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a b s t r a c t 

Of late, neural networks and Multiple Instance Learning (MIL) are both attractive topics in the research 

areas related to Artificial Intelligence. Deep neural networks have achieved great successes in supervised 

learning problems, and MIL as a typical weakly-supervised learning method is effective for many appli- 

cations in computer vision, biometrics, natural language processing, and so on. In this article, we revisit 

Multiple Instance Neural Networks (MINNs) that the neural networks aim at solving the MIL problems. 

The MINNs perform MIL in an end-to-end manner, which take bags with a various number of instances 

as input and directly output the labels of bags. All of the parameters in a MINN can be optimized via 

back-propagation. Besides revisiting the old MINNs, we propose a new type of MINN to learn bag repre- 

sentations, which is different from the existing MINNs that focus on estimating instance label. In addition, 

recent tricks developed in deep learning have been studied in MINNs; we find deep supervision is effective 

for learning better bag representations. In the experiments, the proposed MINNs achieve state-of-the-art 

or competitive performance on several MIL benchmarks. Moreover, it is extremely fast for both testing 

and training, for example, it takes only 0.0 0 03 s to predict a bag and a few seconds to train on MIL 

datasets on a moderate CPU. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Multiple Instance Learning (MIL) was originally proposed for

rug activity prediction [1] . Now it has been widely applied to

any domains and is an important problem in machine learning.

any multimedia data have the Multiple Instance (MI) structure;

or example, a text article contains multiple paragraphs, an image

an be divided into multiple local regions, and a gene expression

ata contains multiple genes. MIL is useful to processing and un-

erstanding MI data. 

Multiple instance learning is a kind of Weakly-Supervised

earning (WSL). Each sample is in the form of labeled bags, com-

osed of a wide diversity of instances associated with input fea-

ures. The aim of MIL, in a binary task, is to train a classifier to pre-

ict labels of testing bags, which is based on the assumption that a

ositive bag contains at least one positive instance, whereas a bag

s negative if it is only constituted of negative instances. Thus, the

rux of MIL is to deal with the ambiguity of the labels of the in-

tances, especially in positive bags that have plenty of cases with

ifferent com positions. 
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There are many algorithms have been proposed to solve the MIL

roblem. According to the survey by Amores [2] , MIL algorithms

re in three folds: instance-space paradigm, bag-space paradigm,

nd embedded-space paradigm. Instance-space paradigm learns

he instance classifier and performs bag classification by aggregat-

ng the responses of instance-level classifier. Bag-space paradigm

xploits bag relations and treats bag as a whole; in particular, it

alculates bag-to-bag distance/similarity; then the nearest neigh-

or or Bayesian classifier carries out bag classification based on

he distances/similarities. Embedded-space paradigm embeds a bag

nto a vocabulary-based feature space to obtain a compact repre-

entation for the bag, for example, a vector representation; then

lassical classifiers can be applied to solve the bag classification

roblem. 

Deep neural networks have been applied to solve many ma-

hine learning problems. For supervised learning, there are sev-

ral kinds of neural networks. Deep Belief Networks (DBN) [3] use

nsupervised pre-training and take a fixed length vector as input

or feature learning, regression, and classification. Deep Convolu-

ional Neural Networks (CNN) [4,5] take images as input and have

ominated many computer vision problems. Deep Recurrent Neu-

al Networks (RNN) [6] and Long Short Term Memory (LSTM) net-

orks [7] take sequential data as input, such as text and speech,

nd are good at dealing with sequence prediction problems. Usu-

lly, training these deep networks requires a huge number of fully

abeled data, that is, each training sample/instance needs a label.
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However, in MIL, only bag-level labels are given. Meanwhile, MI

data have a more complex structure which is a set of instances

in various size. Also, MI data is different from the sequential data

mentioned above, since there is no order information between in-

stances. These problems make it difficult to deal with the MIL

problem by conventional neural networks. 

Before the raising of deep learning, some research studies were

trying to solve the MIL problem using neural networks. In the year

of 20 0 0, Ramon and Raedt [8] firstly proposed a Multiple Instance

Neural Network (MINN). The network estimates instance probabil-

ities before the last layer and calculates bag probability using a

convex max operator (i.e., log-sum-exp). The network was trained

using back-propagation. Then, Zhang and Zhou [9] also proposed

a multiple instance network that calculates bag probability by di-

rectly taking the max of instance probabilities. 

A MINN takes a bag with multiple instances as input. Instance-

level representation is gradually learned layer by layer guided

by bag-level supervision. To inject the bag-level representation,

there are two different network architectures. Following the nam-

ing style in a classical MIL study [10] , we name the two networks

as mi-Net and MI-Net, which aim at dealing with the MIL prob-

lem in instance-space paradigm and embedded-space paradigm

[2] , respectively. In mi-Net, there are instance classifiers in the

each layer. We can obtain instance predictions for both training

and testing bags, which is an appealing property in some appli-

cations. Different from MI-Net, there is no instance classifier. It di-

rectly builds a fixed-length vector as the bag representation and

then learns bag classifier. Compared with mi-Net, MI-Net can ob-

tain better bag classification accuracy. The previous studies are in

the mi-Net category. We newly propose MI-Net in this article. 

