers&lnternet 33 681 29.60% 1.487 31.27% 1.522
Education 33 550 33.50% 1.465 33.73% 1.458
Entertainment 21 640 29.30% 1.426 28.20% 1.417
Health 32 612 48.05% 1.667 47.20% 1.659
Recreation&Sports 22 606 30.20% 1.414 31.20% 1.429
Reference 33 793 13.75% 1.159 14.60% 1.177
Science 40 743 34.85% 1.489 30.57% 1.425
Social&Science 39 1,047 20.95% 1.274 22.83% 1.290
Society&Culture 27 636 41.90% 1.705 39.97% 1.684
1.
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Fig. 5. Results on automatic web page categorization task with different label rates. Note that the values in each figure are reported as the geometrical means
across thell data subsets.

data subsets. On web page categorization task, the averadmenu ics;subseP, which contains 6,000 documents. We removed the

of labels on each webpage is much smaller than the numbennairds that occur less than 200 times and topics with less than

classes. Thus, RAM’s performance on Hamming Loss is not50 positive examples, thus obtain 662 words and 54 topics. Note
as good as RAMg, but the difference is not quite significant.that the number of examples in this subset (6,000) is much larger

For label ranking performancesRRM gets better or comparable than in the previous tasks in this paper. Here the dimensionality

performances than other methods after the geometrical mean(662) is also very high.

11 data subsets. The results of multi-label classification on automatic text
categorization task are reported in Figure 6. The performance
of TRAM and BOOSTEXTER get best performances on label set

o o prediction and label ranking. BoSTEXTERIs originally designed
E. Application to Text Categorization and one of the state-of-the-art multi-label classification methods

. . . . on text data. Although on some label rates)dSTEXTER gets
In this Section, we perform text categorization using RCV1- g $ 9

v2 dataset [21]. The original data set has 804,414 documentSipaa set available at http:/www.csie.ntu.edu-bajlin/libsvmtools/datasets/multi-
and 47,236 features. We use a benchmark subset, rcvlv2 (tapel.html
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Fig. 6. Results on text categorization task under different label rates. The lower the value, the better the performance. Along with the curves, we also plot
the meant std on each point for different random data set partitions.
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Fig. 7. Results on natural scene classification task with different label rates. The lower the value, the better the performance. Along with the curves, we also
plot the meant std on each point for different random data set partitions.
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TABLE Il
RESULTS(MEANZ£STD.) OF TRAM WITH DIFFERENT NUMBER OF NEAREST NEIGHBORS CONSIDERED IN THE INSTANCE GRAPH CONSTRUCTION STEP ON
AUTOMATIC IMAGE ANNOTATION TASK ( “]” INDICATES “THE SMALLER THE BETTER', AND “1" INDICATES “THE LARGER THE BETTER).

Evaluation Number of Nearest Neighbors Considered
Criterion k=8 k=9 k=10 k=11 k=12
MicroF1 " 0.2075£0.0203 0.207A#0.0215 0.2066t0.0256 0.20490.0219 0.203%0.0286
Hamming Loss x10~!)¥  0.7866:0.0200 0.78680.0210 0.787:0.025 0.788:0.021 0.79%0.028
Ranking Loss' 0.259Gt0.0080 0.2594:0.0080 0.26010.0058 0.2604-0.0079 0.260%0.0061
Average Precision 0.3240t0.0138 0.3239:0.0146 0.3216:0.0206 0.32170.0141 0.31840.0225
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Fig. 8. Performances of RAM with different percentages of dimensions inDidm step on automatic image annotation task.

better performances tharRRM, but TRAM is still getting better ~ The first exploration is about the number of nearest neighbors
performances than the other comparing methods on MicroFdyring the instance graph construction. The experiment is based

Ranking Loss and Average Precision. on automatic image annotation task. We randomly partition the
dataset into labeled and unlabeled data with 5% label rate.
F. Application to Natural Scene Classification The experiment result of FAM is reported in Table Ill, when

. e . the number of nearest neighbor during the graph construction
The last multi-label task studied in this paper is natural SCe(€ ies from 8 to 12. The value following “.gives the standard

classification. The data set is relatively small, and consists Shviation and the best result on each metric is shown in bold

.2’4(:0 natur:l_scinel;rTlaggs belllongmg to d|ff[erenthcla?se$, Whle. with respect to above configurations, Table Ill shows that
is also used in [4]. Following [4], we convert each color IMag¢e number of nearest neighbors used in graph construction step

to the CIE Luv space, where the Euchdgan distances clos%lges not significantly affect RAM’s performance. Therefore, all
correspond to the color differences perceived by human. Th results of RAM shown in this paper are obtained with the

the image is divided int@ x 7 blocks using grids of equal width, %a}rameterk set to be the moderate value of 10.

and in each block the first and second moments of each co . . .
band are calculated, which is equal to resizing the image to Besides the number of nearest neighbor, another parameter is
' aﬁout the number of dimensions in the subspace used thynM

low-resolution and calculating simple texture features. Thus, €3Q0%te that due to the curse of the dimensionality, the similarities

image is represented as a feature vector W7 x 3 x 2 = 294- - . . .
) A . . djrectly calculated based on distances between instances in the
dimensions. The percentage of images that have multiple labels . . S
. . . . . Mput space may be unreliable, especially when these similarities
is over 22%. The same setting as in the previous experiments are X
o : are the key parameters for th&AM model. A simple, but often

used to randomly partition the data set into labeled/unlabeled séts . . . - . ; -

. . very effective, way of dealing with high-dimensional data is to
according to different label rates.

. . reduce the number of dimensions, by finding a subspace from the
The results of multi-label classification on natural scene classi- - . .

— . - input features that is most relevant to label information. Therefore,
fication task are reported in Figure 7RAM is among the most

accurate methods on both label set prediction and label ranking. need to utilize NbOM bgfore_the graph _constructlon among
ﬁtances. In order to verify this assumption, the results under

Since this data set is relatively small, the number of labeled da : ) )
Ifferent percentage of dimensions in the pre-process stage are

set is smaller than all the other tasks. ThRAM’s performances - . . p

. . reported in Figure 8. The experiment is based on automatic image
are still stable as the labeled instances decrease to small lab . L

annotation task, and results on other tasks are similar to the case

rates. in this task.
Figure 8 shows that on automatic image annotation task, the
G. The Influence of Parameters MicroF1 and Ranking Los®f TRAM are significantly improved

As observed in previous sections, wherAM is used with by introducing the dimensionality reduction @wbm) before con-
the same parameters in all the multi-label tasks, it can all achiesteucting the instance graph.RRM'’s best performance are more
satisfactory classification performances as accurate as the othigksly to appear at the relatively low percentage of dimensions.
In this section, we analyze the influence of parametersRaM. Nonetheless, the number of dimensions does not have to be
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pre-specified, which can automatically be determined byrgptti COROLLARY 1: The solution toAa = b satisfies the the
MDDM’s threshold parametethr as preserving 99.99% of thebilateral constraintd < a < 1, if {o; = 0 : ¢ € £} and

eigenvalues. {aj =1:14 € L} are non-empty sets.
Proof: According to maximum principle, a, <
VIl. CONCLUSION max;eca; = 1 for all z € U. Similarly, we havea >
In this paper, we propose REM, a transductive multi-label miniez a; = 0. Therefore0 < a. <1 for all z € . u

classification method by label set propagation. At first, we formu-
late the task as an optimization problem which is able to exploit ACKNOWLEDGMENT
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