A key component in MINN is MIL Pooling Layer (MPL), which

aggregates either instance probability distribution vectors or in-

stance feature vectors into a bag probability/feature vector. It

bridges MI data with conventional neural networks. As it must

be differentiable, there are a few choices, such as max pooling,

mean pooling, and log-sum-exp pooling. These pooling methods

are compared and discussed in the experiments section. Besides

MIL pooling layer, we use fully-connected layers with non-linear

activations for instance feature learning. In MIL benchmarks, in-

stance features are hand-crafted and raw data of instances are

given. Even so, it is beneficial to do feature transformation guided

by the bag-level supervision. Finally, for MI-Net, we use a fully-

connected layer with only one neuron to match the predicted bag

label with ground-truth in training. 

Training neural networks using complex MI data is a challeng-

ing task. To learn good instance feature, we have tried to adopt var-

ious recent progresses of deep learning in MINN, such as dropout

[11] , Rectified Linear Unit (ReLU) [12] , Deeply Supervised Nets

(DSN) [13] and Residual Connections [14] . We find DSN is the most

effective one because DSN can fuse the hierarchical features to

make a better decision. Besides, residual connections are also help-

ful in MINNs. 

To summarize, we revisit the problem of solving MIL using neu-

ral networks (MINNs), which are ignored in current MIL research

community. Our experiments show that MINNs is very effective

and efficient. Different from most MIL algorithms, MINNs optimize

instance feature learning, bag feature learning, instance classifica-

tion, and bag classification in a fully end-to-end manner via back-

propagation. This article focuses on MINNs with comprehensive

studies on MIL benchmarks. The main contributions of this article

include two extremely fast and scalable methods for MIL, mi-Net,

and MI-Net, and introducing deep supervision and residual con-

nections for MIL. 

The rest of this article is organized as follows. Section 2 briefly

reviews previous studies on MIL. In Section 3 , we propose end-

to-end MIL networks. Our experimental results are presented on
everal MIL benchmarks in Section 4 . Some discussions of experi-

ental setups are presented in Section 5 . Finally, in Section 6 , we

onclude the article with some future studies. 

. Related work 

The previous MIL works based on neural networks were mainly

roposed by Zhou et al. and Ramon et al. in [8,9,15,16] . and Raedt

8] introduced the use of a log-sum-exp function as the convex

ax to calculate bag probabilities from instance probabilities. Zhou

nd Zhang [9] changed to a different loss function and directly ap-

lied max function. Zhang and Zhou [15] improved multiple in-

tance neural networks by feature selection using Diverse Density

nd PCA. Zhang and Zhou [16] showed that ensemble methods

ould be integrated with multiple instance neural networks. Sub-

equently, solving MIL using neural networks has been ignored in

achine learning research. This article revisits this problem, pro-

oses some new network structures, and investigates some of the

ecent neural network tricks. The idea of using neural networks

or solving MIL problem has been studied in some computer vi-

ion studies, such as [17,18] . Wu et al. [17] proposed a deep MIL

hich uses max pooling to find positive instances/patches for im-

ge classification and annotation. Pinheheiro et al. [18] used log-

um-exp pooling in deep CNN for weakly supervised semantic seg-

entation. The studied mi-Net follows the path of these two works

17,18] . are applications of mi-Net. Thus, it is not necessary to com-

are to them in the experiments. In addition, in this article, we

tudy the variants of mi-Net that utilize deep supervision and fo-

us on more general MIL problems. Besides integrating MIL into

eep neural networks, Wang et al. proposed a method to com-

ine MIL with support vector machine using a relaxed MIL con-

traint [19] and applied this for object discovery. However, they

ay more attention to vision applications (e.g., image classifica-

ion, image annotation, and semantic segmentation, etc.), which

re based on convolutional image features. Meanwhile, they always

ne-tune neural network models pre-trained on other much larger

atasets such as ImageNet [20] . Moreover, they only focus more

n instance-space MIL. We focus on applying MINNs for more gen-

ral MIL problems. Notice that for general MIL problems, there are

o available large datasets for pre-training such as computer vi-

ion, which makes it harder to train MINNs efficiently. As we will

how in experiments, training [8,9,17] like MINNs on such small

cale MIL benchmarks directly cannot obtain satisfactory results.

o solve this problem, We show many tricks to train our networks

rom the start on MIL benchmarks with limited training data, and

ave achieved many inspiring results. Meanwhile, we have investi-

ated both mi-Net and MI-Net, and experiments have shown that

I-Net outperforms mi-Net in more cases. 

Learning effective representation from (weakly-supervised)

ata, especially MIL, has received a lot of attention as it helps solve

 range of real applications [21–25] . Till date, numerous MIL meth-

ds have been proposed to either develop effective MIL solvers or

pply MIL to solve real application problems [26,27] . A compre-

ensive survey of MIL algorithms and applications can be found in

2] . Here, we focus on a brief review of the most recent MIL al-

orithms, especially the ones related to deep neural networks and

eature learning. From the view of embedded-space paradigm for

IL, the most recent method is the scalable MIL algorithm, which

olves MIL using Fisher Vector (FV) coding [28] , called miFV [17] .

iFV transforms instance feature into high-dimensional space us-

ng an unsupervised learned Gaussian Mixture Model (GMM) and

V coding. The proposed MI-Net learns instance feature using deep

ultiple instance supervision. In addition, MI-Net achieves better

ag classification accuracy and is much faster than miFV. 
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Fig. 1. A mi-Net with four fully-connected layers. The number of output of fully-connected layers are 256, 128, 64, and 1, respectively. The last layer is a MIL Pooling Layer 

with instance probabilities as input and bag probability as output. 
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. Multiple instance neural networks 

In this section, we firstly introduce the formulation of MIL, then

ive various networks for MIL, and lastly study the MIL pooling

ethods and training loss. 

.1. Notations 

Here we first review the definition of MIL. Given a set of

ags X = { X 1 , X 2 , . . . , X N } and instance features of i th bag X i =
 x i 1 , x i 2 , . . . , x im i 

} , x i j ∈ R 

d×1 , where N and m i denote the number of

ags and the number of instances in bag X i respectively. Suppose

 i ∈ {0, 1} and y ij ∈ {0, 1} are the label of bag X i and instance x ij 
eparately, where 1 means positive and 0 means negative. In MIL,

nly bag labels are given during training, and there are two MIL

onstraints: 

• If bag X i is negative, then all instances in X i will be negative,

that is, if Y i = 0 , then all y i j = 0 ; 
• If bag X i is positive, then at least one instance in X i will be

positive, that is, if Y i = 1 , then 

∑ m i 
j=1 

y i j ≥ 1 . 

The most challenging issue in MIL is that the instance label is

ot given. In MINNs, there are two strategies: the first one is to

nfer instance label in the network, that is, placing instance proba-

ilities of being positive as a hidden layer in the network; the sec-

nd one is to learn bag representation in the network and directly

arry out bag classification without calculating instance probability.

he first strategy had been studied in [8,9,17] . The second strategy

s newly proposed in this article. In the following sub-sections, we

ill give the descriptions of MINNs. 

Let us consider a setting of a single bag X i with multiple in-

tances x ij that is passed through a MINN. A MINN is made out of

 layers, each of which contains a non-linear transformation H 

� ( · ),

here � indexes the layer. H 

� ( · ) can be a composite of operations

uch as inner product (or fully-connection), rectified linear units

ReLU) [29] , or proposed MIL pooling. We denote the output of the

 th layer of an instance x ij as x � 
i j 

. 

.2. Mi-Net: an instance-Space MINN 

Initially, we review traditional multiple instance neural net-

orks [8,9,17] , which are named as mi-Net. As shown in Fig. 1 ,

ach instance in a bag is first fed into several fully-connected (FC)

ayers with an activation function (in this article we use four FC

ayers with the ReLU activation [29] ). We obtain the instance fea-

ure denoted as x L −2 
i j 

in the (L − 2) th layer and the instance prob-

bility denoted as p L −1 
i j 

. p L −1 
i j 

is a scalar in the range of [0, 1] and

s inferred from x L −2 
i j 

individually. In the last layer, there is a MIL

ooling Layer (described in Section 3.6 ), which takes instance prob-

bilities as input and outputs bag probability denoted as P L ( X i ). 

These first L − 2 layers can learn some more semantic instance

eatures compared with original x ij (higher layer corresponding to

igher semantic features). After learning these instance features, a

C layer which only has one neuron with a sigmoid activation is

sed to predict the positiveness of instances. 
Unlike traditional neural networks, for mi-Net, we only have

ag labels for training, but instance labels are not available. To ad-

ress this problem, we treat the instance labels as latent variables

nd infer them during the network training. We design a layer to

ggregate instance scores into bag score. Here, a MIL Pooling Layer

s used to aggregate these instance scores into the final positive-

ess of bag. 

The MIL pooling method satisfies the MIL constraints: If a bag

s positive, there should be at least one instance with large posi-

iveness. Otherwise, all instances in the bag should have low posi-

iveness. As the pooling layer is integrated into the neural network,

he pooling function should be differentiable. The typical MIL pool-

ng is introduced in Section 3.6 . In summary, the mi-Net can be

ormulated as: 

x � 
i j 

= H 

� (x � −1 
i j 

) , 

P L 
i 

= M 

L (p L −1 
i j | j =1 ... m i 

) . 
(1) 

In mi-Net, the formulation of the last two layers is: P L 
i 

=
 

L (p L −1 
i j | j =1 ... m i 

) . P L 
i 

is the bag probability and the M 

L is a MIL opera-

or. Thus, the neurons of the second to last layer (i.e. the (L − 1) th

ayer) represent the instance probabilities. 

.3. MI-Net: a new embedded-Space MINN 

We propose a series of new multiple instance neural networks

hat do not rely on inferring instance probability. The networks di-

ectly learn bag representation and produce better bag classifica-

ion accuracy. These methods belong to the category of embedded-

pace MIL algorithms defined in survey [2] . Following the naming

tyle in [10] , we name this network as MI-Net. 

In Fig. 2 , we show a plain MI-Net with three fully-connected

ayers and one MIL Pooling Layer. The change of network struc-

ure leads the network to focus on learning bag representation,

ather than predicting instance probability. No matter how many

nput instances there are, the MIL Pooling Layer aggregates them

nto one feature vector as a bag representation. Finally, a FC layer

ith only one neuron and sigmoid activation takes the bag repre-

entation as input and predicts bag probability. This plain MI-Net

s formulated as: 

x � 
i j 

= H 

� (x � −1 
i j 

) , 

X 

� 
i 

= M 

� (x � −1 
i j | j =1 ... m i 

) . 
(2) 

The difference between MI-Net and mi-Net . Firstly, we may

ompare Figs. 1 and 2 to find the difference between mi-Net and

I-Net. In mi-Net, there are some nodes representing instance

cores. In MI-Net, there are no instance scores; instead, it contains

 bag feature vector after the blue arrow. From the view of fea-

ure learning, mi-Net focuses on learning instance representation;

hile, MI-Net learns both instance representation and bag repre-

entation. We have a clear motivation of designing MI-Net. Since

i-Net predicts an instance score based on the individual instance

nd the bag score depends on the instance scores, bag classifica-

ion will fail if the instance classifiers make mistake. Our moti-

ation of MI-Net is to obtain a richer representation for a bag by
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Fig. 2. The proposed MI-Net with three fully-connected layers and one MIL pooling layer. The number of output of fully-connected layers are 256, 128, and 64, respectively. 

Fig. 3. The proposed MI-Net with deep supervision. There are three fully-connected layers for learning instance features which are in the size of 256, 128, and 64, re- 

spectively. There are three MIL Pooling Layers for generating bag feature, and the bag features are connected to the bag label via a fully-connected layer with one neuron, 

respectively. 
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L  
aggregating all instance features and then give more robust predic-

tion based on the bag representation. Since multi-instance learning

is weakly-supervised learning problem; either explicitly or implic-

itly inferring instance probabilities, it always has a risk to make

mistake. However, in MI-Net, it only focuses on the bag classifi-

cation task; thus, the weakly-supervised MIL problem becomes a

fully-supervised bag classification problem. This is the reason why

MI-Net tends to give better bag classification accuracy as shown

in the experiments. However, there is a limitation in MI-Net; it is

not able to give the instance probability. In the applications that

require instance probability, MI-Net is not appropriate. 

3.4. MI-Net With deep supervision 

Inspired by the Deeply-Supervised Nets (DSN) [13] , we add

deep supervisions in MI-Net as shown in Fig. 3 . That is, each mid-

dle FC layer that can learn instance features, is followed by a MIL

pooling layer and a FC layer for predicting bag score. During train-

ing, the supervision is added to each level. In addition, during test-

ing, we compute the mean score for each level. The MI-Net with

deep supervision is formulated as: {
x � 

i j 
= H 

� (x � −1 
i j 

) , 

X 

�,k 
i 

= M 

� (x k 
i j | j =1 ... m i 

) , k ∈ { 1 , 2 , 3 } , (3)

where the index k in X �,k 
i 

means we learn multiple bag features

from all levels of instance features by MIL pooling. MI-Net with

deep supervision can utilize multiple hierarchies to get better bag

classification accuracy. It can be interpreted from two perspectives:

(1) In training, instance feature in bottom layers can receive better

supervision; and (2) in testing, we can average multiple bag prob-

abilities to get a more robust bag label. In this article, we set the

weights of different levels equally. 

3.5. MI-Net with residual connections 

Recently, deep residual learning was proposed in [14] and

showed an impressive improvement in image recognition by utiliz-

ing very deep neural networks. We study the residual connections

in MI-Net as shown in Fig. 4 . A MI-Net with residual connections
s formulated as: 
 

 

 

x � 
i j 

= H 

� (x � −1 
i j 

) , 

X 

1 
i 

= M 

� (x 1 
i j | j =1 ... m i 

) , 

X 

� 
i 

= M 

� (x � 
i j | j =1 ... m i 

) + X 

� −1 , � > 1 . 

(4)

ifferent from the original residual learning in [14] which learns

epresentation residuals using convolution, batch normalization,

nd ReLU, we learn the bag representation residuals via fully-

onnected layers, ReLU, and MIL pooling. In the end of the net-

ork, final bag representation is connected to the bag label via a

C layer with one neuron and sigmoid activation. 

.6. MIL pooling methods 

As referred before, we use a MIL Pooling Layer to get bag scores

r bag representations. In this article, we use three popularly used

IL pooling methods: max pooling, mean pooling, and log-sum-

xp (LSE) pooling, as shown in Eq. (5) , where f i is the input, o is

he output, m is the number of input, and r is a hyper-parameter.

ll these methods satisfy the constraints referred in Section 3.2 .

he LSE [30] is a smooth version and convex approximation of the

ax function. The hyperparameter r controls the smoothness of

pproximation. That is, it is more approximate to max when r is

arge and more approximate to mean when r is small. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

max : M 

� (x � −1 
i j | j =1 ... m i 

) = max 
j 

x � −1 
i j 

, 

mean : M 

� (x � −1 
i j | j =1 ... m i 

) = 

1 

m i 

m i ∑ 

j=1 

x � −1 
i j 

, 

LSE : M 

� (x � −1 
i j | j =1 ... m i 

) = r −1 log 

[ 

1 

m i 

m i ∑ 

j=1 

exp (r · x � −1 
i j 

) 

] 

. 

(5)

.7. Training loss 

For both mi-Net and MI-Net, we can obtain the bag scores.

ere, we define the loss function during training. As we are aim-

ng at predicting labels of bags, it is natural to choose the cross

ntropy loss function, as in Eq. (6) , where S i is the bag score of i th

ag. This loss is added to each bag scores for deep supervision. 

oss (S , Y ) = −{ (1 − Y ) log (1 − S ) + Y log S } . (6)
i i i i i i 
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Fig. 4. The proposed MI-Net with residual connections. The first fully-connected layer produces a bag feature vector. The latter fully-connected layers learn the residuals of 

bag representation. The size of all fully-connected layers is 128. 
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As all parts of the proposed MINNs are differentiable, we can

rain these networks by standard back-propagation with Stochastic

radient Descent (SGD). 

. Experiments 

In this section, we perform experiments to test mi-Net, MI-Net,

nd its variations on different MIL benchmarks, including drug ac-

ivity prediction, automatic image annotation, and text categoriza-

ion. 

.1. Datasets 

rug Activity Prediction. MUSK [1] datasets are used to predict

hether a drug molecule can bind well to target protein. Each

olecule is exhibited as multiple shapes, which are described

s 166-dimension features. In the MIL problem, we can regard a

olecule as a bag and represent different shapes belonging to the

ame molecule as instances of this bag. 476 instances are included

n MUSK1, which is divided into 47 positive bags and 45 negative

ags, whereas 6598 instances are included in MUSK2, which is di-

ided into 39 positive bags and 63 negative bags. 

utomatic Image Annotation. The Elephant, Fox, and Tiger

atasets [10] , are all composed of 100 positive bags from the

arget class of animal images and 100 negative bags randomly

hosen from other class of animal images. Here, an image is

epresented as a bag, which contains a set of regions we called

nstances in MIL problems. When searching for a target object,

e use this network to obtain the keywords of images. Moreover,

ach image is represented by 2 to 13 instances, which have 230-

imension features that describe the color, texture, and shape in

egions of an image. 

ext Categorization. Besides the above datasets, we validate our

ethod on some text categorization dataset since the text is nat-

rally a MI data and MIL is effective to solve this problem. Here,

e take 20 datasets derived from the 20 Newsgroups corpus [31] .

n each category, 100 bags are included among which half of the

ags are positive, and the rest of bags are negative. Each positive

ag contains 3% posts from the target class and the rest of posts

re from other categories, whereas the instances of negative bags

re all randomly drawn from other categories. In addition, each in-

tance is represented by the top 200 Term Frequency, Inverse Doc-

ment Frequency (TF-IDF) features. 

Detailed characteristics of these datasets are summarized in

able 1 . 

.2. Experimental setup 

These neural networks contain four fully-connected (FC) layers

nd the first three FC layers are followed by a dropout layer (0.5

ropout ratio). As referred in Section 3 , we present the perfor-

ance of the proposed MIL approaches: (1) In mi-Net, we learn
nstance scores from four FC layers and aggregate instance scores

nto bag scores to predict the label of the bag via MIL Pooling

ayer. (2) In MI-Net, the input instances are aggregated into bag

epresentation by the first three FC layers and a MIL Pooling Layer,

nd then the last FC layer is used to predict the bag probabil-

ty. (3) In MI-Net with Deep Supervision (MI-Net with DS), differ-

nt from MI-Net, each intermediate FC layer is followed by a MIL

ooling Layer and FC layer to predict bag scores. The loss function

f MI-Net with DS sums up all intermediate entropy losses to do

ack-propagation with SGD for training, and the average of all bag

cores is used for testing. (4) In MI-Net with Residual Connections

MI-Net with RC), residual connections are set between each inter-

ediate bag representation, followed by a FC layer to obtain bag

core. 

In experiments, we use default hyper-parameters given as fol-

ows. As for the numbers of neurons in FC layers, there are 256,

28, 64, and 1 in mi-Net, MI-Net, and MI-Net with DS, whereas

here are 128, 128, 128, and 1 in MI-Net with RC. Weights of FC

ayers are all initialized using a glorot-uniform distribution [32] . Bi-

ses are all initialized to be 0. For different datasets, suitable values

re set for the learning rate, weight decay, momentum and the MIL

ooling functions (in Eq. (5) ) are searched using cross-validations

n training data, which are given in the configuration file of our

ode. All networks are trained with SGD, and one bag is input as a

atch for training and testing. Moreover, regarding the training and

esting time, for example, it takes only 0.0 0 03 second to predict a

ag and 0.0 0 08 second to train on MUSK1 dataset on a moder-

te CPU, which is comparable to miVLAD [33] and miFV [33] (for

raining and testing, it costs 0.018 second and less than 0.001 sec-

nd, respectively), and much more efficient than other classical

IL methods including mi-Graph [31] , mi-SVM [10] , MI-SVM [10] ,

I-Kernel [34] , and EM-DD [35] . Our code is written in Python,

ased on Keras [36] , and all of our experiments are run on a PC

ith Inter(R) i7-4790K CPU (4.00GHZ) and 32GB RAM. The code

or reproducing results will be available upon acceptance. 

.3. Experimental results 

In this subsection, we give the results of the studied MINNs

nd compare to the state-of-the-arts on the tasks of drug activa-

ion prediction, automatic image annotation, and text categoriza-

ion. The results are shown in Tables 2 , 3 , and 4 , respectively. To

void the bias in the datasets, we follow the standard evaluation

rotocol and the studied MINNs using 10-fold cross-validations for

 times. The average bag classification accuracy and its standard

eviation are reported. The results of the compared methods are

uoted from the original publications contain both average bag

lassification accuracy and standard deviation. There is an excep-

ion that the standard deviations of mi-SVM [10] , MI-SVM [10] , and

I-Kernel [34] are not available in their original papers. 

In the tables of results, the best performance on each dataset

s in bold, whereas the second best is in italic. From these re-

ults, we have some observations as follows. (1) MINNs includ-

ng mi-Net, MI-Net, and the variants of MI-Net obtain competi-
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Table 1 

Detailed characteristics of the datasets. “# positive” (“#negative”) presents the number of 

positive(negative) bags used in each round. For Text category dataset, because it contains 

20 sub-datasets, we present three of them in it. 

Dataset # attribute # bag # instance 

positive negative total 

MUSK1 166 47 45 92 476 

MUSK2 166 39 63 102 6598 

Elephant 230 100 100 200 1391 

Fox 230 100 100 200 1320 

Tiger 230 100 100 200 1220 

alt.atheism 200 50 50 100 5443 

comp.graphics 200 49 51 100 3094 

comp.os.ms-windows.misc 200 50 50 100 5175 

Table 2 

Comparison results ( mean ± std ) of different methods 

for bag classification on MUSK1 and MUSK2 (task: 

drug activity prediction). 

Dataset MUSK1 MUSK2 

mi-SVM [10] 0.874 0.836 

MI-SVM [10] 0.779 0.843 

MI-Kernel [34] 0.880 0.893 

EM-DD [35] 0.849 ± 0.098 0.869 ± 0.108 

mi-Graph [31] 0.889 ± 0.073 0.903 ± 0.086 

miVLAD [33] 0.871 ± 0.097 0.872 ± 0.095 

miFV [33] 0.909 ± 0.089 0.884 ± 0.094 

mi-Net 0.889 ± 0.088 0.858 ± 0.110 

MI-Net 0.887 ± 0.091 0.859 ± 0.102 

MI-Net with DS 0.894 ± 0.093 0.874 ± 0.097 

MI-Net with RC 0.898 ± 0.097 0.873 ± 0.098 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Comparison results ( mean ± std ) of different methods for bag classifica- 

tion on Fox, Tiger, and Elephant (task: localized content-based image 

retrieval). 

Dataset Fox Tiger Elephant 

mi-SVM [10] 0.582 0.784 0.822 

MI-SVM [10] 0.578 0.840 0.843 

MI-Kernel [34] 0.603 0.842 0.843 

EM-DD [35] 0.609 ± 0.101 0.730 ± 0.096 0.771 ± 0.097 

mi-Graph [31] 0.620 ± 0.098 0.860 ± 0.083 0.869 ± 0.078 

miVLAD [33] 0.620 ± 0.098 0.811 ± 0.087 0.850 ± 0.080 

miFV [33] 0.621 ± 0.109 0.813 ± 0.083 0.852 ± 0.081 

mi-Net 0.613 ± 0.078 0.824 ± 0.076 0.858 ± 0.083 

MI-Net 0.622 ± 0.084 0.830 ± 0.072 0.862 ± 0.077 

MI-Net with DS 0.630 ± 0.080 0.845 ± 0.087 0.872 ± 0.072 

MI-Net with RC 0.619 ± 0.104 0.836 ± 0.083 0.857 ± 0.089 
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tive results with the state-of-the-arts on the MUSK datasets. (2)

In the task of image classification on the Fox, Tiger and Elephant

datasets, the best one of MINNs, MI-Net with DS, wins two of

three datasets and has a very similar average accuracy over the

three datasets comparing to the previous state-of-the-art method,

which is the mi-Graph method. Note that mi-Graph can make use

of the contextual information between image patches (instances),

but the studies MINNs do not model the contextual information.

In addition, the three datasets are in small size. The “small data” is

more suitable to use traditional shallow models to analyze rather

than the proposed deep representation learning method. (3) In the
Table 4 

Comparison results ( mean ± std ) of different methods for bag classification on 2

Dataset MI-Kernel [34] miGraph [31] miFV [33] 

alt.atheism 0.602 ± 0.039 0.655 ± 0.040 0.848 ± 0.119 

comp.graphics 0.470 ± 0.033 0.778 ± 0.016 0.594 ± 0.140 

comp.windows.misc 0.510 ± 0.052 0.631 ± 0.015 0.615 ± 0.172 

comp.ibm.pc.hardware 0.469 ± 0.036 0.595 ± 0.027 0.665 ± 0.147 

comp.sys.mac.hardware 0.445 ± 0.032 0.617 ± 0.048 0.660 ± 0.157 

comp.window.x 0.508 ± 0.043 0.698 ± 0.021 0.768 ± 0.155 

misc.forsale 0.518 ± 0.025 0.552 ± 0.027 0.565 ± 0.146 

rec.autos 0.529 ± 0.033 0.720 ± 0.037 0.667 ± 0.166 

rec.motorcycles 0.506 ± 0.035 0.640 ± 0.028 0.802 ± 0.144 

rec.sport.baseball 0.517 ± 0.028 0.647 ± 0.031 0.779 ± 0.148 

rec.sport.hockey 0.513 ± 0.034 0.850 ± 0.025 0.823 ± 0.137 

sci.crypt 0.563 ± 0.036 0.696 ± 0.021 0.760 ± 0.146 

sci.electronics 0.506 ± 0.020 0.871 ± 0.017 0.555 ± 0.156 

sci.med 0.506 ± 0.019 0.621 ± 0.039 0.783 ± 0.125 

sci.space 0.547 ± 0.025 0.757 ± 0.034 0.818 ± 0.131 

soc.religion.christian 0.492 ± 0.034 0.590 ± 0.047 0.814 ± 0.138 

talk.politics.guns 0.477 ± 0.038 0.585 ± 0.060 0.747 ± 0.150 

talk.politics.mideast 0.559 ± 0.028 0.736 ± 0.026 0.793 ± 0.135 

talk.politics.misc 0.515 ± 0.037 0.704 ± 0.036 0.697 ± 0.152 

talk.religion.misc 0.554 ± 0.043 0.633 ± 0.035 0.739 ± 0.151 

average 0.515 0.679 0.726 
ask of text classification on the 20 Newsgroups datasets which

re among the largest MIL datasets, MINNs outperform the other

ethods by a large margin. The results show the superiority of

INNs and also imply that MINNs are beneficial from larger size of

he training data. (4) The proposed embedded-space network MI-

et is more competitive than the previous instance-space network

i-Net [8,9] . (5) In five MIL benchmarks (MUSK datasets and Ani-

al datasets), MI-Net with DS achieves best results compared with

ther methods, which verifies that network with deep supervision

s more robust to predict bag label. (6) Additionally, MI-Net with

C also obtains good results on these five benchmark datasets. In
0 Newsgroups (task: text categorization). 

mi-Net MI-Net MI-Net with DS MI-Net with RC 

0.758 ± 0.124 0.776 ± 0.101 0.860 ± 0.134 0.858 ± 0.099 

0.830 ± 0.145 0.826 ± 0.134 0.822 ± 0.123 0.828 ± 0.118 

0.658 ± 0.134 0.678 ± 0.101 0.716 ± 0.112 0.720 ± 0.120 

0.772 ± 0.134 0.778 ± 0.129 0.792 ± 0.155 0.784 ± 0.145 

0.746 ± 0.127 0.792 ± 0.113 0.794 ± 0.138 0.810 ± 0.133 

0.746 ± 0.145 0.786 ± 0.111 0.812 ± 0.135 0.820 ± 0.098 

0.580 ± 0.135 0.652 ± 0.128 0.686 ± 0.119 0.696 ± 0.119 

0.746 ± 0.142 0.774 ± 0.121 0.776 ± 0.129 0.792 ± 0.127 

0.716 ± 0.118 0.762 ± 0.116 0.868 ± 0.119 0.856 ± 0.133 

0.808 ± 0.139 0.856 ± 0.113 0.874 ± 0.122 0.880 ± 0.117 

0.860 ± 0.129 0.862 ± 0.085 0.912 ± 0.111 0.918 ± 0.088 

0.608 ± 0.132 0.694 ± 0.142 0.812 ± 0.166 0.796 ± 0.140 

0.932 ± 0.099 0.930 ± 0.088 0.926 ± 0.084 0.938 ± 0.091 

0.792 ± 0.110 0.818 ± 0.106 0.848 ± 0.110 0.842 ± 0.108 

0.694 ± 0.124 0.752 ± 0.112 0.818 ± 0.137 0.810 ± 0.136 

0.718 ± 0.130 0.782 ± 0.113 0.820 ± 0.38 0.822 ± 0.124 

0.596 ± 0.140 0.652 ± 0.117 0.780 ± 0.119 0.762 ± 0.101 

0.774 ± 0.103 0.794 ± 0.127 0.842 ± 0.142 0.824 ± 0.120 

0.602 ± 0.108 0.654 ± 0.135 0.776 ± 0.140 0.736 ± 0.104 

0.700 ± 0.171 0.700 ± 0.114 0.758 ± 0.123 0.764 ± 0.120 

0.737 0.766 0.815 0.813 
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Table 5 

The influence of different pooling methods for MI-Net with DS on five MIL benchmarks. 

Pooling method MUSK1 MUSK2 Fox Tiger Elephant 

max 0.894 ± 0.093 0.874 ± 0.097 0.630 ± 0.080 0.826 ± 0.087 0.870 ± 0.072 

mean 0.886 ± 0.105 0.858 ± 0.110 0.615 ± 0.078 0.845 ± 0.087 0.867 ± 0.083 

LSE 0.891 ± 0.111 0.874 ± 0.101 0.625 ± 0.104 0.840 ± 0.083 0.872 ± 0.072 

Fig. 5. The influence of deep supervision for MI-Net on five MIL benchmarks, where DS means deep supervision. 
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he 20 Newsgroups dataset, MI-Net with DS achieves superior per-

ormance, and results of MI-Net with RC are slightly worse than

esults of MI-Net. The average accuracy of all 20 datasets at eval-

ation indicates that MI-Net and its two variations outperform

he other five competing algorithms, including MI-Kernel [34] , mi-

raph [31] , miFV [33] , and mi-Nets. The observations in (5) and

6) suggest that we may choose different network tricks in differ-

nt applications/problems, which is consistent with the common

ractices in the research of deep learning (different datasets may

equire different tricks). 

. Discussion 

In this section, we study the influence of different pooling

ethods, deep supervision, residual connections, as well as the

idth and depth of MINNs. 

.1. The influence of different pooling methods 

The pooling layer is a critical component to achieve multiple

nstance neural networks. There are three typical pooling meth-

ds, max pooling, mean pooling, and LSE pooling. On the MUSK

atasets and Animal datasets, we give the results of MI-Nets

ith different pooling methods in Table 5 . The results show that

he three pooling methods obtain similar classification accuracy.

ore specifically, max pooling and LSE pooling methods work

lightly better than mean pooling. However, in the 20 Newsgroups

atasets, only max pooling method gives satisfying results, and

ean pooling and LSE pooling do not coverage to normal bag clas-

ification accuracy. In summary, we recommend using max pooling

ethod together with MINNs. 

.2. The influence of deep supervision 

To illustrate the effectiveness of deep supervision, we compare

I-Net with deep supervision to MI-Net without deep supervision
irectly in Fig. 5 using histograms. Deep supervision helps to im-

rove the bag classification accuracy in 23 datasets out of total

ested 25 datasets. In the 2 datasets with no improvement, deep

upervision hurts accuracies very slightly. We can conclude that

eep supervision helps to learn better bag feature hierarchies in

I-Nets. In addition, deep supervision is computationally efficient

n testing. It is a useful trick for training MI-Nets. 

.3. The influence of residual connections 

We compare MI-Net with residual connections and MI-Net

ithout residual connections in Fig. 6 . The figure shows that resid-

al connections improve bag classification accuracies in 23 datasets

ut of the total 25 datasets. In the Elephant and Tiger datasets, the

esidual connections method slightly hurts the performance. Like

he deep supervision method, the residual connections method

lso has a positive impact on learning good bag representation in

I-Nets. Though deep supervision and residual connections look

ifferent, the theory behind them is the same. The common the-

ry behind is to make the MIL supervision information easier to

ropagate to the early layers and help to learn better bag repre-

entation in early layers. 

.4. The influence of deeper and wider MINNs 

As aforementioned, for mi-Net, MI-Net, and MI-Net with its

ariations, the number of layers and neurons for each layer are

xed when training and testing. In Tables 2, 3 , and 4 , both the pro-

osed networks have four FC layers and there are 256, 128, 64, and

 neurons for FC layers in MI-Net with DS respectively whereas

here are 128, 128, 128, and 1 neurons in MI-Net with RC. It is

ery necessary to study deeper and wider MINNs, since in deep

earning the deeper and wider neural network may get better per-

ormance. In this subsection, we report the results of the proposed

I-Net with DS and MI-Net with RC with different layer numbers

nd neuron number values on five MIL benchmarks, respectively.
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Fig. 6. The influence of residual connections for MI-Net on five MIL benchmarks, where RC means residual connections. 

Table 6 

The influence of depth and width for MI-Net with DS on five MIL benchmarks, where numbers in brackets show the 

number neurons for each FC layer. 

Structure MUSK1 MUSK2 Elephant Fox Tiger 

(256, 256, 256, 1) 0.898 ± 0.086 0.853 ± 0.018 0.842 ± 0.071 0.629 ± 0.093 0.826 ± 0.080 

(256, 256, 128, 1) 0.881 ± 0.084 0.877 ± 0.116 0.844 ± 0.700 0.602 ± 0.091 0.836 ± 0.091 

(256, 128, 64, 1) 0.894 ± 0.093 0.874 ± 0.097 0.872 ± 0.072 0.630 ± 0.080 0.845 ± 0.087 

(128, 128, 128, 1) 0.887 ± 0.094 0.871 ± 0.106 0.840 ± 0.069 0.616 ± 0.117 0.836 ± 0.087 

(128, 128, 64, 1) 0.866 ± 0.103 0.859 ± 0.099 0.845 ± 0.071 0.602 ± 0.097 0.836 ± 0.076 

(64, 64, 64, 1) 0.891 ± 0.097 0.857 ± 0.106 0.861 ± 0.072 0.592 ± 0.096 0.824 ± 0.081 

(256, 256, 128, 128, 64, 1) 0.892 ± 0.086 0.873 ± 0.108 0.844 ± 0.069 0.627 ± 0.109 0.835 ± 0.083 

(256, 256, 256, 256, 256, 1) 0.884 ± 0.099 0.853 ± 0.112 0.838 ± 0.078 0.609 ± 0.086 0.835 ± 0.092 

Fig. 7. Comparisons of depth for MI-Net with RC on five MIL benchmarks. 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Comparisons of width for MI-Net with RC on five MIL benchmarks. 
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The depth and width analysis results of MI-Net with DS on five

MIL benchmarks are presented in Table 6 . The neuron number of

the last FC layer is fixed to 1 to output bag scores. As shown in

Table 6 , MI-Net with DS can achieve the best performance in most

cases when the depth is 4, and each FC layer has 256, 128, 64, and

1 neurons respectively. Although results of the deeper and wider

network are superior to the shallower and thinner one on some

datasets, the advantage of the deeper and wider network is not

obvious to boost the performance. 

As referred in Section 3.5 , the neuron numbers of FC layers

should be of the same value to build residual connections except
or the last FC layer. Fixing the width of MI-Net with RC, we only

hange the depth of the network. In Fig. 7 , the results of different

epths on five MIL benchmarks are similar. Then we fix the depth

f MI-Net with RC to 4 during discussing the influence of width

n MI-Net with RC. Fig. 8 illustrates that the wider network is not

ecessary to boost the performance. In addition, MI-Net with RC

ay get worse performance when it is too thin. 

This observation is not consistent with the performance of

eeper and wider neural networks to solve other problems. How-

ver, regarding the size of MIL datasets is much smaller than the

odern deep learning datasets and the features are fixed and
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and-crafted, it is reasonable the accuracies get saturated when

INNs are in the depth of 4 and have 128 neurons per layer. 

. Conclusion 

In this study, we revisit the problem of end-to-end learning of

INNs and propose a series of novel MINNs with the state-of-the-

rt performance. Different from the existing MINNs, our method

ocuses on bag-level representation learning instead of instance-

evel label estimating. Experiments show that our bag-level net-

orks show superior results on several MIL benchmarks compared

ith the instance-level networks. Moreover, we integrate the most

opular deep learning tricks (deep supervision and residual con-

ections) into our networks, which can boost the performance fur-

her. Moreover, our method only takes about 0.0 0 03 s for testing

forward) and 0.0 0 08 s for training (backward) per bag, which is

ery efficient. 
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